Quantum control and semiclassical quantumgravity

Lajos Diósi

Wigner Centre, Budapest

9 Apr 2019, Evanston IL

National Research Development and Innovation Office Projects 2017-1.2.1-NKP-2017-00001 and K12435 EU COST Action CA15220 'Quantum Technologies in Space'

- Abstract
 - Semiclassical thought-experiment 1986
- Fragments from history
- Semiclassical Gravity 1962-63: sharp metric
 - Sharp metric Newtonian limit
 - Testing self-attraction
- Interaction generated "on phone line"
 - Quantum control to generate potential (tutorial)
 - Quantum control to generate potential (summary)
- Decoherent Semiclassical Gravity: unsharp metric 6
 - Unsharp metric Newtian limit
 - ... coincides with DP wavefunction collapse theory
 - Testing DP: LISA Pathfinder
 - MAQRO
 - Summary

Decoherent Semiclassical Gravity wouldn't have been realized without ...

Quantum gravity has not yet obtained a usable theory. We apply the semiclassical theory instead, where the space-time remains classical (i.e.: unquantized). However, the hybrid quantum-classical coupling is acausal, violates both the linearity of quantum theory and the Born rule as well. Such anomalies can go away if we modify the standard mean-field coupling, building on the mechanism of quantum measurement and feed-back well-known in, e.g., quantum optics. The newtonian limit can fully be worked out, it leads to the gravity-related spontaneous wave function collapse theory of Penrose and the speaker.

Semiclassical thought-experiment 1986

- 1. electromagnetism
- 2. nuclear forces
- 3. weak forces
- 4. gravity (space-time)

quantized, confirmed by tests unified by the Standard Model

either quantized or not, no tests so far

Is it sharp or uncertain (fluctuating)? If it is fluctuating, what is the spectrum of fluctuations δg_{ab} ? 1986: Newtonian limit $\delta g_{00} = \delta \Phi$, thought-experiment with quantized probe + classical Φ , order of magnitude estimate:

$$\langle \delta \Phi_t(\mathbf{r}) \delta \Phi_s(\mathbf{y}) \rangle_{\text{stoch}} = \text{const} \times \frac{\hbar G}{|\mathbf{x} - \mathbf{y}|} \delta(t - s)$$

 \Rightarrow DP positional decoherence for massive objects, testable in the lab? Can't we get rid of the order-of-magnitude estimate 1986 ? 2016-17: We can (Tilloy & D).

Fragments from history

Bronstein (1935): A sharp space-time structure is unobservable (because of Schwartzschild radii of test bodies). Quantization of gravity can not copy quantization of electromagnetism. We may be enforced to reject our ordinary concept of space-time.

Jánossy (1952): Quantum mechanics should be more classical. Expansion of the wave packet might be limited by $\dot{\psi}(x) = \frac{i\hbar}{2M}\psi''(x) - \gamma(x - \langle x \rangle)^2\psi(x) + \frac{1}{2}\gamma(\Delta x)^2\psi(x)$ if we accept superluminality caused by the nonlinear term.

Károlyházy (1966): The ultimate unsharpness of space-time structure limits coherent expansion of massive objects' position (while individual particles can expand coherently with no practical limitations).

1906-1938

1929-2012

Semiclassical Gravity 1962-63: sharp metric

Sharp classical space-time metric (Møller, Rosenfeld 1962-63): $G_{ab} = \frac{8\pi G}{c^4} \langle \Psi | \hat{T}_{ab} | \Psi \rangle$ Schrödinger equation on background metric g: $|\dot{\Psi}\rangle = -\frac{i}{\hbar} \hat{H}[g] |\Psi\rangle$

That's our powerful effective hybrid dynamics for $({\rm g}_{ab},|\Psi\rangle),$ but

- with fundamental anomalies (superluminality, no Born rule, ...)
- that are unrelated to relativity and even gravitation
- just related to quantum-classical coupling
- that makes Schrödinger eq. nonlinear

No deterministic hybrid dynamics is correct fundamentally! Way out: metric cannot be sharp, must have fluctuations δg_{ab} .

Sharp metric Newtonian limit

$$\begin{split} \mathbf{G}_{00} &= 8\pi G c^{-4} \langle \Psi | \hat{\mathbf{T}}_{00} | \Psi \rangle \implies \Delta \Phi = 4\pi G \langle \Psi | \hat{\varrho} | \Psi \rangle \\ &| \dot{\Psi} \rangle = -(i/\hbar) \hat{H}[\mathbf{g}] | \Psi \rangle \implies | \dot{\Psi} \rangle = -(i/\hbar) \left(\hat{H}_0 + \int \hat{\varrho} \Phi dV \right) | \Psi \rangle \implies \\ \Rightarrow & \mathsf{Schrödinger-Newton Equation with self-attraction:} \\ &| \dot{\Psi} \rangle = -\frac{i}{\hbar} \left(\hat{H}_0 - G \int \int \frac{\hat{\varrho}(\mathbf{x}) \langle \Psi | \hat{\varrho}(\mathbf{y}) | \Psi \rangle}{|\mathbf{x} - \mathbf{y}|} d\mathbf{x} d\mathbf{y} \right) | \Psi \rangle \end{split}$$

