On the running and the UV limit of Wilsonianrenormalization group flows

*Class.Quant.Grav.***41**(2024)125009 and more

András LÁSZLÓ

laszlo.andras@wigner.hun-ren.hu

HUN-REN Wigner RCP, Budapest

joint work with Zsigmond Tarcsay

ELFT Particle Physics Seminar, 10 December 2024

Outline

I. On Wilsonian RG flow of correlators (arbitrary signature):

- On manifolds: nice topological vector space behavior
- On flat spacetime for bosonic fields: [∃] of UV limit
- **I** Is that true on manifolds?

[*Class.Quant.Grav.***39**(2022)185004]

- II. On Wilsonian RG flows of Feynman measures (Euclidean signature, flat spacetime, bosonic fields):
	- ∃ of UV limit Feynman measure
	- ∃ of UV limit interaction potential
	- A new kind of renormalizability condition

[*manuscript in preparation*]

Part 0:

Notations, introduction

Recap on distribution theory

Will consider only scalar and bosonic fields for simplicity.

Will consider only flat (affine) spacetime manifold for simplicity.

- $\mathcal E$: space of all smooth fields over spacetime. $\overbrace{\hspace{2.5cm} }^{c}$ collection of "open" sets They form a vector space with a topology: $\varphi_i \in \mathcal{E} \ (i \in \mathbb{N}) \to 0$ iff all derivatives locally uniformly converge to zero.
- $\mathcal S$: space of rapidly decreasing smooth fields (Schwartz fields) over spacetime. They form ^a vector space with ^a topology: $\varphi_i \in \mathcal{S} \ (i \in \mathbb{N}) \to 0$ iff all derivatives \times all polynomials uniformly converge to zero.
- $\mathcal D$: space of compactly supported smooth fields (test fields) over spacetime.
———————————————————— They form ^a vector space with ^a topology:

 $\varphi_i\in\mathcal{D}$ $(i\in\mathbb{N})\rightarrow 0$ iff they stay within a compact set and $\rightarrow 0$ in $\mathcal E$ sense.

Distributions are continuous duals of $\mathcal{E},\,\mathcal{S},\,\mathcal{D}.$

- \mathcal{E}^\prime : continuous $\mathcal{E} \rightarrow \mathbb{R}$ linear functionals. They are the compactly supported distributions.
- \mathcal{S}' : continuous $\mathcal{S} \to \mathbb{R}$ linear functionals. They are the tempered or Schwartz distributions.
- \mathcal{D}' : continuous $\mathcal{D} \to \mathbb{R}$ linear functionals. They are the space of all distributions.

They carry ^a corresponding natural topology (notion of "open" sets).

On the running and the UV limit of Wilsonian renormalization group flows – p. 5/56

Recap on measure / integration / probability theory

Let X be a set (is elements called elementary events).

Let Σ be a collection of subsets of X such that:

- X is in Σ ,
- for all A in Σ , its complement is in $\Sigma.$
- for all max countably infinite system $\,A_i \in \Sigma \,$ $(i \in {\mathbb N}),\,$ the union ∪i∈N A_i is in Σ.

 Then,Σ is called ^a sigma-algebra (collection of composite events or measurable sets). When X carries open sets (topology), the sigma-alg generated by them is used (Borel).
($X \in \mathbb{R}$ (X, Σ) is called measurable space.

Let $\mu: \Sigma \rightarrow \mathbb{R}^+_0$ $\mu(\emptyset) = 0,$ 0 $_0^+ \cup \{ \infty \}$ be a weight-assigning function to sets, such that:

for all max countably inf. disjoint system $\,A_i \in$ Σ (i \in $\mathbb N)$: μ $\mu(\mathop{\cup}\limits_{i \in \mathbb{I}}$ i∈N $(A_i) = \sum_{i\in\mathbb{N}}$ $\mu(A_i),$

 \exists some max countably infinite system $A_i \in \Sigma$ $(i \in \mathbb{N})$ with $\mu(A_i) < \infty$: $X = \bigcup\limits_{i \in \mathbb{N}}$ i∈N $A_i.$ Then, μ is called measure.

 (X,Σ,μ) is called measure space. $~[{\sf E.g.}$ probability measure space iff $\mu(X) =$ finite.]

- A function $f:\,X\to\mathbb{C}$ is called measurable iff in good terms with mesure theory:
 $\begin{array}{r} -1 \end{array}$ for all B $B\in\operatorname{Borel}(\mathbb{C}),$ one has $\overline{f}^{ -1}(B)\in\Sigma$ of $X.$ Theorem: f is measurable iff approximable pointwise by "histograms" with bins from $\Sigma.$
- The integral $\int\limits_{\mathbb{R}^N} f(\phi) \mathop{}\!\mathrm{d}\mu(\phi)$ is defined via the histogram "area" approximations. $\phi \in X$ Theorem: this is well-defined.
- Let (X,Σ,μ) be a measure space and (Y,Δ) a measurable space. Let $C: X \rightarrow Y$ be a measurable mapping.
Then, and can define the puchforward (or m Then, one can define the pushforward (or marginal) measure $\,C_{\ast}\,\mu\,$ on $\,Y.$ [For all $B\in \Delta$ one defines $(C_*\mu)(B):=\mu\big(\overset{-1}{C}(B)\big).$]
- Pushforward (marginal) measure means simply transformation of integration variable. If forgetful transformation, the "forgotten" d.o.f. are "integrated out".
- If μ is a probability measure e.g. on $X = \mathcal{E}, \mathcal{S}, \mathcal{D}, \mathcal{E}', \mathcal{S}', \mathcal{D}',$ then $Z(j) := \int\limits_{\phi \subset X}$ e $\phi \in X$ $\mathrm{d} \mu(\phi)$ is its Fourier transform (partition function in QFT).

Ideology of Euclidean Wilsonian renormalization

- Take an Euclidean action $S=T+V$, with kinetic + potential term splitting. Say, $T(\varphi) = \int \varphi \, (-\Delta + m^2) \varphi$, a $(2)\varphi$, and $V(\varphi) = g\int \varphi^4$.
- Then T , i.e. $(-\Delta + m^2)$ $^2)$ has a propagator $\,K(\cdot,\cdot)\,$ which is positive definite:

$$
(-\Delta + m^2)_x K(x, y) = \delta_y(x),
$$

- for all $j \in \mathcal{S}$ rapidly decreasing sources: $(K|j \otimes j) \geq 0$.
- Due to above, the function $Z_{\overline{T}}(j) := \mathrm{e}^{-(K|j \otimes j)}\,\, (j \in \mathcal{S})$ has "quite nice" properties.
- Bochner-Minlos theorem: because of
	- "quite nice" properties of $\,Z_{T},\,$
	- "quite nice" properties of the space $\,{\cal S},\,$

 $\exists|$ measure γ_T on $\mathcal{S}',$ whose Fourier transform is $Z_T.$ It is the Feynman measure for free theory: $\ \int\ \ (\dots)\, d\mu$ $\phi{\in}\mathcal{S}^{\prime}$ $\left(\dots \right) \mathrm{d} \gamma^{}_{T}$ $\sigma_T(\phi) =$ \int $\phi{\in}\mathcal{S}^{\,\prime}$ $(\dots) e^ T(\phi)$ "d ϕ ".

Tempting definition for Feynman measure of interacting theory:

$$
\int_{\phi \in S'} (\dots) e^{-V(\phi)} d\gamma_T(\phi) \qquad \left[= \int_{\phi \in S'} (\dots) e^{- (T(\phi) + V(\phi))} d\phi'' \right]
$$

On the running and the UV limit of Wilsonian renormalization group flows – p. 8/56

Because $\,V\,$ is spacetime integral of pointwise product of fields, e.g. $\,V(\varphi)=g\int\varphi^4$ How to bring $\,\mathrm{e}^{-V} \,$ and $\,\gamma^{}_T$. $\tau_{_T}$ to common grounds?

Physicist workaround: Wilsonian regularization. Take a continuous linear mapping C : (distributional fields) \rightarrow (function sense fields).
Take the pushforward Gaussian massure C as a which lives an $\text{Ran}(C)$ Take the pushforward Gaussian measure $C_*\gamma_T^+$ Those are functions, so safe to integrate $\,\mathrm{e}^{-V}\,$ there: \mathbb{F}_T , which lives on $\text{Ran}(C).$

$$
\varphi \in \text{Ran}(C)
$$
\n
$$
\varphi \in \text{Ran}(C)
$$
\n
$$
\varphi \in \text{Ran}(C)
$$
\n
$$
\varphi \in \text{Ran}(C)
$$
\na space of UV regularized fields

[Schwartz kernel theorem: C is convolution by a test function, if translationally invariant.
. I.e., it is ^a momentum space damping, or coarse-graining of fields.]

