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Abstract—Geons are localized horizonless objects formed by gravitational waves, held together by the
gravitational attraction of their own field energy. In many respects they are similar to scalar field
pulson/oscillon configurations, which were found numerically in 1976 by Kudryavtsev, Bogolyubskii, and
Makhankov. If there is a negative cosmological constant, the spacetime of geons asymptotically approaches
the anti-de Sitter (AdS) metric. AdS geons are time-periodic regular localized vacuum solutions without
any radiation loss at infinity. A higher order perturbative construction in terms of an amplitude parameter
shows that there are one-parameter families of AdS geon solutions emerging from combinations of
identical-frequency linear modes of the system.
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1. INTRODUCTION

The search for long-living localized finite energy
solutions is a very important longstanding problem in
theoretical physics. For the profound understanding,
it is crucial to identify the simplest physical models
in which such states may exist. It is also instructive
to explore what are the simplest matter fields that
can form such structures, and to see whether vac-
uum gravitational waves are capable to make long-
living localized objects. A general feature that can
be observed is that nonlinearity is essential in these
systems. The size of the objects may cover a huge
range, from the size of particles to stars or even
galaxies, depending on the value of the parameters in
the theories.

In many important systems there are no time-
independent localized configurations, but still, there
are long-living solutions oscillating in time. Probably
the simplest such physical system is a single real
scalar field on a flat Minkowski background. The
object formed in this case is named pulson, or more
recently oscillon. When the real scalar field is coupled
to Einstein’s gravity the accepted name is oscillaton.
The localized configurations formed by gravitational
or electromagnetic waves are known under the name
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geons. We give some more information about these
object in the next few paragraphs.

The equation describing a spherically symmet-
ric real scalar field φ, with self-interaction potential
U(φ), in case of d spatial dimensions can be written
as

−∂2φ

∂t2
+

∂2φ

∂r2
+

d− 1

r

∂φ

∂r
= U ′(φ), (1)

where t is the time coordinate, r is the radial coordi-
nate, and the prime denotes derivative with respect to
φ. For d ≥ 2 dimensions we require a regular center,
and for d = 1 we ask for mirror symmetry at r = 0.
Exactly time-periodic, localized, regular, finite energy
solution for φ only exist for d = 1 spatial dimension,
and even in that case only for U(φ) = 1− cosφ, the
sine-Gordon potential. The solution is called sine-
Gordon breather, and it is an exact solution that can
be written in a well known simple form.

However, this does not mean that there are no
regular long living stable finite energy solutions in
higher dimensions or for other potentials. The most
thoroughly studied case is the U(φ) = 1

4(φ
2 − 1)2

symmetric double well potential. For a large class
of potentials there are oscillating “almost-breather”
solutions, which are weakly emitting energy by scalar
field radiation. Because of this, they have a slowly
changing amplitude and frequency. The likelihood of
the existence of these configurations for not exactly
solvable one dimensional systems were first studied
in 1975 by Kosevich and Kovalev [1], and also by
Dashen, Hasslacher, and Neveu [2]. In the same
year Kudryavtsev have shown by numerical methods
that long living localized states form by the collision
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of two kinks [3]. Spherically symmetric states in
3 + 1 spacetime dimensions were first found in 1977
by Bogolyubskii and Makhan’kov in Dubna, by a
numerical time evolution code [4, 5]. The original
name for these solutions were pulsons. The interest
about these configurations began to grow after 1994,
when Marcelo Gleiser studied them in more details
[6]. Next year, in their paper Copeland, Gleiser,
and Müller started to call these objects oscillons [7],
which is still the most widely used name for them
in the literature. Oscillons in case of one or two
space dimensions live forever, with more and more
slowly decreasing amplitude, but oscillons in three or
more dimensions suddenly decay after a few hundred,
or possibly few thousand oscillations. The reason
for this quick decay is that when the amplitude falls
below a certain value they enter into an unstable
domain.

There are localized configurations similar to oscil-
lons even when the scalar field is coupled to gravity.
Seidel and Suen in 1991 discovered spherically sym-
metric oscillating solutions for a real scalar field in the
theory of general relativity [8]. These objects became
known under the name oscillatons [9]. In this case
gravity already provides the necessary nonlinearity,
hence a simple U(φ) = 1

2m
2φ2 Klein–Gordon poten-

tial can already support these structures. Even if one
chooses a more general self-interaction potential, for
small amplitude oscillatons the leading order behavior
will be same as for the Klein–Gordon potential. For
large distances gravitation dominates over the self-
interaction of the scalar field. There is also a difference
in the small amplitude scaling behavior between os-
cillons and oscillatons. As a result of that, for three
spatial dimensions, small amplitude oscillatons are
stable. This means that oscillatons live forever, there
is no moment of time when they suddenly decay.