Single "pointlike" body c.o.m. motion:

$$\dot{\psi}(\mathbf{x}) = \frac{i\hbar}{2M} \nabla^2 \psi(\mathbf{x}) + \underbrace{\frac{i}{\hbar} GM^2 \int \frac{|\psi(\mathbf{y})|^2 d\mathbf{y}}{|\mathbf{x} - \mathbf{y}|} \psi(\mathbf{x})}_{\mathbf{x} - \mathbf{y}}$$

Solitonic solutions: $\Delta x \sim \hbar^2/GM^3$. self-attraction

Irrelevant for atomic M, grow relevant for nano-M:

$$M\sim 10^{-15}g,~\Delta x\sim 10^{-5}cm$$

That's quantum gravity in the lab [D. 1984].

PHYSICAL REVIEW D 93, 096003 (2016)

Optomechanical test of the Schrödinger-Newton equation

André Großardt, ^{1,2,*} James Bateman, ^{3,4,†} Hendrik Ulbricht, ^{4,‡} and Angelo Bassi^{1,2,§}
 ¹Department of Physics, University of Trieste, 34151 Miramare-Trieste, Italy
 ²Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, Via Valerio 2, 34127 Trieste, Italy
 ³Department of Physics, College of Science, Swansea University, Swansea SA2 8PP, United Kingdom
 ⁴School of Physics and Astronomy, University of Southampton, Southampton S017 1BJ, United Kingdom (Received 6 October 2015; published 4 May 2016)

The Schrödinger-Newton equation has been proposed as an experimentally testable alternative to quantum gravity, accessible at low energies. It contains self-gravitational terms, which slightly modify the quantum dynamics. Here we show that it distorts the spectrum of a harmonic system. Based on this effect, we propose an optomechanical experiment with a trapped microdisc to test the Schrödinger-Newton equation, and we show that it can be realized with existing technology.

Schrödinger-Newton Equation for 1D motion of a Massive oscillator:

$$\dot{\psi}(x) = \frac{i\hbar}{2M}\psi''(x) - \frac{iM}{2\hbar}\left(\Omega^2 x^2 + \omega_G^2 (x - \langle x \rangle)^2\right)\psi(x)$$
$$\omega_G^2 = \text{const.} \times G \times \text{nuclear density in } M$$

Interaction generated "on phone line"

AliceBob
$$M_A$$
 //////spring M_A /////// $V(x_A - x_B)$ A_A at x_A $V(x_A - x_B)$

We can replace the spring by a phone line + two local springs under local control of Alice and Bob, resp.:

phone line Alice - - - to communicate - - - Bob \searrow $x_A \rightarrow B, A \leftarrow x_B$ \swarrow $M_A ///|$ $|/// M_B$ Trivial classically, non-trivial in quantum.

9 / 19

Quantum control to generate potential (tutorial)

At ∞ repetition frequency: time-continuous monitoring+feedback.

 $\underbrace{\mathbf{x}_{t}}_{signal} = \underbrace{\langle \Psi_{t} | \hat{x} | \Psi_{t} \rangle}_{mean} + \underbrace{\delta x_{t}}_{noise} \qquad \underbrace{\mathbb{E}\delta x_{t} \delta x_{s}}_{correlation} = \underbrace{\gamma^{-1}}_{\gamma = precision} \delta(t - s)$ To generate a potential, take $\hat{H}_{fb}(t) = Rx_{t}\hat{x} = R(\langle \Psi_{t} | \hat{x} | \Psi_{t} \rangle + \delta x_{t})\hat{x}$. $|\dot{\Psi}\rangle = \frac{-i}{\hbar} (\hat{H}_{0} + \underbrace{\frac{1}{2}R\hat{x}^{2}}_{fb-generated}) |\Psi\rangle - \underbrace{\frac{1}{8}}_{to \ be \ minimized} \underbrace{[\gamma + 4\gamma^{-1}(R/\hbar)^{2}]}_{to \ be \ minimized} \underbrace{[\hat{x} - \langle \hat{x} \rangle]^{2}}_{localisation} |\Psi\rangle + \underbrace{\dots \delta x}_{stochastic} |\Psi\rangle$

Lajos Diósi (Wigner Centre, Budapest) Quantum control and semiclassical quantumg 9 Apr 2019, Evanston IL 10 / 19