What do we do with the $\,C$ -dependence? What is the physics / mathematics behind?

Take a family V_C ($C \in \{\text{coarse-grainings}\}$) of interaction terms. $\leftrightarrow \mu_C := \mathrm{e}^{-V_C} \cdot C_* \gamma_T$ We say that it is ^a Wilsonian renormalization group (RG) flow iff: ∃ some continuous functional $z :$ {coarse-grainings} $\rightarrow \mathbb{R}$, such that \forall energy arainings G/G' , with $G'' = G'$ G' . \forall coarse-grainings C, C', C'' with $C'' = C'C$: $z(C'')_* \mu_{C''} = z(C)_* C'_* \mu_C$

[z is called the running wave function renormalization factor.]

If $\mathcal{G}_C = (\mathcal{G}_C^{(0)}, \mathcal{G}_C^{(1)}, \mathcal{G}_C^{(2)}, \dots)$ are the moments of μ_C , then ∃ some continuous functional $z :$ {coarse-grainings} $\rightarrow \mathbb{R}$, such that \forall energy arainings G/G' , with $G'' = G'$ G' . \forall coarse-grainings C, C', C'' with $C'' = C'C$: $z(C'')^n\,\mathcal{G}_{C''}^{(n)}\,=\,z(C)^n\otimes^nC'\,\mathcal{G}_{C}^{(n)}$ for all $n=0,1,2,\ldots$

[Valid also in Lorentz signature and on manifolds, for formal moments (correlators).]

[We can always set $z(C)=1$, by rescaling fields: $\tilde{\mu}_C:=z(C)_*\,\mu_C$ or $\tilde{\mathcal{G}}_C^{(n)}:=z(C)^n\,\mathcal{G}_C^{(n)}.$]

Part I:

On Wilsonian RG flow of correlators(arbitrary signature)

[*Class.Quant.Grav.***39**(2022)185004]

On the running and the UV limit of Wilsonian renormalization group flows – p. 11/56

Clean definition:

A family of smooth correlators \mathcal{G}_C (C \in coarse-grainings) is Wilsonian RG flow iff \forall coarse-grainings C, C', C'' with $C'' = C'$ one has that $\mathcal{G}_{C^{\prime\prime}}^{\left(n\right) }=\mathcal{\otimes}^{n}C^{\prime}\,\mathcal{G}_{C}^{\left(n\right) }$ holds (ⁿ ⁼ ⁰, ¹, ², ...). ←− rigorous RGE in any signature

Space of Wilsonian RG flows is nonempty:

For any distributional correlator $\,G,$ the family

$$
\mathcal{G}_C^{(n)} \quad := \quad \otimes^n C \, G^{(n)} \tag{*}
$$

is ^a Wilsonian RG flow.

Theorem[A.Lászó, Z.Tarcsay *Class.Quant.Grav.***41**(2024)125009]:

- 1. On manifolds it is "quite nice" topological vector space, similar to distributions.
- 2. On flat spacetime for bosonic fields, all Wilsonian RG flows are of the form of $(*)$.

↓UV limit. Sketch of proofs.

- 1. On manifolds it is "quite nice" topological vector space, similar to distributions. [It is Hausdorff, locally convex, complete, nuclear, semi-Montel, Schwartz.]
- Coarse-grainings have ^a natural ordering of being less UV than an other: $C'' \preceq C$ iff $C'' = C$ or $\exists\, C':\, C'' = C'\, C.$
- With this, the space of Wilsonian RG flows is seen to be projective limit of copies of $\mathcal{T}(\mathcal{E}).$
- Check known properties of $\mathcal{T}(\mathcal{E})$, some of them are preserved by projective limit.
- 2. On flat spacetime for bosonic fields, all Wilsonian RG flows are $\,\mathcal{G}^{(n)}_C = \otimes^n C \,G^{(n)}.$
- On flat spacetime, convolution ops by test functions $C_\eta := \eta \star (\cdot)$ exist and commute.
- Due to RGE, commutativity of convolution ops, and polarization formula for $n\hbox{-forms},$ for bosonic fields $\,\mathcal{G}_{C_{\eta}}^{(n)}\,$ is n -order homogeneous polynomial in $\,\eta.$

That is, $\exists|\;\mathcal{G}^{(n)}_{\eta_1,...,\eta_n}$ symmetric n -linear map in $\eta_1,...,\eta_n$, such that $\mathcal{G}^{(n)}_{C_{\eta}}=\mathcal{G}^{(n)}_{\eta,...,\eta}.$ - Due to RGE, commutativity of convolution ops, and ^a Banach-Steinhaus thm variant, ${\cal G}^{(n)}$ $\binom{n}{n_1^t,\ldots,n_n^t}_0$ extends to an n -variate distribution, it will do the job as $(G^{(n)}\,|\,\eta_1\otimes...\otimes\eta_n).$

 $\left\{ \right.$ A Banach-Steinhaus theorem variant (the key lemma – A.László, Z.Tarcsay): If a sequence of n -variate distributions pointwise converge on $\otimes^n \mathcal D,$ then also on full $\left. \mathcal D_n \right\}$

So, it turns out that Wilsonian RG flow of correlators ↔ distributional correlators.
(under mild conditions) (under mild conditions)

Executive summary:

- In QFT, the fundamental objects of interest are distributional field correlators.
- Physical ones selected by ^a "field equation", the master Dyson-Schwinger equation. Through their smoothed (Wilsonian regularized) instances [*CQG***39**(2022)185004].

Academic question:

- What about Wilsonian RG flow of measures? (In Euclidean signature QFT.)Manuscript in preparation about that.

Part II:

On Wilsonian RG flows of Feynman measures(Euclidean signature, flat spacetime, bosonic fields)

[*manuscript in preparation*]

On the running and the UV limit of Wilsonian renormalization group flows – p. 15/56

Wilsonian renormalization in Euclidean signature

Let us come back to Euclidean Feynman measures on flat spacetime, for bosonic fields. [We work on $\mathcal S$ and $\mathcal S'$, because we can.]

Take a family V_C ($C\in\{\text{coarse-grainings}\})$ of interaction terms $\leftrightarrow\mu_C:=\mathrm{e}^{-V_C}\cdot C_*\gamma_T$. Let it be ^a Wilsonian RG flow:

 \forall coarse-grainings C, C', C'' with $C'' = C'C$:

$$
\mu_{C^{\prime\prime}} = C_*^{\prime} \mu_C
$$

Space of Wilsonian RG flow of Feynman measures is nonempty:

For any Feynman measure μ on $\mathcal{S}^{\prime},$ the family

$$
\mu_C \quad := \quad C_* \, \mu \tag{*}
$$

is ^a Wilsonian RG flow.

Theorem[A.Lászó, Z.Tarcsay *manuscript in prep.*]:

1. On flat spacetime for bosonic fields, all Wilsonian RG flows are of the form (\ast) . ← UV limit

2. There exists some measurable potential $\,V:\,\mathcal{S}'\to\mathbb{R}\cup\{\pm\infty\},\,$ such that $\,\mu={\rm e}^{-\,V}\,$ $\cdot \ \gamma_{T}$.

3. For all above coarse-grainings C , one has $V_C(C\,\phi)=V(\phi)$ for γ_T -a.e. $\phi\in\mathcal{S}'$.

4. If $V_C:\,C[\mathcal{S}']\to\mathbb{R}\cup\{\pm\infty\}$ bounded from below, then $\,V\,$ is $\gamma^{}_T$ - ϵ]
] τ_{T} -ess.bounded from below. Sketch of proofs.

- 1. On flat spacetime for bosonic fields, all Wilsonian RG flows are of the form $\,\mu_{C}=C_{\ast}\,\mu.$
- We prove it for Fourier transforms (partition functions), and then use Bochner-Minlos. We use that $\mathcal{S} \star \mathcal{S} = \mathcal{S}$, moreover that for all $K\subset \mathcal{S}$ compact $\exists\ \chi\in \mathcal{S}$ and $L\subset \mathcal{S}$ compact such that $K=\chi\star L.$
- 2. There exists some measurable potential $V: \, \mathcal{S}' \to \mathbb{R} \cup \{\pm \infty\},$ such that $\mu = \mathrm{e}^{-V} \cdot \gamma_T.$
- We apply Radon-Nikodym theorem, the fact that $\,\mathcal{S}'\,$ is so-called Souslin space, and that for $\eta \in \mathcal{S}$ with $F(\eta) > 0$ the coarse-graining $C_{\eta} := \eta \star (\cdot)$ is injective.
- 3. For all coarse-grainings $\,C,$ one has $\,V_{C}(C\,\phi)=V(\phi)\,$ for $\,\gamma_{T}$ -a.e. $\,\phi\in\mathcal{S}^{\prime}.$
- Fundamental formula of integration variable substitution vs pusforward, Souslin-ness of $\mathcal{S}',$ injectivity of coarse-graining $C_{\eta} := \eta \star (\cdot)$ with $\eta \in \mathcal{S},\; F(\eta) > 0.$

4. If $V_C: C[\mathcal{S}'] \to \mathbb{R} \cup \{\pm \infty\}$ bounded from below, then V is γ_T -ess.bounded from below.
Trivial from 3 - Trivial from 3.

