Does Planck length challenge non-relativistic quantum mechanics of large masses?

Lajos Diósi

Wigner Center, Budapest

18 Sept, 2018

Supported by

National Research Development and Innovation Office of Hungary Grant number K12435

- Does Planck scale require relativistic motion?
- 2 Nonrelativistic plane wave versus Planckian scale
- 3 Large mass non-relativistic wave function
 - Ignorable effects per atoms accumulate
- **5** Is centre-of-mass x of 10^{23} atoms observable at all?
- 6 Facts and questions
 - **7** Closing remarks

Does Planck scale require relativistic motion?

- $\bullet\,$ Space-time continuum is likely to break down at $\ell_{\rm Pl}.$
- Hence Planck scale puts a limit to standard physics.
- Early Big Bang high energies hit the Planck scale.
- At lower energies than that, we remain on the safe side.
- Which is not quite true.

When quantum mechanics enters the Planck scale:

 λ_{dB} sinks to ℓ_{Pl} in two ways:

- Relativistic way: when elementary particles velocity v closes c.
- Non-relativistic: when mass grows macroscopic.

Nonrelativistic plane wave versus Planckian scale

Non-relativistic plane wave, $v \ll c$:

$$\begin{aligned} \Psi(x,t) &= \exp\left(-iEt/\hbar + ipx/\hbar\right) \\ &= \exp\left(-i\frac{mv^2}{2\hbar}t + i\frac{mv}{\hbar}x\right) \\ &= \exp\left(-2\pi i\frac{t}{\tau} + 2\pi i\frac{x}{\lambda}\right) \end{aligned}$$

Periodicity in t and x:
$$\left\{ \begin{array}{ll} au &= (4\pi\hbar/mv^2) \\ \lambda &= (2\pi\hbar/mv) \end{array}
ight.$$

$$\begin{split} \Psi(x,t) \text{ is legitimate as long as } \tau \gg \tau_{\rm Pl} \text{ and } \lambda \gg \ell_{\rm Pl}. \\ \text{Planck time and length:} \left\{ \begin{array}{l} \tau_{\rm Pl} &= \sqrt{\hbar G/c^5} \sim 10^{-43} s \\ \ell_{\rm Pl} &= \sqrt{\hbar G/c^3} \sim 10^{-33} cm \end{array} \right. \end{split}$$

For atomic *m* that's the case: $\tau/\tau_{\rm Pl} \gg 10^{18}$ and $\lambda/\ell_{\rm Pl} \gg 10^{18}$. But larger *m* will push $\Psi(x, t)$ towards the Planckian scales.

Large mass non-relativistic wave function

•
$$\tau = \frac{2\pi\hbar}{mv^2/2}$$
 sinks to $\tau_{\rm Pl} \sim 10^{-43}$ s if $mv^2 \sim m_{\rm Pl}c^2$, i.e:
 $m \sim \frac{c^2}{v^2}m_{\rm Pl} \sim \frac{c^2}{v^2}10^{-5}g$.
• $\lambda = \frac{2\pi\hbar}{mv}$ sinks to $\ell_{\rm Pl} \sim 10^{-33}$ cm if $mv \sim m_{\rm Pl}c$, i.e.:
 $m \sim \frac{c}{v}m_{Pl} \sim \frac{c}{v}10^{-5}g$.

With growing *m*, non-relativistic $\Psi(x, t)$ becomes illegitimate. The bell rings for spatial periodicity first. Example I, free motion:

$$m = 10g, v = 10$$
 km/s, $\Rightarrow \lambda = (2\pi\hbar/mv) \sim \ell_{\rm Pl}$

Example II, rigid body elastic vibration mode:

 $m = 10 kg, \omega = 100 kHz, a$ (mplitude) $= 10^{-2} cm \Rightarrow \lambda = (2\pi \hbar/ma\omega) \sim \ell_{\mathrm{Pl}}$

Ignorable effects per atoms accumulate

Suppose a global constant "uncertainty":

 $x \Rightarrow x + u$.

 $|u| \sim \ell_{\rm Pl}$ is space's error/bluriness/foaminess/fluctuation. Many-particle state:

$$\Psi(x_1, x_2, \ldots, x_{10^{23}}) \Rightarrow \Psi(x_1 + u, x_2 + u, \ldots, x_{10^{23}} + u).$$

u is irrelevant for non-relativistic individual particles, but its *effect* accumulates for the many-particle c.o.m. x.

Best seen in momentum representation:

$$\widetilde{\Psi}(p_1,p_2,\ldots,p_{10^{23}}) \Rightarrow \exp\left(\frac{i}{\hbar}u(\underbrace{p_1+p_2+\ldots+p_{10^{23}}}_P)\right)\widetilde{\Psi}(p_1,p_2,\ldots,p_{10^{23}})$$

C.o.m. reduced state decoheres in momentum if u is stochastic:

$$\rho(P, P') \Rightarrow \exp\left(\frac{i}{\hbar}u(P-P')\rho(P, P')\right) \Rightarrow \exp\left(-\frac{\ell_{\rm Pl}^2}{2\hbar^2}(P-P')^2\right)\rho(P, P')$$

Sure, it is!

In quantum optomechanics, magnetomechanics: Spatial motion of suspended, flexibly located, levitated or trapped macroobjects is controlled in their quantum regime.

E.g.: Each and every photon in mirror-optomechanics interacts with the mirror as a whole.

Masses are still much less then those requested for $\lambda \sim \ell_{\rm Pl}$. But much larger than before 20 years we beleived in.

Facts and questions

- We don't need extreme high energies to explore Planck scale.
- Nonrelativistic QM of massive d.o.f. does explore it.
- And breaks down there. What way, we don't yet know.
- Plausible: space-time "uncertainty" yields noise/decoherece.
 - Holographic noise? (Hogan [Genovese's talk]
 - G-related decoherence of massive d.o.f. ? (D-Penrose)
- Breakdown depends on spectrum of "uncertainty" u.
- Can come much earlier than for global static *u*.
- D-Penrose: nonrelativistic
 - Can it be the non-relativistic footprint of Planck scale "uncertainties"?
 - If it decoheres massive d.o.f. before their λ_{dB} sinks to $\ell_{Pl}?$

The knowledge that

i) *Planckian "uncertainty" of space-time accumulates for large non-relativistic objects*,

ii) we might therefore study Planckian footprints in the lab non-relativistically,

has been *implicit* in various works (Károlyházy, D., Penrose, Hogan, Bekenstein ...), all using *sophisticated arguments*. What I'm adding is

explicit and elementary evidence.

Remember:

$$\lambda_{
m dB} = rac{2\pi\hbar}{10g imes 10$$
 km/s $= 4.2 imes 10^{-33}$ cm \sim $\ell_{
m Pl}.$