Assume \hat{x} is being monitored, yielding signal $x_t = \langle \Psi_t | \hat{x} | \Psi_t \rangle + \delta x_t$. Apply feedback via the hybrid Hamiltonian

$$\hat{H}_{fb}(t) = R x_t \hat{x} = \underbrace{R \langle \hat{x} \rangle_t \hat{x}}_{sharp \ semiclassical \ coupling} + \underbrace{R \delta x_t \hat{x}}_{(white)noise \ part \ of \ coupling}$$

Sharp+noisy terms together cancel nonlinearity (and related anomalies) from the quantum dynamics:

$$\dot{\hat{
ho}} = rac{-i}{\hbar} [\hat{H}_0 + rac{1}{2} R \hat{x}^2, \hat{
ho}] - rac{1}{2\hbar} R[\hat{x}, [\hat{x}, \hat{
ho}]]$$

New potential has been generated 'semiclassically' and consistently with quantum mechanics, but at the price of decoherence.

Decoherent Semiclassical Gravity: unsharp metric

- Assume \hat{T}_{ab} is spontaneously measured (monitored)
- Let T_{ab} be the measured value (called signal in control theory)
- Replace Møller-Rosenfeld 1962-63 by

$$G_{ab} = \frac{8\pi G}{c^4} T_{ab} = \frac{8\pi G}{c^4} (\langle \hat{T}_{ab} \rangle + \delta T_{ab})$$

i.e.: source Einstein eq. by the noisy signal (meanfield+noise)For backaction of monitoring, add terms to Schrödinger eq.:

$$rac{d}{dt}|\Psi
angle = -rac{i}{\hbar}\hat{H}[\mathrm{g}]|\Psi
angle + \mathrm{nonlinear} + \mathrm{stoch. \ terms}$$

Tune precision of monitoring by Principle of Least Decoherence
 D 1990, Kafri, Taylor & Milburn 2014, Tilloy & D 2016-17

Unsharp metric Newtonian limit

- Assume $\hat{\varrho}$ is spontaneously measured (monitored)
- Let ϱ_t be the measured value (called signal in control theory)
- Source classical Newtonian gravity by the signal:

$$\Phi_t(\mathbf{x}) = -G \int \frac{d\mathbf{y}}{|\mathbf{x} - \mathbf{y}|} \ \varrho_t(\mathbf{y})$$

- Introduce $\hat{H}_{fb} = \int \hat{\varrho} \Phi dV$ to induce Newton interaction
- For backaction of monitoring, add terms to Schrödinger eq.:

$$rac{d}{dt}|\Psi
angle = -rac{i}{\hbar}\hat{H}_0|\Psi
angle + {
m nonlinear} + {
m stoch. terms}$$

13 / 19

• Tune precision of monitoring by Principle of Least Decoherence Such theory of unsharp semiclassical gravity coincides with

... coincides with DP wavefunction collapse theory

Unique ultimate unsharpness of Newton potential Φ (metric):

$$\langle \delta \Phi_t(\mathbf{r}) \delta \Phi_s(\mathbf{y}) \rangle_{\text{stoch}} = \frac{\hbar G}{2|\mathbf{x} - \mathbf{y}|} \delta(t - s)$$

By averaging over the stochastic Φ (metric), master eq. (D. 1986):

$$\frac{d\hat{\rho}}{dt} = -\frac{i}{\hbar} \left[\hat{H}_{0} + \underbrace{\frac{G}{2} \iint \frac{d\mathbf{x}d\mathbf{y}}{|\mathbf{x} - \mathbf{y}|} \hat{\varrho}(\mathbf{x})\hat{\varrho}(\mathbf{y})}_{Newton \ pairpotential}, \hat{\rho} \right] \underbrace{-\frac{G}{2\hbar} \iint \frac{d\mathbf{x}d\mathbf{y}}{|\mathbf{x} - \mathbf{y}|} [\hat{\varrho}(\mathbf{x}), [\hat{\varrho}(\mathbf{y}), \hat{\rho}]]}_{DP \ decoherence}$$

Double merit:

- Semiclassical theory of gravity, a hybrid dynamics of $(\Phi, |\Psi\rangle)$ free of anomalies (no superluminality, valid Born rule).
- Theory of G-related spontaneous collapse (Schrödinger's Cats go collapsed).