Relation to usual RG theory:

Fix some $\eta \in \mathcal{S}$ such that $\int \eta = 1$ and $F(\eta) > 0.$ Introduce scaled $\eta,$ that is $\ \eta_\Lambda(x):=\Lambda^N\eta(\Lambda\,x)\quad$ (for all $\,x\in\mathbb{R}^N\,$ and scaling $\,1\le\Lambda<\infty).$ One has $\eta_{\Lambda} \xrightarrow{S'} \delta$ as $\Lambda \longrightarrow \infty$.

By our theorem, for all Λ , one has $\mathit{V}_{C_{\eta_{\Lambda}}}(C_{\eta_{\Lambda}}\,\phi)=V(\phi)$ for $\gamma_{_{T}}$ -a.e. $\phi\in\mathcal{S}'.$ ⇓Informally: ODE for $V_{C_{\eta_{\Lambda}}}$, namely $\frac{\mathrm{d}}{\mathrm{d}\Lambda}$ $V_{C_{\eta_{\Lambda}}}$ $(C_{\eta_{\Lambda}}\phi) = 0$ for $1 \leq \Lambda < \infty$. QFT people try to solve such flow equation, given initial data $\left. V_{C,\Lambda}\right| _{\Lambda=1}.$

But why bother? By our theorem, all RG flows of such kind has some $\,V\,$ at the UV end. Look directly for V ?

What really the game is about?

Original problem:

- We had \mathcal{V} : {function sense fields} → ℝ∪{±∞}, say $\mathcal{V}(\varphi) = g \int \varphi^4$.
- $t \sim$ but that lives an S' fig - We would need to integrate it against $\, \gamma_{\scriptscriptstyle T} \,$ \mathcal{S}' , but that lives on \mathcal{S}' fields.
- $\gamma^{}_{T}~$ known to be supported "sparsely", i.e. not on function fi ϵ \mathcal{S}_{T} known to be supported "sparsely", i.e. not on function fields, but really on \mathcal{S}' .
- So, we really need to extend $\mathcal V$ at least γ_T -a.e. to make sense of $\mu:=\mathrm{e}^{-V}$. μ_{T} -a.e. to make sense of $\mu := e^{-V}$ $\cdot \gamma_{T}$.

Caution by physicists: this may be impossible.

- We are afraid that V on S' might not exist.
- Instead, let us push $\gamma^{}_{T}$ $\mu_C := \mathrm{e}^{-V_C} \cdot C_* \, \gamma_T.$ to smooth fields by C , do there $\mu_C := \mathrm{e}^{-V_C} \cdot C_* \, \gamma_T.$
- Then, get rid of C-dependence of μ_C by concept of Wilsonian RG flow. Maybe even $\mu_C \rightarrow \mu$ could exist as $C \rightarrow \delta$ if we are lucky...

Our result: we are back to the start.

- The UV limit Feynman measure $\,\mu\,$ then indeed exists.
- But we just proved that then there must exist some extension $\,V\,$ of $\,{\cal V}\,$ to $\,{\cal S}',\,\gamma^{}_T$ -a.e.
- So, we'd better look for that ominous extension $\,V$.
- For bounded from below $\mathcal V$, bounded from below measurable $\,V\,$ needed. If we find one, $\mu := \mathrm{e}^{-V} \cdot \gamma^{}_T$ is then finite measure automation Only pathology: overlap integral of $\,\mathrm{e}^{-V}\,$ and $\,\gamma^{\,}_{T}$ $\cdot \gamma T$ \mathcal{I}_T is then finite measure automatically. We only need to make sure that $\,\int_{\phi \in {\cal S}'}\,\mathrm{e}^{-V(\phi)}\,\mathrm{d}\gamma^{}_T(\phi)>0\,!$ $\epsilon_{\scriptscriptstyle T}$ expected small, maybe zero.

A natural extension[A.László, Z.Tarcsay *manuscript in prep.*]:

If $\mathcal V$ is bounded from below, there is an optimal extension, the "greedy" extension. $V(\cdot) \; := \; \bigl(\gamma^{}_{T} \,$ $(\gamma_{_T})$ inf $\{\eta_n\!\rightarrow\!\delta\}$ $\liminf_{n\to\delta}$ $\mathcal{V}(\eta_n$ $\star \cdot$)

 $\overline{}$ This is the lower bound of extensions, i.e. overlap of $\,\mathrm{e}^{-V}\,$ and $\,\gamma^{}_{T}$ τ_{T} largest. But is $\,V\,$ measurable at all? Not evident.

Theorem[A.László, Z.Tarcsay *manuscript in prep.*]:

- 1. The "greedy extension" is measurable.
- 2. The interacting Feynman measure $\,\mu:=\mathrm{e}^{-V}\,$ $\cdot \ \gamma^{}_{T}$ $\sigma_{_T}$ by greedy extension is nonzero iff

$$
\exists \eta_n \to \delta : \qquad \int\limits_{\phi \in S'} \limsup_{n \to \infty} e^{-\mathcal{V}(\eta_n \star \phi)} d\gamma_T(\phi) \quad > \quad 0.
$$

Sufficient condition:

$$
\exists \eta_n \to \delta \; : \qquad \lim_{n \to \infty} \int_{\phi \in \mathcal{S}'} e^{-\mathcal{V}(\eta_n \star \phi)} d\gamma_T(\phi) \quad > \quad 0.
$$

This is actually ^a calculable condition for concrete models!

Summary

- Wilsonian RG flow of correlators can be definedin any signature and on manifolds. Have nice function space properties like distributions.
- **O** Under mild conditions, they originate from ^a distributional correlator (UV limit). [\sim existence theorem for multiplicative renormalization.]
- **•** Likely to be generically true (on manifolds, in any signature).
- In Euclidean signature, similar for Feynman measures. ⁺ ^a new condition for renormalizability.

Backup slides

Followed guidelines

Do not use (unless emphasized):

- Structures specific to an affine spacetime manifold.
- Known fixed spacetime metric / causal structure.
- Known splitting of Lagrangian to free ⁺ interaction term.

Consequences:

- Cannot go to momentum space, have to stay in spacetime description.
- Cannot refer to any affine property of Minkowski spacetime, e.g. asymptotics. (No Schwartz functions.)
- Cannot use Wick rotation to Euclidean signature metric.
- Even if Wick rotated, no free ⁺ interaction splitting, so no Gaussian Feynman measure.
- Can only use generic, differential geometrically natural objects.

Outline

Will attempt to set up eom for the key ingredient for the quantum probability space of QFT.

- I. On Wilsonian regularized Feynman functional integral formulation:
	- Can be substituted by regularized master Dyson-Schwinger equation for correlators.
	- For conformally invariant or flat spacetime Lagrangians, showed an existencecondition for regularized MDS solutions, provides convergent iterative solver method.

[*Class.Quant.Grav.***39**(2022)185004]

- II. On Wilsonian renormalization group flows of correlators:
	- They form ^a topological vector space which isHausdorff, locally convex, complete, nuclear, semi-Montel, Schwartz.
	- On flat spacetime for bosonic fields: in bijection with distributional correlators.

[**arXiv:2303.03740** *with Zsigmond Tarcsay*]

Part I:

On Wilsonian regularized Feynman functional integral formulation

The classical field theory scene

 $\mathcal M$ a smooth orientable oriented manifold (wannabe spacetime, but no metric, yet).

 $V(\mathcal{M})$ a vector bundle over it (its smooth sections are matter fields + metric if dynamical).

Field configurations:

$$
(v, \nabla) \in \Gamma(V(\mathcal{M}) \times_{\mathcal{M}} \mathrm{CovDeriv}(V(\mathcal{M})))
$$

=: ψ =: \mathcal{E}

Real topological affine space with the $\,{\cal E}\,$ smooth function topology.

