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Introduction

Well-known in theory QFT models: simple unification of spacetime and internal (gauge)
symmetries is prohibited by Coleman-Mandula no-go theorem.

Its assumptions about the gauge group: direct product of copies of U(1) and a real

semisimple compact Lie group.

® Theoretical conveniences: existence of an invariant symmetric non-degenerate
positive definite bilinear form over the Lie algebra of internal symmetries.

® Experimental justification: Standard Model has U(1) x SU(2) x SU(3) internal
(gauge) symmetries.

Consequence for total symmetries at a fix point of spacetime or momentum space (point
symmetry group): it is direct product of copies of U(1) and a real semisimple Lie group.

[E.g. in Standard Model itis U(1) x SU(2) x SU(3) x SL(2,C). In conformally invariant
versions of Standard Model it is U(1) x SU(2) x SU(3) x D(1) x SL(2,C).]

SUSY was constructed in order to circuimvent Coleman-Mandula theorem. Internal
symmetries (or part of) are mixed with the Poincaré group via coupling to translations.
= It is semi-direct product of those internal symmetries and spacetime symmetries.

|
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Is is widely believed that SUSY is the only way to connect (part of) the internal
symmetries to spacetime symmetries.

® Note: SUSY is not yet supported by experimental evidence, up to LHC energies.

Is SUSY really the only physically plausible mathematical way?

® We intend to show a simple, physically plausible mathematical example for a point
symmetry group, which is some nontrivial extension of the (conformal) Lorentz group
(actually, of its covering group).

® |tis a point symmetry group, i.e. spacetime point (or, equivalently, momentum space
point) is fixed.
= coupling of (part of) internal symmetries to spacetime symmetries is not done through
translation generators, but purely inside point symmetry group.

It circuimvents Coleman-Mandula theorem via non-semisimpleness of the group.

L I

Traditionally, non-semisimple Lie groups are considered “unphysical”, but we shall show
direct physical interpretation of the proposed point symmetry group.

o |
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Physical content of the proposed point symmetry group:

® The proposed point symmetry group can be viewed as the automorphisms of the
creation operator algebra for a spin 1/2 particle along with its antiparticle, at a point
(spacetime or momentum space).

® The regular partis U(1) x covering group of conformal Lorentz group.

® The non-semisimple part can be regarded as “dressing transformations” making
“dressed” states from pure one-particle states. It is a so called nilpotent subgroup
(meaning that its Lie algebra is nilpotent).

o |
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Preliminaries: automorphisms of a Grassmann algebra

Definition 1.  (Grassmann algebra, canonical generators) A finite dimensional complex associative algebra GG

with unit is called a Grassmann algebra if there exists a minimal generating system (el, cey en) of G such
that
eiej +eje; =0 (i, =1,...,n) and
€iq €ig - - - €iy (1§i1<i2<---<ik§n,0§k§n)

are linearly independent.

Such a minimal generating system is called a canonical generator system.

(Automorphisms of G: G — ( invertible complex linear maps preserving algebraic product, “alg. symmetries”.)
Example 2. An exterior algebra
dim (V) I
A(V) = & AV
k=0
of some finite dimensional complex vector space V' is a Grassmann algebra. In fact, all Grassmann algebras are
isomorphic (not naturally) to an exterior algebra with corresponding number of generators.

Remark 3. Algebra automorphisms of A (V") are not only the ones generated by GL(V").

Remark 4. Physically, an n-generator Grassmann algebra can be though of as the algebra of creation operator
polynomials in a formal QFT at a point of a fermion particle with 1 internal degrees of freedom.
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Some properties of a Grassmann algebra G with n canonical generators:

® An automorphism oo € Aut(G) can uniquely be characterized by its action on a fixed
system of canonical generators.

® Given a fixed system of canonical generators, their pure k-th order polynomials are
called k-forms, denoted by A.. The pure even (odd) polynomials are called even (odd)

forms, denoted by Aev (Aogq). One has G = % A and G = Aev D Ayq, these are
k=0

called the Z and Zs-grading of G.
® The unity 1 is Aut(G)-invariant. Its span is denoted by B, and thus is Aut(G)-invariant.

® The subspace M := é% A is the maximal ideal of G, and thus is Aut(G)-invariant.
k=1

® Therefore we have the Aut(G)-invariant splitting G = B @ M with corresponding
invariant projection operators I — m and m. Because of invariance of unity, I —m = 1b
with uniquely determined Aut(G)-invariant complex-linearmap b : G — C.