The general structure of oscillons and oscillatons
is shown on Fig. 1. In both cases there is a large am-
plitude core with slow spatial variations in the scalar
field, and a very small amplitude outgoing wave tail.
If the central amplitude is ε, then the tail amplitude
is proportional to exp(−a/ε), where a is a positive
constant. Detailed discussion about the radiation
rate can be found for oscillons in the papers [10–12],
and for oscillatons in [13–15]. As time passes, the
energy of the core decreases slowly, together with its
amplitude. However, the amplitude of the radiating
tail decreases quickly because of the exponential de-
pendence, and the radiation becomes extremely small
in a relatively short time. Self-gravitating oscillatons
never decay, and a typical oscillaton loses less than
half of its energy during the lifetime of our universe.

A further type of localized object formed by os-
cilating fields are called geons. The concept of geon
was introduced in 1955 by John Archibald Wheeler,

Tail Core Tail

Fig. 1. Oscillons and oscillatons consist of a core and an
outgoing wave tail with exponentially small amplitude.

considering high frequency self-gravitating electro-
magnetic fields [16]. The name comes from the phrase
“gravitational-electromagnetic entity”. Wheeler first
considered a toroidal geon, where the electromagnetic
radiation goes around in a circle, inside a toroidal
region. The structure is held together by the grav-
itational attraction of the mass associated with the
electromagnetic field energy. Wheeler studied very
thin tori, where the minor radius is much smaller than
the major radius. In this case small amplitude high
frequency waves are going around in a circle. Wheeler
had the idea to consider a system which includes
a large number of identical-size thin toroidal geons
with different orientations. In this way, the metric
on the large scale becomes spherically symmetric and
static. There is a thin sphere active region, where the
high frequency waves are concentrated. The metric
of the inner region is flat, outside of the sphere it
is Schwarzschild. Brill and Hartle demonstrated in
1964, that instead of electromagnetic waves, geons
can also form from vacuum gravitational waves, and
these geons have the same large scale metric struc-
ture [17]. There are no exact or numerical solutions
for geons, we can only infer their existence using
spacetime averaging methods, considering small am-
plitude high frequency perturbations. The averaging
procedure was made more precise in 1997 by Ander-
son and Brill [18]. The stability and lifetime of these
geon structures is still under debate.

2. NEGATIVE COSMOLOGICAL CONSTANT

For Λ < 0 the spacetime of localized objects must
tend asymptotically to the anti-de Sitter (AdS) met-
ric. Negative cosmological constant provides an ef-
fective attractive force, and because of this, the for-
mation of localized structures becomes easier.

If Λ = 0, when the amplitude of oscillons or os-
cillatons decreases, their spatial size grows without
limit. If there is a negative Λ, oscillons or oscillatons
have finite sized small amplitude limits, correspond-
ing to the linear modes of the theory. There are one-
parameter families of solutions emerging from each
linear mode [19–21]. A further important difference
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from the Λ = 0 case, is that for negative Λ there are
exactly periodic oscillons and oscillatons, without any
energy loss by scalar field radiation at infinity. Being
similar to the sine-Gordon breather, it is more appro-
priate to call these scalar field objects AdS breathers.

A negative cosmological constant also makes the
formation of vacuum gravitational wave geons easier.
For Λ < 0 there are smooth time-periodic vacuum
geon solutions without any high frequency low wave-
length components, and without energy loss [22–28].
These solutions are called AdS geons, which naming
we will use in the following. Conceptually, the AdS
breather name might have been more appropriate,
since these configurations are quite different in many
respects from the Λ = 0 geons. We will discuss AdS
geons in detail in the next section. Their study is
technically more involved than that of the scalar field
case because of the absence of spherically symmetric
solutions.