Field variations:

$$
\underbrace{(\delta v, \delta C)}_{=: \delta \psi} \in \underbrace{\Gamma \Big(V(\mathcal{M}) \times_{\mathcal{M}} T^*(\mathcal{M}) \otimes V(\mathcal{M}) \otimes V^*(\mathcal{M}) \Big)}_{=: \mathcal{E}}
$$

Real topological vector space with the $\,{\cal E}\,$ smooth function topology.

Test field variations: $\delta \! \psi_{\scriptscriptstyle T}^{}$ $\mathcal{L}_T \in \mathcal{D}$, compactly supported ones from $\mathcal E$ with $\mathcal D$ test funct. top.

Informal Feynman functional integral in Lorentz signature

Fix a reference field $\psi_0 \in \mathcal{E}$ for bringing the problem from $\mathcal E$ to $\mathcal E,$ and take $J_1,...,J_n \in \mathcal E'.$ Then, $\psi \mapsto (J_1|\psi - \psi_0) \cdot ... \cdot (J_n|\psi - \psi_0)$ defines a $\mathcal{E} \to \mathbb{R}$ polynomial observable.

Feynman type quantum vacuum expectation value of this is postulated as:

$$
\int\limits_{\psi\in\boldsymbol{\mathcal{E}}} \left(J_1|\psi\!-\!\psi_0\right)\cdot...\cdot\left(J_n|\psi\!-\!\psi_0\right)\;\;{\rm e}^{\frac{{\rm i}}{\hbar}S(\psi)}\;\mathrm{d}\lambda(\psi)\;\;\left/\;\int\limits_{\psi\in\boldsymbol{\mathcal{E}}}\mathrm{e}^{\frac{{\rm i}}{\hbar}S(\psi)}\;\mathrm{d}\lambda(\psi)\right.
$$

Partition function often invoked to book-keep these (formal Fourier transform of $\,\rm e$ $\frac{\mathrm{i}}{\hbar}\,S$ $\supseteq \lambda$):

$$
Z_{\psi_0}:\quad \mathcal{E}'\longrightarrow \mathbb{C},\quad J\longmapsto Z_{\psi_0}(J):=\int\limits_{\psi\in\boldsymbol{\mathcal{E}}} \mathrm{e}^{\mathrm{i}\,(J|\psi-\psi_0)}\,\,\mathrm{e}^{\frac{\mathrm{i}}{\hbar}\,S(\psi)}\,\,\mathrm{d}\lambda(\psi),
$$

and from this one can define

$$
G_{\psi_0}^{(n)} \quad := \quad \left((-\mathrm{i})^n \, \frac{1}{Z_{\psi_0}(J)} \, \partial_J^{(n)} Z_{\psi_0}(J) \right) \bigg|_{J=0}
$$

 n -field correlator, and their collection $G\,$ ψ $_{0}$:= $\big(G_{\psi_0}^{(0)}\big)$ $\theta_{\psi_0}^{(0)}, G_{\psi_0}^{(1)}, ..., G_{\psi_0}^{(n)}, ...$) ∈ $\bigoplus\limits_{n\in\mathbb{N}_0}$ $\, n \,$ [⊗] ^E.

Above quantum expectation value expressable via distribution pairing: $\, (J_1\otimes...\otimes J_n \, \big|\, G_{\psi_0}^{(n)}) .$

Well known problems:

- No "Lebesgue" measure $\,\lambda\,$ in infinite dimensions.
- Neither $\mathrm{e}^{\frac{\mathrm{i}}{\hbar}S}\,\lambda$ is meaningful. (Can be repaired to some extent in Euclidean signature.)
- Neither the Fourier transform of this undefined measure is meaningful.

Rules in informal QFT:

- as if ^λ existed as *translation invariant* (Lebesgue) measure,
- as if ^e ⁱ[~] ^S ^λ existed as *finite measure*, with *finite moments* and *analytic Fourier transform*.

Textbook "theorem": because of above rules, one has $Z: \mathcal{E}' \to \mathbb{C}$ is Fourier transform of $e^{\frac{i}{\hbar}S} \lambda \iff$ it satisfies master-Dyson-Schwinger eq

$$
\left(\mathbf{E}\big((-i)\partial_J + \psi_0\big) + \hbar J\right)Z(J) = 0 \quad (\forall J \in \mathcal{E}')
$$

where $\,E(\psi):=DS(\psi)\,$ is the Euler-Lagrange functional at $\,\psi\in\boldsymbol{\mathcal{E}}.$

Does this informal PDE have a meaning? [Yes, on the correlators $\,G = \big(G^{(0)}, G^{(1)}, ...\big). \}$

Rigorous definition of Euler-Lagrange functional

- Let a Lagrange form be given, which is

 $\mathrm{L}:\; V(\mathcal{M}) \;\oplus\; T^*$ $^*(\mathcal{M})\otimes V(\mathcal{M}) \oplus T^*$ $^*(\mathcal{M}){\wedge}T^*$ $^*(\mathcal{M})\otimes V(\mathcal{M})\otimes V^*$ $^*(\mathcal{M}) \longrightarrow$ $\rightarrow \bigwedge^{\dim(\mathcal{M})} T^*$ $^*(\mathcal{M})$ pointwise bundle homomorphism.

- Lagrangian expression:

 $\Gamma(V(\mathcal{M}) \times_{\mathcal{M}} \mathrm{CovDeriv}(V(\mathcal{M}))) \longrightarrow \Gamma(\stackrel{\dim(\mathcal{M})}{\wedge} T^*$ $^*(\mathcal{M})$, $(v, \nabla) \mapsto L(v, \nabla v, F(\nabla))$ where $F(\nabla)$ is the curvature tensor.

- Action functional:

$$
S: \underbrace{\Gamma(V(\mathcal{M}) \times_{\mathcal{M}} \text{CovDeriv}(V(\mathcal{M})))}_{=: \mathcal{E}} \longrightarrow \text{Meas}(\mathcal{M}, \mathbb{R}), \underbrace{(v, \nabla)}_{=: \psi} \longmapsto (\mathcal{K} \mapsto S_{\mathcal{K}}(v, \nabla))
$$

where $\, S \,$ $S_{\cal K}(v,\nabla):=\int\limits_{\cal K}$ ${\cal K}$ $\mathrm{L}(v, \nabla v, F(\nabla))$ for all $\mathcal{K} \subset \mathcal{M}$ compact. Action functional $\,S:\,\boldsymbol{\mathcal{E}}\to \text{Meas}(\mathcal{M},\mathbb{R})\,$ Fréchet differentiable, its Fréchet derivative

 $DS: \quad \mathcal{E} \times \mathcal{E} \longrightarrow \mathrm{Meas}(\mathcal{M}, \mathbb{R}), \quad (\psi, \delta \psi) \longmapsto \Bigl(\mathcal{K} \mapsto \bigl(DS_\mathcal{K}(\psi) \,\big|\, \delta \psi\bigr)\Bigr)$

is the usual Euler-Lagrange integral on \mathcal{K} + usual boundary integral on $\partial \mathcal{K}.$ Jointly continuous in its variables, linear in second variable.

Euler-Lagrange functional:

We restrict DS from $\mathcal{E} \times \mathcal{E}$ to $\mathcal{E} \times \mathcal{D}$, to make the EL integral over full \mathcal{M} finite.

$$
E: \mathcal{E} \times \mathcal{D} \longrightarrow \mathbb{R}, \quad (\psi, \delta \psi_T) \longmapsto (E(\psi) | \delta \psi_T) := (DS_{\mathcal{M}}(\psi) | \delta \psi_T)
$$

Bulk Euler-Lagrange integral remains, no boundary term. Meaningful on full \mathcal{M} , real valued. Jointly sequentially continuous, linear in second variable. $\,$ (Also, $\,E:\mathcal{E} \rightarrow \mathcal{D}'\,$ continuous.)

Classical field equation is

$$
\psi \in \mathcal{E} ? \qquad \forall \, \delta \psi_T \in \mathcal{D} : \, \left(E(\psi) \, \big| \, \delta \psi_T \right) = 0.
$$

Observables are the $O : \mathcal{E} \to \mathbb{R}$ continuous maps.

Rigorous definition of master Dyson-Schwinger equation

- Want to rephrase informal MDS operator on Z to n -field correlators $G=(G^{(0)}, G^{(1)},...)$. These sit in the tensor algebra $\ \mathcal{T} (\mathcal{E}) :=\bigoplus_{\pi\in\mathbb{N}}\hat{\otimes}^n_\pi \mathcal{E}\,$ of field variations. $\,n$ ∈N $\frac{n}{\pi}\mathcal{E}$ of field variations.