Since M is Aut(G)-invariant, its powers M! = s Ay are also.
k=l

The center Z(G) of G, consisting of elements commuting with G, is Aut(G)-invariant.

|
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Theorem 5. (D. Z. Djokovic: Can. J. Math. 30 (1978) 1336)

Let G be a Grassmann algebra, and (el, cey en) a system of canonical generators.

(i) Let Autyz(G) be the Z-grading preserving automorphisms. These are of the form e; +—> Z?:1 Qi€

@€ {1,...,n})with (aij)i,je{l,._.,n} e GL(C™).
(i) Let Nev be those Zo-grading preserving automorphisms which act as unity on the factor space Ml/M2.
These are of the form e; — e; + b; withb; € M3 N Ayq (G € {1,...,n}).

(i) Let InAut(G) be the subgroup of inner automorphisms, i.e. the ones of the form exp(a)(-) exp(a) 1
(with some a € G). These are of the forme; — e; + [a,e;] G € {1,...,n})withsome a € G.

With these, the semi-direct product splitting
Aut(G) = InAut(G) x Ney X Autz(G)
holds.

=- The only Aut(G)-invariant splitting is G = B @& M to 0-particle and to at-least-1-particle

states, because every Aut(G)-invariant subspace not containing B contains M™.

This is because the nilpotent normal subgroup N := InAut(G) x Ney Of “dressing
\—transformations” mixes higher particle content to lower particle states, in particular M™. J
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Spin algebra and its group of automorphisms

-

Definition 6. (+—algebra) A finite dimensional complex associative algebra A with unit shall be called
+-algebra if it is equipped with a conjugate-linear involution ()7L satisfying (:I:y)7L = x+y+ forallx,y € A.

Important: the *-involution does not reverse product, i.e. it is not a *-involution.

Definition 7. (Spin algebra) A complex associative +-algebra A with unit is called a spin algebra if there exists
a minimal generating system (e1, e2, €3, e4) of A such that

€i€j ‘|‘ejei =0 (7/7] € {172} or 7’7] € {374})7
eie;j —eje; =0 (1 € {1,2} and 5 € {3,4}),
€41 €ig - - - €4y (1§’i1<i2<"'<ik§4,0§k§4)

are linearly independent,

es3 = eIL, €4 = e;.

Such a minimal generating system is called a canonical generator system.
In the followings 1 := 4 is occasionally used.

Automorphisms of a spin algebra A: the A — A invertible complex linear maps preserving
algebraic product and T-involution, i.e. the “algebra symmetries”.
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) Q@ A(S*)is aspin—‘

Example 8. 1If S™ is a 2 dimensional complex vector space (“cospinor space”), then A(S’*
algebra. In fact, a spin algebra is always isomorphic (not naturally) to A(S*) @ A(S*).

Remark 9. Algebra automorphisms of A(S*) ® A(S*) are not simply the ones generated by GL(S*).

Remark 10. Physically, a spin algebra can be though of as the algebra of creation operator polynomials in a
formal QFT at a point of spacetime (or momentum space) of a spin 1/2 particle along with its antiparticle.
Namely, {61, 62} can be though of as the creation operators of our spin 1/2 particle, {63, 64} can be thought
of as the creation operators of its antiparticle, where the involution ()"‘ exchanges them in a conjugate-linear
way (charge conjugation). Note that in this construction, annihilation operators of the particle is not (yet) identified
with the antiparticle creation operators (that involves an extra structure). We only have creation operators by now.

Relation to canonical anticommutation relation (CAR) algebra will be discussed later.

o |
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|—50me properties of a spin algebra A:
® An automorphism oo € Aut(A) can uniquely be characterized by its action on a fixed

system of canonical generators.

® Given a fixed system of canonical generators (e1, ez, e3, e4), their pure polynomials of
p-th order in {e1,e2} and g-th order in {e3, e4} is called p, g-forms, denoted by A,. The
k-th order polynomials made of these with p + ¢ = k are called k-forms, denoted by Ay.
The pure even (odd) polynomlals made of thes are called even (odd) forms, denoted by

Aev (Aoq). One has A = EB Apg, A = EB A and A = Aev @ Aogq, these are called
p,q=0 =0

the Z x Z, Z and Zs-grading of A.