Testing DP: LISA Pathfinder

PHYSICAL REVIEW D 95, 084054 (2017)

LISA pathfinder appreciably constrains collapse models

Bassam Helou,¹ B. J. J. Slagmolen,² David E. McClelland,² and Yanbei Chen¹ ¹Theoretical Astrophysics 350-17, California Institute of Technology, Pasadena, California 91125, USA ²Australian National University, Canberra ACT 0200, Australia (Received 20 July 2016; revised manuscript received 12 August 2016; published 28 April 2017)

Spontaneous collapse models are phenomological theories formulated to address major difficulties in macroscopic quantum mechanics. We place significant bounds on the parameters of the leading collapse models, the continuous spontaneous localization (CSL) model, and the Diosi-Penrose (DP) model, by using LISA Pathfinder's measurement, at a record accuracy, of the relative acceleration noise between two free-falling macroscopic test masses. In particular, we bound the CSL collapse rate to be at most

competitive bound explores a net $10^{-8\pm2}$ s⁻¹ proposed by Adler in the phenomenology of quantum in the DP model to prevent diverg nucleus. Thus, we rule out the

15 / 19

Lajos Diósi (Wigner Centre, Budapest) Quantum control and semiclassical quantume 9 Apr 2019, Evanston IL

MAQRO

- a medium-sized space mission, with a launch in 2025 (ESA)
- harnesses quantum optomechanics, high-M matter-wave interferometry
- testing quantum physics for truly macroscopic objects
- testing so-called collapse models

Kaltenbaek et al. EPJ Quantum Technology (2016) 3:5 DOI 10.1140/epjqt/s40507-016-0043-7

 EPJ Quantum Technology a SpringerOpen Journal

Open Access

Macroscopic Quantum Resonators (MAQRO): 2015 update

Rainer Kaltenbaek¹⁺⁴, Markus Aspelmeyer¹, Peter F Barker², Angelo Bassi^{3,4}, James Bateman⁵, Kai Bongs⁶, Sougato Bose², Claus Braxmaier^{7,8}, Časlav Brukner^{1,9}, Bruno Christophe¹⁰, Michael Chwalla¹¹, Pierre-François Cohadon¹², Adrian Michael Cruise⁶, Catalina Curceanu¹³, Kishan Dholakia¹⁴, Lajos Diósi¹⁵, Klaus Döringshoff¹⁶, Wolfgang Ertmer¹⁷, Jan Gieseler¹⁸, Norman Gürlebeck⁷, Gerald Hechenblaikner^{11,19}, Antoine Heidmann¹², Sven Herrmann⁷, Sabine Hossenfelder²⁰, Ulrich Johann¹¹, Nikolai Kiesel¹, Myungshik Kim²¹, Claus Lämmerzahl⁷, Astrid Lambrecht¹², Michael Mazilu¹⁴, Gerard J Milburn²², Holger Müller²³, Lukas Novotny¹⁸, Mauro Paternostro²⁴, Achim Peters¹⁶, Igor Pikovski²⁵, André Pilan Zanoni^{11,26}, Ernst M Rasel¹⁷, Serge Reynaud¹², Charles Jess Riedel²⁷, Manuel Rodrigues¹⁰, Loïc Rondin¹⁸, Albert Roura²⁸, Wolfgang P Schleich^{28,29}, Jörg Schmiedmayer³⁰, Thilo Schuldt⁸, Keith C Schwab³¹, Martin Tajmar³², Guglielmo M Tino³³, Hendrik Ulbricht³⁴, Rupert Ursin⁹ and Vlako Vedral^{35,36}

'Correspondence (Wigner Centre, Budapest)

Lajos Diósi

Abstract

Quantum control and semiclassical quantumg

9 Apr 2019, Evanston IL

16 / 19

Møller-Rosenfeld (sharp) Semiclassical Gravity is quantum-nonlinear, with related fundamental anomalies and particular effects:

- superluminality, fall of Ψ 's statistical interpretation (anomaly)
- self-attraction (main effect for tests)

These fundamental anomalies and self-attraction are missing in (unsharp) Decoherent Semiclassical Gravity. But new anomalies and effects arise:

- non-conservation of energy, momenta, etc. (anomaly)
- decoherence, c.o.m. Brownian motion, ... (effects for tests)
- submicron cutoff against diverging decoherence (open problem)
- submicron breakdown of Newton force (effect for tests)

Decoherent Semiclassical Gravity wouldn't have been realized without ...

background in standard quantum control—monitoring, feedback, etc. — and its various formalisms —master eqs., Ito-stochastic eqs., path integrals, time-ordered exponentials, double-time-superoperators (Keldysh), etc. • L Diósi: A quantum-stochastic gravitation model and the reduction of the wavefunction (in Hungarian) Thesis, (Budapest, 1986); A universal master equation for the gravitational violation of the quantum mechanics, PLA120, 377 (1987); Models for universal reduction of macroscopic quantum fluctuations, PRA40, 1165 (1989)

• L Diósi & B Lukács: *In favor of a Newtonian quantum gravity*, Annln. Phys. 44, 488 (1987)

• R Penrose: *On gravity's role in quantum state reduction*, GRG28, 581 (1996)

• A Tilloy & L. Diósi: Sourcing semiclassical gravity from spontaneously localized quantum matter, PRD93, 024026 (2016); Principle of least decoherence for Newtonian semi-classical gravity, PRD96, 104045 (2017)