More precisely, they sit in a graded-symmetrized subspace, e.g. $\bigvee(\mathcal{E})$ or $\bigwedge(\mathcal{E})$ of $\mathcal{T}(\mathcal{E})$. 0Naturally topologized: with Tychonoff topology, similar to $\,{\cal E}$, i.e. nuclear Fréchet.

- Algebraic tensor algebra $\ \mathcal{T}_a(\mathcal{E}') := \mathop{\oplus}\limits_{n\in\mathbb{N}}$ $n{\in}\mathbb{N}_0$ Naturally topologized: loc.conv. direct sum topology, similar to \mathcal{E}^{\prime} , i.e. dual nuclear Fréchet. $\hat{\otimes}$ $\, n \,$ $\frac{n}{\pi}$ E ′ of sources.
- Schwartz kernel thm gives some simplification: $\left.\hat{\otimes}\right.^n_{\pi}$ π $\int_{\pi}^{\pi} \mathcal{E} \equiv \mathcal{E}_{\eta}$ $\, n \,$ \hat{a}_n and $\hat{\otimes}^n_{\pi}$ $\int_{\pi}^{\pi} \mathcal{E}' \equiv \mathcal{E}'_n$ n' (*n*-variate).
- One has $(\mathcal{T}(\mathcal{E}))' \equiv \mathcal{T}_a(\mathcal{E}')$ and $(\mathcal{T}(\mathcal{E}))'' \equiv \mathcal{T}(\mathcal{E})$ etc, "nice" properties. Moreover, tensor algebra of field variations is topological unital bialgebra.

Unity $1 := (1, 0, 0, 0, ...)$.

Left-multiplication \mathcal{L}_x $_x$ by a fix element x meaningful and continuous linear.

Left-insertion $\left\{L_p\right.$ (tracing out) by $\left.p\in \left({\cal T}({\cal E})\right)'\equiv {\cal T}_a({\cal E}')$ also meaningful, continuous linear. Usual graded-commutation: $(\,\,l_{\,p}\,L_{\,\delta\psi}\,\pm\,L_{\,\delta\psi}\,l_{\,p}\,) \,G\,=\, (p|\delta\psi)\,G\quad(\forall p\in\mathcal{E}',\,\,\delta\psi\in\mathcal{E},\,G\,) .$

Take a classical observable $\, O:\, \mathcal E\to \mathbb R,\, \psi\mapsto O(\psi),$ let $\,O_{\psi_0}:=O\circ (\mathrm{I}_\mathcal E+\psi_0).$

That is, $\, O_{\psi_0}(\psi-\psi_0) \stackrel{!}{=} O(\psi) \quad \, (\forall \psi \in {\bm {\mathcal E}}),$ with some fixed reference field $\,\psi_0 \in {\bm {\mathcal E}}.$

We say that O is multipolynomial iff for some $\psi_0\in\mathcal{E}$ there exists $\mathbf{O}_{\psi_0}\in\mathcal{T}_a(\mathcal{E}'),$ such that

$$
\forall \psi \in \mathcal{E}: \quad \underbrace{O_{\psi_0}(\psi - \psi_0)}_{= O(\psi)} = \left(\mathbf{O}_{\psi_0} \middle| (1, \frac{1}{\otimes (\psi - \psi_0)}, \frac{2}{\otimes (\psi - \psi_0)}, \ldots) \right).
$$

Similarly $E: \, \mathcal{E} \to \mathcal{D}', \, \psi \mapsto E(\psi),$ let $E_{\psi_0} := E \circ (\mathrm{I}_{\mathcal{E}} + \psi_0)$ the same re-expressed on $\mathcal{E}.$

That is, $\,E_{\psi_0}(\psi-\psi_0)\stackrel{!}{=}E(\psi)\,\quad(\forall\psi\in\boldsymbol{\mathcal{E}}),$ with some fixed reference field $\,\psi_0\in\boldsymbol{\mathcal{E}}.$

We say that E is multipolynomial iff $\exists~\mathbf{E}_{\psi_0}\in\mathcal{T}_a(\mathcal{E}')\hat{\otimes}_\pi\mathcal{D}'$, such that

$$
\forall \psi \in \mathcal{E}, \, \delta \psi_T \in \mathcal{D}: \, \underbrace{\left(E_{\psi_0}(\psi - \psi_0) \, \middle| \, \delta \psi_T \right)}_{= \, \left(E(\psi) \, \middle| \, \delta \psi_T \right)} = \, \left(\mathbf{E}_{\psi_0} \, \middle| \, \left(1, \, \frac{1}{\otimes (\psi - \psi_0)}, \, \frac{2}{\otimes (\psi - \psi_0)}, \, \ldots \right) \otimes \delta \psi_T \right).
$$

For fixed $\,\delta\!\psi_T^{}\in\mathcal{D}\,$ one has $\,({\bf E}_{\psi_0}\,|\,\delta\!\psi_T^{})\in\mathcal{T}_a(\mathcal{E}'),$ i.e. one can left-insert with it: $\iota_{({\bf E}_{\psi_0} {\,|\,} \delta \psi^{}_T)}$ meaningfully acts on $\mathcal{T}(\mathcal{E}).$

The master Dyson-Schwinger (MDS) equation is:

we search for
$$
(\psi_0, G_{\psi_0})
$$
 such that:
\n
$$
G_{\psi_0}^{(0)} = 1,
$$
\n
$$
G_{\psi_0}
$$
\n
$$
\forall \delta \psi_T \in \mathcal{D}: \qquad \left(\mathcal{L}_{(\mathbf{E}_{\psi_0} | \delta \psi_T)} - i \hbar L_{\delta \psi_T} \right) G_{\psi_0} = 0.
$$
\n
$$
=:\mathbf{M}_{\psi_0, \delta \psi_T}
$$

This substitutes Feynman functional integral formulation, signature independently. Also, no fixed background causal structure etc needed.

[Feynman type quantum vacuum expectation value of $\,O\,$ is then $\,({\rm \bf O}_{\psi_0}\,|\,G_{\psi_0}).$]

Example: ϕ^4 model.

Euler-Lagrange functional is

$$
E: \quad \mathcal{E} \times \mathcal{D} \longrightarrow \mathbb{R}, \quad (\psi, \, \delta \! \psi_T) \longmapsto \int \limits_{y \in \mathcal{M}} \delta \! \psi_T(y) \, \Box_y \psi(y) \, \mathrm{v}(y) \, + \int \limits_{y \in \mathcal{M}} \delta \! \psi_T(y) \, \psi^3(y) \, \mathrm{v}(y).
$$

MDS operator at
$$
\psi_0 = 0
$$
 reads

$$
\left(\mathbf{M}_{\psi_0,\delta\psi_T} G\right)^{(n)}(x_1,...,x_n) =
$$
\n
$$
\int_{y \in \mathcal{M}} \delta\psi_T(y) \Box_y G^{(n+1)}(y,x_1,...,x_n) \mathbf{v}(y) + \int_{y \in \mathcal{M}} \delta\psi_T(y) G^{(n+3)}(y,y,y,x_1,...,x_n) \mathbf{v}(y)
$$

$$
-i \hbar \underbrace{n \frac{1}{n!} \sum_{\pi \in \Pi_n} \delta \psi_T(x_{\pi(1)}) G^{(n-1)}(x_{\pi(2)}, ..., x_{\pi(n)})}_{(L \otimes \chi(n))}
$$

$$
= (L_{\delta \psi} {}_T G)^{(n)}(x_1,...,x_n)
$$

Pretty much well-defined, and clear recipe, if field correlators were *functions*.

Theorem: no solutions with high differentiability (e.g. as smooth functions). Theorem: for free Minkowski KG case, distributional solution only,

namely $G_{\psi_0}=\exp(K_{\psi_0}),$ where

$$
K_{\psi_0}^{(0)} = 0,
$$

\n
$$
K_{\psi_0}^{(1)} = 0,
$$

\n
$$
K_{\psi_0}^{(2)} = i \hbar K_{\psi_0}^{(2)} \leftarrow \text{(symmetric propagator)}
$$

\n
$$
K_{\psi_0}^{(n)} = 0 \qquad (n \ge 2)
$$

So we expect distributional solutions only, at best.

How can one extend to distributions interaction term like $\; G^{(n+3)}(y,y,y,x_1,...,x_n)$? With sufficiency condition of H[']ormander? (Theorem: not workable.) Via approximation with functions, i.e. sequential closure? (Theorem: not workable.) Workaround in QFT: Wilsonian regularization using coarse-graining (UV damping).