Since the AdS geons that we consider can be
constructed as higher order perturbations of anti-de
Sitter spacetime, we first discuss some of its impor-
tant properties. The AdS metric in global spatially
compactified coordinates can be written as

ds2 =
L2

cos2 x

[
− dt2 + dx2 (2)

+ sin2 x
(
dθ2 + sin2 θdϕ2

) ]
,

where L2 = − 3

Λ
. We can represent the spacetime as

an infinitely long strip, where each point corresponds
to a 2-sphere with radius L tan x. The center of
symmetry is at x = 0, while infinity is represented by

x =
π

2
. The range of the time coordinate is −∞ < t <

∞. The metric is static in these coordinates, but the
radial outwards acceleration of constant x observers

is
sinx

L
. All timelike geodesics emanating from a

point meet again at another point later. An excellent
review of various AdS coordinate systems can be
found in the book of Griffiths and Podolský [29].

Using the t, x coordinate system, it is obvious,
that a light ray can travel to infinity and arrive back
in a finite time, when time is measured by a central
observer. This is related to the observed instability
of the AdS spacetime [30]. Since a wave packet can
bounce back many times to the center, it can become
more and more concentrated, and after many reflec-
tions it still can collapse to a black hole. For smaller
amplitude initial packets more bounces needed, as
it has been demonstrated numerically by Bizoń and
Rostworowski in 2011 for a spherically symmetric
massless scalar field coupled to gravity [30]. For this

instability the assumption of reflective boundary con-
ditions is essential. Although other type of boundary
conditions can be considered, for our purposes the
most natural one appears to be the reflective boundary
condition.

Since the metric of geons will approach asymp-
totically the AdS metric, we have to discuss asymp-
totically AdS spacetimes. The most natural defini-
tion is by conformal compactification, based on the
original ideas of Roger Penrose [31–34]. This proce-
dure also gives definition for conserved quantities, the
total mass and the three components of the angular
momentum. The main ingredient of the method is
the introduction of a conformally rescaled unphysical
metric, g̃μν = Ω2gμν . This rescaling makes g̃μν reg-
ular at the surface corresponding to infinity, which is

the surface x =
π

2
in our case. For the AdS metric (2)

the choice Ω =
cosx

L
is the most natural.

3. AdS GEONS

AdS geons are localized time-periodic vacuum so-
lutions for Λ < 0, with regular center and no horizon.
They are bound states formed by vacuum gravita-
tional waves. Their typical size is given by the length-
scale determined by the cosmological constant, L =√

− 3

Λ
. AdS geon solutions were first constructed by

a higher order perturbative expansion [22], and later
also by numerical methods [25, 26].

In this paper we will concentrate on the results
that can be obtained by the small-amplitude expan-
sion method [35]. Let us consider a one-parameter
family of solutions depending on a parameter ε, and
expand the metric gμν of the AdS geon spacetime as

gμν =
∞∑
k=0

εkg(k)μν . (3)

The background, g(0)μν , is the anti-de Sitter metric in
the form given in (2). We can keep the conformal

factor Ω =
cos x

L
, independently of ε. In this way,

g
(0)
μν has components that diverge as Ω−2 at infinity

x =
π

2
. A natural choice would be to require that for

k ≥ 1 all g(k)μν diverge at most as Ω−1. That way the
metric induced at the surface corresponding to infinity
would not change, and gμν would be asymptotically
AdS according to the conformal definition.

However, since the oscillation frequency of AdS
geons is amplitude dependent, it is advantageous to
make a slight modification on the above asymptotic
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behavior of g(k)μν . The ω̄ physical frequency depends on
the parameter ε, and as we will see, in the small ε limit
it always approaches an integer value. For technical
simplicity we require, that in terms of the time coordi-
nate t that we use, the coordinate frequency ω should
remain an ε independent integer. Because of this, the
asymptotically AdS time coordinate t̂ will be different
from the t we use, the two connected by a factor
depending only on ε. This setting can be achieved by
requiring the boundary conditions for k ≥ 1,

lim
x→π

2

(
Ω2g

(k)
tt

)
= −νk, (4)

lim
x→π

2

(
Ω2g(k)μν

)
= 0 for μ �= t or ν �= t, (5)

where νk are constants. Then the asymptotic behav-
ior of gtt is

lim
x→π

2

(
Ω2gtt

)
= −ν, ν = 1 +

∞∑
k=1

εkνk. (6)

It follows that the asymptotically AdS time coordi-
nate is t̂ = t

√
ν. The physical frequency ω̄ has to

be calculated with respect to a time coordinate that
asymptotically agrees with the Schwarzschild time
coordinate t̄ = Lt̂ = tL

√
ν. The relation between the

physical and the coordinate frequencies is

ω̄ =
ω

L
√
ν
. (7)