® The unity 1 is Aut(A)-invariant. Its span is denoted by B, and thus is Aut(A)-invariant.
® The subspace M := e% Ak is the maximal ideal of A, and thus is Aut(A)-invariant.
k=1
® Therefore we have the Aut(A)-invariant spliting A = B @& M with corresponding
invariant projection operators I — m and m. Because of invariance of unity, I —m =15b
with uniquely determined Aut(A)-invariant complex-linearmap b: A — C.
® Since M is Aut(A)-invariant, its powers M! = ® Ay is also.
k=l
® The center Z(A) of A, consisting of elements commuting with A, is Aut(A)-invariant. In
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Fundamental structure of a spin algebra A:
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Theorem 11. (A. Laszlé: ar Xi v: 1507. 08039)
Let A be a spin algebra, and (el, €2, e3, 64) a system of canonical generators.
(i) The o € Autyy7(A) automorphisms are defined by the matrix action

(61\ (61\ /0511 a2 0 0\(61\

€2 €2 o1 (99 0 0 €9
= =
€3 €3 0 0 o111 (12 €3
\ea ) Ne) Lo 0 @ an)\a)
11 o2
over the generators with c GL(C?)
a21 Q22

(i) We define the subgroup J := {I, J} such that

(N (e (o001 0\ [e)
A OV B I A
o

i.e. J is the particle-antiparticle label exchanging linear transformation. J
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(i) We introduce the subgroup Nev which acts on the generators as

er +— e1+by,
e2 +— ez ba,
e +— e3—+ bil_,
eq4q +— e4q+ b;_

(iv) Inner automorphisms In, € InAut(A) are defined by Ing (-) := exp(a)(-) exp(a) 1
(a € Re(A)):

1
e; +— Ing(e;) =e; +[a,e;] + E[a, la,e;]]  (1=1,...,4),

because for any x € A one has Ingx := exp(a)rexp(a)~! = z + [a,z] + %[a, la, x]].

With these, the semi-direct product splitting

Aut(A) = InAut(4) X Nev X Autzyz(A) x J

Lholds. J
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|7Note: Autzyz(A) = GL(2,C) = D(1) x U(1) x SL(2, C). T

Notation:

Aut(A) = TInAut(A) X Ney % Autzyz(A) x J

=:N =:Auty(A)

Observation: the only Aut(A)-invariant splitting is A = B @& M to 0-particle and to
at-least-1-particle states, as an Aut(A)-invariant subspace not containing B contains M.

That is because the nilpotent normal subgroup IV of “dressing transformations” mixes higher
particle content to lower particle states, in particular M4,

If a fixed Z x Z-grading is taken, A = A(S*) ® A(S*) with dim¢(S*) = 2 (“cospinor space”).
Using spinor Penrose abstract indices, an element of A may be represented as 9 fields:

(90 Sar Sya Eqyasn Yas Syam Xyerpna X arion) “’[A’B’MCD])
using ordinary 2-spinor formalism. (Spinors and complex conjugate spinors do commute!)
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ndecomposable Aut(A)-invariant subspaces of A:

-
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ndecomposable Aut(A)-invariant subspaces of A* (dual vector space of A):

A2 N 22 T
N3 A2 A1 T
N> A 2 A1 No2| ~ ] ‘
A1 Ao | Ao T |

e
* * -~ e
Ao A %o

A Ann(M) Ann(B)

Ann(B@MZ) Ann(BaM") Ann(Z(A)) Ann(B&W)

R S RIS
R R LRI
tesatotetetetotitotototetotitatototetetitutatotetotint

R ISR BIL

G R L R
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vector multiplet

Ann(BaV)
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Induced conformal Lorentz metric class by a spin algebra

Re(Ann(B @& V)) = Re(A7,) is a real 4 dimensional Aut(A)-invariant subspace of A*.

Easily checked: Aut(A) acts as multiplication by positive real number on M*4.
= Re(M*%) can be split up to Aut(A)-invariant cones of positive and negative max. forms: to
Re, (M%) and Re_ (M*). The former is positive multiples of e1 e2 e; Tea T by convention.

Given a fixed Z-grading of A, it admits a Hopf algebra structure.

L 3 B B B )

°

Product: v : A® A — A (linear view of A x A — A algebraic multiplication operation).
Unit: n : C — A (linear view of algebraic unity element 1 € A as n(-) := (-) 1).

Counit: € : A — C linear map, we set e := b.

Antipode: S : A — A linear map, we set S(-) := (*)ev + (—1)(*)oq-

Swapping involution: 7: A® A — A ® A linear map, we set
2Ry~ I(@QY) =30 g o(—1)P %25, @ yrs (for all z,y € A).

Coproduct: A : A — A ® A linear map, we defineitby A(1) :=1® 1,
Ax)=1z+z®1 (forallz € A7y & A1),

and that Aisan A — A ® A algebra homomorphism.

(Where product on A ® A is the skew-natural product: (v ® V) o (I ® (JoZ) ® I),

J: A® A — A® A being the swapping map.) J
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Hopf algebraness means “self-dualness”:

given a Z-grading, the dual vector space A* may also be equipped to be a spin algebra.