Wilsonian regularized master Dyson-Schwinger equation

- When $\mathcal E$ (resp $\mathcal D$) are smooth sections of some vector bundle, denote by $\,\mathcal{E}^{\times}\,$ (resp $\,\mathcal{D}^{\times})$ the smooth sections of its densitized dual vector bundle. Then, distributional sections are $\mathcal{D}^{\times}{}'$ (resp $\mathcal{E}^{\times}{}'$).
- A continuous linear map $C : \mathcal{E}^{\times}{}' \to \mathcal{E}$ is called smoothing operator. Schwartz kernel theorem: $C\;\longleftrightarrow\;$ its Schwartz kernel κ which is section over $\mathcal{M}{\times}\mathcal{M}.$
- C_{κ} It extends to $\mathcal{E}^{\times}{}'$, $\mathcal{E}, \mathcal{D}, \mathcal{D}^{\times}{}'$ and preserves compact support (the transpose similarly). κ is <mark>properly supported</mark> iff ∀ K ⊂ $\mathcal M$ compact: $\kappa|_{\mathcal M \times \mathcal K}$ and $\kappa|_{\mathcal K \times \mathcal M}$ has compact supp.
extends to £ \times' £ $\mathcal D$ $\mathcal D^{\times'}$ and preserves compact support (the transpose similarly)
- A properly supported smoothing operator is coarse-graining iff injective as $\,\mathcal{E}^{\times\,\prime}\rightarrow\mathcal{E}\,$ and its transpose similarly. E.g. ordinary convolution by ^a nonzero test function over affine (Minkowski) spacetime.

Coarse-graining ops are natural generalization of convolution by test functions to manifolds.

Originally: Feynman integral "⇐⇒" MDS equation.

Wilsonian regularized Feynman integral:

integrate only on the image space $\,C_{\kappa}[\mathcal{D}^{\times}{}']\subset\mathcal{E}\,$ of some coarse-graining operator $C_{\kappa}.$

Wilsonian regularized Feynman integral "
ightarisonian regularized MDS equation:

we search for $(\psi_0,\gamma(\kappa),\mathcal{G}_{\psi_0,\kappa})$ such that: $\qquad \qquad \qquad \mathcal{G}^{(0)}_{\psi_0,\kappa}$ \longrightarrow $=: b \, {\cal G}_{\psi_0,\kappa}$ =1,

$$
\forall \delta \psi_T \in \mathcal{D} : \qquad \left(\left. \begin{array}{rcl} \boldsymbol{\ell}_{\gamma(\kappa)} \left(\mathbf{E}_{\psi_0} \mid \delta \psi_T \right) \; - \; \mathrm{i} \, \hbar \, L_{C_\kappa \delta \psi_T} \; \right) \; \mathcal{G}_{\psi_0, \kappa} & = & 0. \end{array} \right)
$$
\n
$$
=: \mathbf{M}_{\psi_0, \kappa, \delta \psi_T}
$$

Brings back problem from distributions to smooth functions, but depends on regulator $\kappa.$

Smooth function solution to free KG regularized MDS eq: $\ {\cal G}_{\psi_0,\kappa}=\exp({\cal K}_{\psi_0,\kappa})\,$ where

$$
\begin{array}{rcl}\n\mathcal{K}^{(0)}_{\psi_0,\kappa} &=& 0, \\
\mathcal{K}^{(1)}_{\psi_0,\kappa} &=& 0, \\
\mathcal{K}^{(2)}_{\psi_0,\kappa} &=& \text{if } \kappa^{(2)}_{\psi_0,\kappa} \qquad \longleftarrow \text{(smoothed symmetric propagator)} \\
\mathcal{K}^{(n)}_{\psi_0,\kappa} &=& 0 \qquad \qquad (n \geq 2)\n\end{array}
$$

No problem to evaluate interaction term like $\ \mathcal{G}^{(n+3)}(y,y,y, x_1, ..., x_n) \,$ on functions.

[We proved a convergent iterative solution method at fix $\,\kappa,\,$ see the paper or ask.]

But what we do with κ dependence? (Rigorous Wilsonian renormalization?)

Part II:

On Wilsonian RG flows of correlators

Informal Wilsonian RG flows of Feynman measures

Fix a reference field $\,\psi_0\in\boldsymbol{\mathcal{E}}$ to bring the problem from $\,\boldsymbol{\mathcal{E}}\,$ to $\,\mathcal{E}.$

Fix a coarse-graining C_κ κ defining a UV regularization strength.

Assume that one has an action $\, S \,$ $\mathcal{D}\psi$ $_0,C$ κ: C $C_{\kappa}[\mathcal{D}^{\times}']$]
] } \subset ${\cal E}$ \rightarrow $\mathbb R$ for a coarse-graining $\,C$ κ.

Informally, one assumes a Lebesgue measure $\,\lambda_{C_{\kappa}}\,$ (In Euclidean signature this inexactness can be remedied by Gaussian measure.) κ on each subspace $C_{\kappa}[\mathcal{D}^{\times}']$ of $\mathcal{E}.$]
]

This defines the Wilsonian regularized Feynman measure $\,\rm e$ $\frac{\mathrm{i}}{\hbar}$ $\, S \,$ $\mathfrak{O}\psi$ ψ_0 , C κ $^\kappa\, \lambda_{C_\kappa}$.

A family of actions S_{ψ_0,C_κ} $(C_\kappa$ \in coarse-grainings) is Wilsonian RG flow iff: \forall coarse-grainings C_{κ} , C_{μ} , C_{ν} with $C_{\nu}=C_{\mu}C_{\kappa}$ $e^{\frac{1}{\hbar}S_{\psi_0,C_\nu}}\lambda_C$ is the pushforward of $e^{\frac{1}{\hbar}S_{\psi_0,C_\kappa}}$ κ one has that $\frac{\mathrm{i}}{\hbar}\,S$ ${}^{\text{\tiny{D}}\psi_0,C_\nu}\lambda_{C_\nu}$ is the pushforward of \rm e $\frac{\mathrm{i}}{\hbar}\,S$ ${}^{\scriptscriptstyle \mathrm{D}}\psi_0, C_\kappa \,\lambda_{C_\kappa}$ κ by C μ . ← ← ← - RGE

Rigorous definition will be this, but expressed on the formal moments ($n\text{-field correlators}$).

Existence condition for regularized MDS solutions

If Euler-Lagrange functional $E:\,\boldsymbol{\mathcal{E}}\rightarrow\mathcal{D}'$ conformally invariant: re-expressable on Penrose conformal compactification.

That is always ^a compact manifold, with cone condition boundary.

 $E:\,\boldsymbol{\mathcal{E}}\rightarrow\mathcal{D}'$ reformulable over this base manifold.

In such situation, $\mathcal{E} = \mathcal{D}$ and have nice properties: countably Hilbertian nuclear Fréchet (CHNF) space.

 $F_0 \supset F_1 \supset ... \supset F_m \supset ... \supset \mathcal{E}$

(Intersection of shrinking Hilbert spaces F_m with Hilbert-Schmidt embedding.)

Theorem [Dubin,Hennings:*P.RIMS***25**(1989)971]:

without penalty, one can equip $\mathcal{T}(\mathcal{E})$ with a better topology, inheriting CHNF topology.

 $H_0 \supset H_1 \supset ... \supset H_m \supset ... \supset \mathcal{T}_h(\mathcal{E})$

Regularized MDS operator is then ^a Hilbert-Schmidt linear map

$$
\mathbf{M}_{\psi_0,\kappa}: \quad H_m \otimes F_m \longrightarrow H_0, \quad \mathcal{G} \otimes \delta \psi_T \longmapsto \mathbf{M}_{\psi_0,\kappa,\delta \psi_T} \mathcal{G}
$$

Theorem: one can legitimately trace out $\delta \! \psi_{T}^{}$ variable to form

$$
\hat{\mathbf{M}}^2_{\psi_0,\kappa}:\quad H_m\longrightarrow H_m,\quad \mathcal{G}\longmapsto \sum_{i\in\mathbb{N}_0}{\mathbf{M}}^\dagger_{\psi_0,\kappa,\delta\!\psi_{T\,i}}\mathbf{M}_{\psi_0,\kappa,\delta\!\psi_{T\,i}}\mathcal{G}
$$

By construction: $\mathcal G$ is κ -regularized MDS solution $\iff\, b\,\mathcal G=1\,$ and $\hat{\mathbf M}_{\psi_0,\kappa}^2\mathcal G=0.$ Theorem [A.L.]:

(i) the iteration

$$
\mathcal{G}_0 := 1 \text{ and } \mathcal{G}_{l+1} := \mathcal{G}_l - \frac{1}{T} \hat{\mathbf{M}}_{\psi_0,\kappa}^2 \mathcal{G}_l \qquad (l = 0, 1, 2, \ldots)
$$

is always convergent if $\text{ }T> \text{ }$ trace norm of $\hat{\textbf{M}}_{\psi_{0},\kappa}^{2}.$

(ii) the κ -regularized MDS solution space is nonempty iff

$$
\lim_{l\to\infty}b\mathcal{G}_l\,\neq\,0.
$$

(iii) and in this case

lim $l\!\to\!\infty$ \mathcal{G}_l

is an MDS solution, up to normalization factor.