We 2 + 2 decompose the metric along the symme-
try spheres of the background AdS. We use indices
that take the values a, b, c . . . = 1, 2, and i, j, k . . . =
3, 4. The coordinates along the time–radius plane
are xa = (x1, x2) = (t, x), and the coordinates along
the symmetry spheres are xi = (x3, x4) = (θ, ϕ). We
decompose the background AdS spacetime as

ds2(0) = gabdxadxb + r2γijdxidxj, (8)

where r = L tan x, and

gab =
L2

cos2 x

⎛
⎝−1 0

0 1

⎞
⎠ , γij =

⎛
⎝1 0

0 sin2 θ

⎞
⎠ . (9)

We expand the solutions in terms of real spherical
harmonics Slm, where l ≥ 0 and −l ≤ m ≤ l inte-
gers. The definition of real harmonics is the same as
the complex ones, except that the ϕ dependence is
cos(mϕ) form ≥ 0, and sin(|m|ϕ) form < 0. The use
of complex harmonics would be less practical when
going to nonlinear orders in the expansion. Tensors
on arbitrary dimensional sphere can be decomposed
into three types of parts. The first is the scalar-type
part (also called polar or even parity), the second is

the vector-type part (axial or odd parity), and the third
is the tensor-type part. The tensor-type only exists
for more than two dimensional spheres, so we do
have to consider that now. In case of four spacetime
dimensions, the spheres are two dimensional, and the
components of vector spherical harmonics V(lm)i can
be expressed in terms of the scalar harmonics,

V(lm)θ =
1√

l(l + 1)

1

sin θ

∂Slm
∂ϕ

,

V(lm)ϕ =
−1√
l(l + 1)

sin θ
∂Slm
∂θ

. (10)

When constructing AdS geons by the small-
amplitude expansion procedure, we start with the
linear order contribution in ε, and then proceed order
by order. At each order in ε scalar- and vector-
type perturbations for each l,m can be considered
separately. There are separate systems of linear
equations determining the chosen type contribution
to the metric components for each l,m, independently
for scalar and vector perturbations. These equations
contain inhomogeneous source terms which are
already fixed by the results obtained at lower orders
in the ε expansion.

3.1. Vector-Type Perturbations of the Metric
We consider vector-type first, because it is techni-

cally simpler than the scalar-type. Even if we start
with scalar-type perturbations at linear order in ε,
vector-type components appear at ε2 order. In the
Regge–Wheeler gauge [36], the V(lm)i vector-type
contributions to the metric at εk order in the expan-
sion are

g
(k)
ab = 0, g

(k)
ai = ZaVi, g

(k)
ij = 0, (11)

where a, b = 1, 2 and i, j = 3, 4. There are only two
unknown functions, Za ≡ (Zt, Zx), depending on the
coordinates xa = (t, x). The l = 1 spherical harmon-
ics have to be considered separately. For the linear
order in ε the l = 1 case only has the trivial solution
Za = 0, while for higher orders in ε the l = 1 contri-
bution determines the angular momentum. For l ≥ 2,
from the (i, j) components of Einstein’s equations
follows that there exists a scalar function φ such that

Zt =
∂φ

∂x
+ Z̄t, Zx =

∂φ

∂t
+ Z̄x, (12)

where Z̄t and Z̄x are already known functions fixed
by lower order perturbations. Obviously, Z̄t and Z̄x

are zero at linear order. Defining a rescaled scalar
function by φ = rΦ, where r = L tanx, from the (a, i)
components of Einstein’s equations follows that

−∂2Φ

∂t2
+

∂2Φ

∂x2
− l(l + 1)

sin2 x
Φ =

Φ̄

sin2 x
, (13)

ASTRONOMY REPORTS Vol. 62 No. 12 2018



878 FODOR

where Φ̄ is a known function of t, x determined at
lower order in ε. Having the solution for the scalar
function Φ, it gives Za using (12), and then it de-
termines all vector-type metric perturbation compo-
nents according to (11). The function Φ is related to
the Regge–Wheeler function in black hole perturba-
tion theory [36]. The generated metric in the vector-
type case will be asymptotically AdS if

lim
x→π

2

Φ = 0. (14)

3.2. Scalar-Type Perturbations of the Metric

For each l ≥ 2 and m indices, scalar-type pertur-
bations are also governed by a function Φ, which sat-
isfies the same equation as the vector-type Φ, equa-
tion (13). Only the boundary conditions at infinity are
different in the two cases. In the scalar-type case the
generated metric will be asymptotically AdS if

lim
x→π

2

dΦ
dx

= 0. (15)