Coproduct A splits up elements in all possible ways as if were algebraic products.

o |
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A(l) = 1®1,

A1) = 1R®er+e®1,
Ale2) = 1®ex+e2®1,
f A(eg) = 1®e3+e31, —‘
Aleg) = 1®es+es®1,
AN(ere2) = 1Rejea+e1Rex —ea®er +ere2®1,
Aertez) = 1Reez3+er®ez+e3®@er +e1e3®@1,
Aeres) = 1Qeles+e1Qes+esQer +e1eq @1,
N(ezes) = T Rezes+ea®esz+e3Rea+ezez3®1,
AN(eges) = 1 Regea+e2R®Res+es®ez+e2ea®1,
A(ezes) = 1 Rezes+e3®es —es ez +ezes @1,
A(erezez) = 1 ®erezes+e1 Qeges —eax Qejes +erea  es
+eies3 ®ea +e3 ®erex —ezez3 @er +erezez ®1,
AN(erezes) = 1 ®eregeqs +e1 Qeges —eax Qejea +er1e2 @ e
tereq ®ex +eq4 Qejex —ezeq ®ep +ejeseqg 1,
A(erezes) = 1 ®erezes+e1 Qeszeqs+e3Rejes+er1e3 @ e
—ejeq4 ®e3 —eq ®erez +ezeq ®er +erezeqs @ 1,
AN(ezeszes) = 1 ®ezeszeqs +e2 ®ezeqs +e3 ® egeq + e2e3 @ ea
—egeq @ e3 —eq Qezez +ezeq ®ea + eseszeq @ 1,
A(erezezes) = 1 Reregezes +e3 R ereses —eqg @ ereges + ezeq @ eren

+e1 ® egezeq +e1e3 Q e2€e4 —e1€4 K ege3 + e1€3e4 & €2

—eg2 ¥ ejezeq —e2e3 R e1e4 + €24 K e1€e3 — ege3zeq K ey

+er1e2 @ ezeq +e1e2e3 D eq —er1ezeq4 @ e3 + erjezezes Q1
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Given a fixed Z-grading, it can be checked e.g. by direct calculations that indeed a spin
algebra (A, (1)1, n, sv) may be equipped as a Hopf algebra (A, ()T, 7n,<7,&, A, S,T)
(and the construction is invariant to Autz(A)).

Note: the full automorphism group Aut(A) of the spin algebra (A, ()T, n, 7) part does not
preserve the coalgebra operations (e, A, S, 7). Indeed, a dressing transformation from N
deforms the part (¢, A, S, Z) to an other compatible coalgebra structure (¢, A, S, Z").

Theorem 12. (A. Laszlo: ar Xi v: 1507. 08039)
Letw € Req (M*) \ {0}. Then, the bilinear form

G(w): Re(Ann(B®V)) x Re(Ann(B®V)) — R, (a,b) — G(w)(a,b) := (a ® b|A(w))

is a Lorentz signature metric, where (-|-) denotes duality pairing. The action of Aut(A) preserves G(w) up to
a positive real scaling factor, i.e. Aut(A) acts on Re(Ann(B @ V')) as the conformal Lorentz group. The
construction does not depend on the choice of the coproduct 2\, or equivalently, on the choice of Z-grading.

(We would get the same G(w) using a coproduct 2\’, deformed by a dressing transformation from N .)

(This fact can already be suspected from the relation to 2-spinor calculus.)
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This means that Re(Ann(B ¢ V')) admits an Aut(A)-invariant notion of spacelike, timelike
and null vectors.

Also there is a natural time orientation on Re(Ann(B & V)), preserved by Aut(A): a
timelike or null element p € Re(Ann(B @ V')) shall be called future directed if for all z € M
one has p (zTx) > 0.

[Analogy in 2-spinor calculus: future directed timelike or null elements of Re(S ® S) are of
the form £4" ¢4 + A A (with €4, x4 € 9).]

o |
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Relation to Clifford algebras

Definition 13. (Pauli embedding, Pauli injection, Pauli map)

Let us take a coproduct A\ on A. Then, the four real dimensional Aut (A )-invariant subspace

Re(Ann(B & V)) of Re(A™*) may be embedded into Re(Lin(A)) using: s — (s® I) o A forall
s € Re(Ann(B @ V)). This is called Pauli embedding.

Given a real four dimensional vector space I’ (“tangent space” or “momentum space”), a linear injection

T — Re(Ann(B @ V)) is called a Pauli injection.

The composition of a Pauli embedding with a Pauli injection is called a Pauli map, which thus is a

T — Re(Lin(A)) linear injection.