Use for lattice-like numerical method in Lorentz signature?(Treatment can be adapted to flat spacetime also, because Schwartz functions are CHNF.)

Structure of model building in fundamental physics

Relativistic or non-relativistic point mechanics:

- Take Newton equation over ^a fixed spacetime and fixed potentials.
- Solution space to the equation turns out to be ^a symplectic manifold.
- One can play classical probability theory on the solution space:
	- Elements of solution space X are elementary events.
	- Collection of Borel sets Σ of X are composite events.
	- A state is a probability measure W on $\Sigma,$ i.e. (X,Σ,W) is classical probability space.

Relativistic or non-relativistic quantum mechanics:

- Take Dirac etc. equation over ^a fixed spacetime and fixed potentials.
- Finite charge weak solution space to the equation turns out to be ^a Hilbert space.
- One can play quantum probability theory on the solution space:
	- One dimensional subspaces of the solution space ${\mathcal H}$ are elementary events, $X.$
	- Collection of all closed subspaces Σ of ${\mathcal H}$ are composite events.
	- A state is a probability measure W on Σ , i.e. (X,Σ,W) is quantum probability space.

Fréchet derivative in top.vector spaces

Let F and G real top.affine space, Hausdorff. Subordinate vector spaces: F and G.

A map $S:\ F\to G$ is Fréchet-Hadamard differentiable at $\psi\in F$ iff: there exists $DS(\psi): \, \mathbb{F} \to \mathbb{G}$ continuous linear, such that for all sequence $n \mapsto h_n$ nonzero sequence $n\mapsto t_n$ $_n$ in $\mathbb F$, and $_n$ in \R which converges to zero,

$$
(\mathbb{G})\lim_{n\to\infty}\left(\frac{S(\psi+t_n h_n)-S(\psi)}{t_n}-DS(\psi) h_n\right) = 0
$$

holds.

Fréchet derivative of action functional

$$
\begin{array}{lll}\n\text{Fr\'echet derivative of } S: \mathcal{E} \longrightarrow \text{Meas}(\mathcal{M}, \mathbb{R}) \text{ is} \\
& DS: \mathcal{E} \times \mathcal{E} \longrightarrow \text{Meas}(\mathcal{M}, \mathbb{R}), \ (\psi, \delta\psi) \longmapsto \Big(\mathcal{K} \mapsto \big(DS_{\mathcal{K}}(\psi) \big| \delta\psi \big) \Big) \\
& \text{For } \underbrace{(v, \nabla) \in \mathcal{E} \text{ given},} \\
& \underbrace{(\delta v, \delta C)}_{=: \psi} \mapsto \big(DS_{\mathcal{K}}(v, \nabla) \big| \left(\delta v, \delta C \right) \big) = \\
& \underbrace{\int_{=: \delta\psi} (\big(D_1 \mathcal{L}(v, \nabla v, P(\nabla)) \delta v + D_2^a \mathcal{L}(v, \nabla v, P(\nabla)) \big(\nabla_a \delta v + \mathcal{K}_a v) + 2 \, D_3^{[ab]} \mathcal{L}(v, \nabla v, P(\nabla)) \tilde{\nabla}_{[a} \delta C_{b]} \Big) \\
& = \int_{\mathcal{K}} \Big(D_1 \mathcal{L}(v, \nabla v, P(\nabla))_{[c_1...c_m]} \delta v - \big(\tilde{\nabla}_a D_2^a \mathcal{L}(v, \nabla v, P(\nabla))_{[c_1...c_m]} \big) \delta v \Big) + \\
& \big(D_2^a \mathcal{L}(v, \nabla v, P(\nabla))_{[c_1...c_m]} \delta C_a v - 2 \big(\tilde{\nabla}_a D_3^{[ab]} \mathcal{L}(v, \nabla v, P(\nabla))_{[c_1...c_m]} \big) \delta C_b \big) \\
& + m \int_{\partial \mathcal{K}} \Big(D_2^a \mathcal{L}(v, \nabla v, P(\nabla))_{[ac_1...c_{m-1}]} \delta v + 2 \, D_3^{[ab]} \mathcal{L}(v, \nabla v, P(\nabla))_{[ac_1...c_{m-1}]} \delta C_b \Big) \\
& \text{ [usual Euler-Lagrange bulk integral + boundary integral]}\n\end{array} \tag{m := dim} \tag{M}
$$

Distributions on manifolds

 $W(\mathcal{M})$ vector bundle, $W^\times(\mathcal{M}):=W^*(\mathcal{M})\otimes\overset{\dim(\mathcal{M})}{\wedge}T^*(\mathcal{M})$ its densitized dual. $W^{\times \times}(\mathcal{M}) \equiv W(\mathcal{M}).$

Correspondingly: \mathcal{E}^{\times} and \mathcal{D}^{\times} are densitized duals of $\mathcal {E}$ and $\mathcal {D}.$

 $\mathcal{E}\times \mathcal{D}^{\times}$ $\hat{}$ $\mathbb{R}, \ (\delta \! \psi, p_{\scriptscriptstyle T}$ $) \mapsto$ \int ${\cal M}$ $\delta \! \psi \, p_{\overline{\mathnormal{\mathnormal{\scriptscriptstyle{T}}}}}$ $_T$ and $\mathcal{D}\times\mathcal{E}^{\times}$ $\hat{}$ $\mathbb{R}, \ (\delta \psi^{\vphantom{\dagger}}_T$ $_{T}, p) \mapsto$ \int ${\cal M}$ $\delta \! \psi$ $T^{\varphi}T$ p jointly sequentially continuous.

Therefore, continuous dense linear injections $\mathcal{E} \to \mathcal{E}^{\times}{}'$ and $\mathcal{D} \to \mathcal{D}^{\times}{}'$ (hance the name, distributional sections)

Let $A:\,\mathcal{E}\rightarrow\mathcal{E}$ continuous linear.

It has formal transpose iff there exists $A^t: \mathcal{D}^\times \to \mathcal{D}^\times$ continuous linear, such that $\forall \delta \psi \in \mathcal{E} \text{ and } p_T^+ \in \mathcal{D}^\times \colon \int \limits_\mathcal{M} (A\, \delta \psi)\, p_T^-=\int \limits_\mathcal{M} \delta \psi$ $\tau \in \mathcal{D}^{\times}$: $\int_{\mathcal{M}}$ ${\cal M}$ $\left(A\,\delta\!\psi\right)p_{T}^{}$ = \int ${\cal M}$ $\delta\!\psi\,(A^t\,p_T^{}\,$).

Topological transpose of formal transpose ${(A^t)}':{(\mathcal{D}^{\times})}' \to {(\mathcal{D}^{\times})}'$ is the distributional extension of A . Not always exists.

Fundamental solution on manifolds

Let $E:\,\boldsymbol{\mathcal{E}}\times\mathcal{D}\rightarrow\mathbb{R}$ be Euler-Lagrange functional, and $J\in\mathcal{D}'$

 $\mathtt{K}_{(J)}\in\mathcal{E}$ is solution with source $J,$ iff $\forall\delta\!\psi_{T}^{}$ $\mathcal{L}_T \in \mathcal{D} : (E(\mathsf{K}_{(J)}) \,|\, \delta \psi_T)$ $(T) = (J|\delta \psi_T).$

Specially: one can restrict to $J\in \mathcal{D}^{\times}\subset \mathcal{E}^{\times}\subset \mathcal{D}'$

A continuous map $\mathtt{K}:\,\mathcal{D}^\times\to\mathcal{E}$ is fundamental solution, iff for all $J\in\mathcal{D}^\times$ the field $\mathtt{K}(J)\in\mathcal{E}$ is solution with source $J.$

May not exists, and if does, may not be unique.

If $\mathtt{K}_{\psi_0}:\mathcal{D}^\times\to\mathcal{E}$ vectorized fundamental solution is linear (e.g. for linear $E_{\psi_0}:\mathcal{E}\to\mathcal{D}'$): $\mathtt{K}_{\psi_{0}}\in\mathcal{L}$ $\mathbf{c}_0 \in \mathcal{L}in(\mathcal{D}^\times)$ $(\mathcal{L}, \mathcal{E}) \subset (\mathcal{D}^{\times})' \otimes (\mathcal{D}^{\times})'$ is distribution.