The function Φ in the scalar-type case is related to the
Zerilli function in black hole pertubation theory [37,
38]. Defining again a rescaled function by φ = rΦ,
we can calculate the quantities Zab and Z,

Ztt = ∂2
t φ− tan x∂xφ+

φ

cos2 x
+ Z̄tt, (16)

Ztx = ∂t∂xφ− tan x∂tφ+ Z̄tx, (17)

Zxx = ∂2
xφ− tan x∂xφ− φ

cos2 x
+ Z̄xx, (18)

Z =
cos2 x

L2
(Zxx − Ztt) + Z̄, (19)

where Z̄ab and Z̄ are determined from the lower order
results in ε. Then, from these we can define

HL =
r2

2
Z, Hab = Zab −

1

2
Zgab. (20)

In terms of these quantities, the general Slm scalar-
type metric perturbations in the Regge–Wheeler
gauge [36] at εk order can be written as (a, b = 1, 2;
i, j = 3, 4)

g
(k)
ab = HabS, g

(k)
ai = 0, g

(k)
ij = HLγijS. (21)

The l = 0, 1 scalar-type perturbations have to be
treated separately. In these cases there is no gen-
erating scalar function. They only give gauge modes
at linear order in ε. The l = 0 mode determines the
contribution to the mass of the AdS geon at higher
orders. The method that we have applied is a higher
order generalization of the gauge invariant formalism
of Mukohyama [39], Kodama, Ishibashi, Seto [40,
41], and Wald [42].

3.3. Periodic Solutions at Linear Order

At order ε1 there are no inhomogeneous source
terms, so Φ̄ = 0 in (13). We search solutions in
the form Φ = p cos(ωt), where p depends only on the
radial coordinate x. For scalar-type perturbations,
when the boundary condition is given by (15), cen-
trally regular and asymptotically AdS solutions only
exist with frequencies ω = l+ 1 + 2n, where n ≥ 0 is
an integer, and the function p is

p = sinl+1 x
n!

(l + 3
2)n

P
(l+ 1

2
,− 1

2
)

n (cos(2x)). (22)

Here (c)n = Γ(c+ n)/Γ(c) is the Pochhammer’s
symbol, and Pα,β

n (z) are Jacobi polynomials. For
vector-type perturbations the boundary condition
is (14), and solutions exist with frequencies ω =
l + 2 + 2n, for n ≥ 0 integers, and then

p = sinl+1 x cos x
n!

(l + 3
2 )n

P
(l+ 1

2
, 1
2
)

n (cos(2x)). (23)

In both cases n gives the number of radial nodes,
i.e. the number of zero crossings.

For each (l,m, n), where l ≥ 2, |m| ≤ l, n ≥ 0 in-
tegers, there is a scalar- and a vector-type linear geon
mode with arbitrary amplitude. Since the frequencies
of all these modes are integers, an arbitrary linear
combination of them is still a time-periodic solution
with ω = 1. This shows that there is an infinite-
parameter family of linear geons, which are all valid
to first order. However, it appears that the nonlinear
system only has one-parameter families of AdS geon
solutions. This is true for all cases studied by the
higher order nonlinear expansion formalism, where
we have to start with finite number of parameters, and
also supported by direct numerical search for time-
periodic solutions of Einstein’s equations, however
we are not aware of a proof of it.

3.4. Higher Orders in the Expansion

Let us now consider the inhomogeneous scalar
equation (13) at higher orders in the ε expansion.
Then the homogeneous left hand side has solutions
with frequency ω = l+1+2n in the scalar-type case,
and ω = l + 2 + 2n in the vector-type case. The in-
homogeneous right hand side, in general, consists of
sums of source terms, where Φ̄ = p0 sin(ω0t) or Φ̄ =
p0 cos(ω0t), for various ω0 integer frequencies, and
functions p0 depending on x. We can consider these
source terms one by one, and add the corresponding
solutions for Φ in the end. Picking a term with a spe-
cific ω0, ifω �= ω0 for alln ≥ 0 integers, whereω = l+
1 + 2n in the scalar-type case, and ω = l + 2 + 2n in
the vector-type case, there are always time-periodic

ASTRONOMY REPORTS Vol. 62 No. 12 2018
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Fig. 2. Snapshots of the angular dependence of five ω = 3 geon families. The colors indicate the value of the scalar field
φ. Red is positive, blue is negative, light yellowish-green corresponds to zero. The different families are in the five rows,
and the columns correspond to the moments of time t = 0, π