If o : T'— Re(Lin(A)) is a Pauli map, thenbo : T'— Re(Ann(B & V)) is its underlying
Pauli injection. It defines the action of Aut(A) over T" as an intertwining operator.

When given a fixed Z x Z-grading and when A is represented with 2-spinor calculus, a Pauli
map o is the usual agl’A intertwining operator (“soldering form”) between T and Re(S ® S).

(Index like ¢ is T index, while 4 is T™ index.)

Given a Pauli map o and an w positive maximal form, the tensor g(o,w)qp := bogopw is a
Lorentz metric on 7. This is nothing but the pullback of G(w) to T' by the Pauli injection b o,.
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Definition 14. (Dirac adjoint, Dirac gamma map)

LetusfixaPaulimapo : 1" — Lin(A) and a positive maximal form w. The conjugate-linear map

- 1
(A=A 2o &= _glo,w)* bog (x+ab(-) n Ub(x+)(-))
is called the Dirac adjoint. The linear map

v(o,w) : T — Lin(A), u — u®y(0,w)a() = ua\/i(aa(.) tog (w)(-))

is called the Dirac gamma map.

Theorem 15. (A. Laszlo: ar Xi v: 1507. 08039)
Let us take the Z-grading subordinate to the Pauli map . With this, introduce the subspaces
Dy :=A79 ® A5y and D_ := Ay @ A7, of A. Then, the following properties hold.

(i) dim@(D+) = dim(c(D_) =4, Dy ND_ = {0}, (D_|_)+ = D_ and (D_)+ =D..
(i) The Dirac adjoint map (_) becomes non-degenerate over D and D_.

(i) The Dirac gamma map y(o,w) : T — Lin(A) satisfies the Clifford relation over D and D _:

L Y(o,w)ay(o,w)p + (o, w)py(o,w)a = 21g(o,w)ap- J
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The embedded Dirac bispinor spaces are not preserved by Aut(A), but are deformed to
other compatible embedded Dirac bispinor spaces by the dressing transformations V.

o |
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Relation to C*-algebras

Let v € T be a future directed timelike or null vector (modeling a momentum vector).

Then, the sesquilinear form
[]u: A x A= C, (z,9) = [zlylu =b(zTy) +u"boq ((x—]lbx)jL (y—]lby))

is a positive semidefinite Aut(A)-covariant inner product on A. (Depends on momentum u“.)

Given a coproduct A on A, this induces a nondegerate scalar product H'M,A on A, and
with that A becomes a finite dimensional Hilbert space (“Fock space”).

The adjoining operation (-)T with respect to this scalar product identifies the creation
operator of antiparticles with annihilation operator of particles.

The T-adjoining relates the spin algebra to C* and CAR algebras.

[The scalar product is not Aut(A)-invariant, but Aut(A)-covariant: an Aut(A)
transformation induces a unitary equivalence between (-|-), A and (:|-),,; A.]

[In 2-spinor notation, the scalar product is induced by u“a;,f‘/A at given momentum vector w.]
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Relation to “superfield” formalism

If a fixed Z x Z-grading is taken, A = A(S*) ® A(S*) with dim¢(S*) = 2 (“cospinor space”).
Using spinor Penrose abstract indices, an element of A may be represented as:

(90 £(+)A’ f(_)A €(+)[A’B’] Yare €_y1aBl Xyc'p1a X(_yalcp) w[A’B’][C’D])

using ordinary 2-spinor formalism. (Spinors and complex conjugate spinors commute!)

This might remind one about the algebra of superfields in SUSY at a fixed point of spacetime
(or momentum space).

Note, however, that in order to satisfy SUSY relations, spinors and complex conjugate
spinors in superfield algebra must anticommute (“Grassmann valued spinors”). Consegently,
superfield algebra (at a point) is isomorphic rather to A(S* @ S*), notto A(S*) ® A(S).
And A(S* @ S*) # A(S*) ® A(S*) algebrawise.

= Spin algebra # superfield algebra, but have the same dimensions.

o |
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Summary

A finite dimensional complex unital associative algebra isj
presented and its group of automorphisms were detailed.

The pertinent associative algebra can be physically
Interpreted as the creation operator algebra of a spin 1/2
particle along with its antiparticle, at a fixed point of
spacetime or momentum space.

Its automorphism group was seen to be a semi-direct
product of U(1) x the covering group of the conformal
Lorentz group and a nilpotent subgroup of “dressing
transformations”.

In this formalism, spacetime metric is a composite field.

It may be used for a non-SUSY mixing of internal
(gauge) and spacetime symmetries.
[E.g. with tricks like in C. Furey: Phys. Lett. B742 (2015) 195.] J
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