12
, π

6
, π

4
, and π

3
. The first row is an axially symmetric solution

corresponding to the (2, 0, 0, 3)S mode. The second row is also a nonrotating solution belonging to (2, 2, 0, 3)S . The third
row shows a third nonrotating solution, emerging from the combination of time-shifted (2, 2, 0, 3)S and (2, 0, 0, 3)S modes,
and oscillating between them. The fourth row is a rotating solution emerging from the combination of the (2, 1, 0, 3)S and
(2,−1, 0, 3)S modes. The last row is also a rotating solution corresponding to the (2, 2, 0, 3)S and (2,−2, 0, 3)S modes.

Φ solutions of (13) which are asymptotically AdS and
have a regular center. However, if ω = ω0 for some n,
then Φ̄ is a resonant source term. Generally, taking
a resonant source term, regular asymptotically AdS
solutions for Φ in (13) are blow-up solutions of the
type t cos(ωt). Appropriate time-periodic solution for
Φ corresponding to a resonant source term can only
exist if a consistency condition holds. For each reso-
nant source term, having the form Φ̄ = p0 sin(ω0t) or
Φ̄ = p0 cos(ω0t), the consistency condition is

π
2∫

0

pl,np0

sin2 x
dx = 0, (24)

where pl,n is the regular solution of the left hand side
homogeneous equation.

The consistency conditions determine the change
of physical frequency ω̄ as a function of the amplitude
ε, and they also determine the ratio of the modes
that were included initially at the linear order. If
the consistency conditions cannot be satisfied, then
there are terms with linearly increasing amplitude
t cos(ωt). Since these are generally higher harmon-
ics, this means shift of energy towards higher fre-
quency modes, which can be the starting point to
turbulent instability, that may lead eventually to black
hole formation.

When building up an AdS geon by the expansion
procedure, the natural simplest choice is to start with
only one mode at linear order. There is a scalar
and a vector mode for each l ≥ 2, |m| ≤ l, and n ≥
0 integers. Let us represent the scalar mode by
the four numbers (l,m, n, ωs)S , where ωs = l + 1 +
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2n. Similarly, let us denote the vector-mode by
(l,m, n, ωv)V , where ωv = l+ 2+ 2n. It was realized
early on, that for some single linear modes there is
no corresponding nonlinear AdS geon solution [22],
since the consistency conditions cannot be solved
at ε3 order. Examples are: (2, 0, 1, 5)S , (4, 0, 0, 5)S ,
(3, 2, 0, 4)S , (2, 2, 0, 4)V . The resolution for the prob-
lem is that we have to start with more than one mode,
and take the linear combination of same-frequency
modes at linear order in ε [24]. For example, in-
cluding the (2, 0, 1, 5)S mode with amplitude α, and
the (4, 0, 0, 5)S mode with amplitude β, the consis-
tency conditions at third order will fix the ratio α/β ≈
0.12909 or −152.52. Consequently, there will be two
non-trivial one-parameter families arising from these
two linear modes with frequency ω = 5.

A further surprising result is that there are non-
rotating non-axially symmetric geons [35]. An
example is the geon emerging from the linear mode
(l,m, n, ωs)S = (2, 2, 0, 3)S . Although the angular
dependence of the linearized solution is cos(2ϕ),
there is a corresponding nonlinear solution which has
zero angular momentum. When we take identical-
amplitude linear combination of the (2, 2, 0, 3)S and
(2,−2, 0, 3)S modes with a shift in time phase, we
get a rotating linearized solution, which generates a
rotating nonlinear geon with a helical Killing vector.

The above results show that same-frequency lin-
ear modes should be treated together. The lowest
possible frequency is ω = 3, which belongs to the
l = 2, n = 0 scalar modes. We have constructed all
AdS geon solutions that in the small-amplitude limit
reduce to ω = 3 modes only. There are five such
linear modes, belonging to m = −2,−1, 0, 1, 2. Since
each of them can have cos(3t) or sin(3t) time depen-
dence, there are 10 independent amplitude constants.
Solutions are considered equivalent if they can be
transformed into each other by time shift and spatial
rotation. The result of our detailed analysis up to
ε5 order shows that there are 5 nonequivalent one-
parameter families that emerge from ω = 3 frequency
modes only [35]. The change of the angular behavior
of the scalar field during a half oscillation period is
shown on Fig. 2 for these five families.
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