Particular solutions to the free MDS equation

Distributional solutions to free MDS equation: $\,G_{\psi_0}=\exp(K_{\psi_0})\,$ where

$$
K_{\psi_0}^{(0)} = 0,
$$

\n
$$
K_{\psi_0}^{(1)} = 0,
$$

\n
$$
K_{\psi_0}^{(2)} = i \hbar K_{\psi_0}^{(2)}
$$

\n
$$
K_{\psi_0}^{(n)} = 0 \qquad (n \ge 2)
$$

Smooth function solutions to free regularized MDS equation: $\,G_{\psi_0}=\exp(K_{\psi_0,\kappa})\,$ where

$$
K_{\psi_0,\kappa}^{(0)} = 0,
$$

\n
$$
K_{\psi_0,\kappa}^{(1)} = 0,
$$

\n
$$
K_{\psi_0,\kappa}^{(2)} = i\hbar (C_{\kappa} \otimes C_{\kappa}) K_{\psi_0}^{(2)}
$$

\n
$$
K_{\psi_0,\kappa}^{(n)} = 0 \qquad (n \ge 2)
$$

[Here $C_\kappa(\cdot):=\eta\star(\cdot)$ is convolution by a test function $\eta.$]

Renormalization from functional analysis p.o.v.

Let ${\mathbb F}$ and ${\mathbb G}$ real or complex top.vector space, Hausdorff loc.conv complete.

Let $M:\,\mathbb{F}\rightarrow\mathbb{G}$ densely defined linear map (e.g. MDS operator).

Closed: the graph of the map is closed.

Closable: there exists linear extension, such that its graph closed (unique if exists).

 $\sf{Closable} \Leftrightarrow$ where extendable with limits, it is unique.

Multivalued set: $\mathrm{Mul}(M) := \big\{y$ $\in \mathbb{G} \, \big| \, \exists \, (x_n)_{n \in \mathbb{N}} \;$ in $\mathrm{Dom}(M)$ such that $\lim\limits_{n \to \infty}$ $\mathcal{X}% =\mathbb{R}^{2}\times\mathbb{R}^{2}$ $\, n \,$ $n = 0$ and $\lim_{n \to \infty}$ $\lim_{n \to \infty} Mx_n = y$.

 $\mathrm{Mul}(M)$ always closed subspace.

Closable \Leftrightarrow $\mathrm{Mul}(M) = \{0\}.$

Maximally non-closable $\Leftrightarrow \mathrm{Mul}(M) = \mathrm{Ran}(M).$ Pathological, not even closable part.

Polynomial interaction term of MDS operator maximally non-closable!

MDS operator:

$$
\mathbf{M}: \quad \mathcal{D}\otimes\mathcal{T}(\mathcal{E})\to\mathcal{T}(\mathcal{E}), \quad G\mapsto\mathbf{M}\,G
$$

linear, everywhere defined continuous. So,

$$
\mathbf{M}: \quad \mathcal{T}(\mathcal{D}^{\times}) \rightarrowtail \mathcal{D}' \otimes \mathcal{T}(\mathcal{D}^{\times}), \quad G \mapsto \mathbf{M} \, G
$$

linear, densely defined.

Similarly: \mathbf{M}_{κ} regularized MDS operator (κ : a fix regularizator).

Not good equation:

 $G\in\mathcal{T}(\mathcal{D}^{\times\,\prime})\,\,$? $G^{(0)}=1\,$ and $\,\exists\,\,\mathcal{G}_{\kappa}\rightarrow G$ approximator sequence, such that : lim $\kappa \! \to \! \delta$ $\mathbf{M}\mathcal{G}_\kappa=0.$

All G would be selected, because $\mathrm{Mul}()$ set of interaction term is full space.

Not good equation:

 $G\in\mathcal{T}(\mathcal{D}^{\times\,\prime})\,\,$? $G^{(0)}=1\,$ and $\,\exists\,\mathcal{G}_{\kappa}\rightarrow G$ approximator sequence, such that : lim $\kappa \! \to \! \delta$ $\mathbf{M}_{\kappa} \, \mathcal{G}_{\kappa} = 0.$

All G would be selected, because $\mathrm{Mul}()$ set of interaction term is full space.

Can be good:

 $G\in\mathcal{T}(\mathcal{D}^{\times\,\prime})\,\,$? $G^{(0)}=1\,$ and $\,\exists\,\mathcal{G}_{\kappa}\rightarrow G$ approximator sequence, such that : $\forall \kappa : \mathbf{M}_{\kappa} \mathcal{G}_{\kappa} = 0.$

That is, as implicit function of κ , not as operator closure kernel.

Running coupling: If in \mathbf{M}_{κ} EL terms are combined with κ -dependent weights $\gamma(\kappa).$ (Not just with real factors.)E.g.:

 $(\gamma,G)\in\mathcal{T(D}^{\times\,\prime})\;?\qquad G^{(0)}=1\;\;\text{and}\;\; \exists\;\mathcal{G}_\kappa\to G\text{ approximation sequence, such that}\;\;:\;\;$ $\forall \kappa : \ \mathbf{M}_{\gamma(\kappa),\kappa} \, \mathcal{G}_\kappa = 0.$ Feynman integral "⇐⇒" MDS equation.

Wilsonian regularized Feynman integral:

integrate not on $\mathcal E,$ only on the image space $C_\kappa[\mathcal E]$ of a smoothing operator $C_\kappa:\,\mathcal E\to\mathcal E.$

[Smoothing operator: [∼] convolution, can be generalized to manifolds. Does UV damping.] Automatically knows RGE relations.

Wilsonian regularized Feynman integral " \Longleftrightarrow " regularized MDS equation + RGE:

$$
(\psi_0, \kappa \mapsto \gamma(\kappa), \kappa \mapsto \mathcal{G}_{\psi_0, \kappa}) = ? \text{ such that :}
$$
\n
$$
\mathcal{G}_{\psi_0, \kappa}^{(0)} = 1,
$$
\n
$$
\forall \kappa : \forall \delta \psi_T \in \mathcal{D} : \qquad \underbrace{\left(L_{\gamma(\kappa)} \left(\mathbf{E}_{\psi_0} \mid \delta \psi_T \right) - i \hbar L_{C_\kappa \delta \psi_T} \right) \mathcal{G}_{\psi_0, \kappa}}_{=: \mathbf{M}_{\psi_0, \kappa, \delta \psi_T}} = 0,
$$
\n
$$
= : \mathbf{M}_{\psi_0, \kappa, \delta \psi_T}
$$
\n
$$
\mathsf{RGE} \longrightarrow \qquad \forall \mu, \kappa : \quad \mathcal{G}_{\psi_0, (C_\mu \kappa)}^{(n)} = (\otimes^n C_\mu) \mathcal{G}_{\psi_0, \kappa}^{(n)}.
$$

Running coupling is meaningful. Conjecture: RG flow of ${\cal G}_{\psi_0,\kappa} \leftrightarrow$ distributional $G_{\psi_0}.$ (Conjecture proved for flat spacetime for bosonic fields.)

Some complications on topological vector spaces

Careful with tensor algebra! Schwartz kernel theorems:

$$
\hat{\otimes}_{\pi}^n \mathcal{E} \equiv \mathcal{E}_n \equiv (\hat{\otimes}_{\pi}^n \mathcal{E}')' \equiv \mathcal{L}in(\mathcal{E}', \hat{\otimes}_{\pi}^{n-1} \mathcal{E})
$$

$$
(\hat{\otimes}_{\pi}^n \mathcal{E})' \equiv \mathcal{E}'_n \equiv \hat{\otimes}_{\pi}^n \mathcal{E}' \equiv \mathcal{L}in(\mathcal{E}, \hat{\otimes}_{\pi}^{n-1} \mathcal{E}')
$$

$$
\hat{\otimes}_{\pi}^n \mathcal{D} \qquad \leftarrow \qquad \mathcal{D}_n \quad \equiv \quad (\hat{\otimes}_{\pi}^n \mathcal{D}')'
$$

cont.bij.

 $(\hat{\otimes}^n_{\pi}$ $(\pi^2 \mathcal{D})' \rightarrow \mathcal{D}'_r$ $n \quad \equiv \quad \hat{\otimes}^n_{\pi}$ π $\mathcal{D}' \equiv \mathcal{L}in(\mathcal{D},\hat{\otimes}^n_{\pi})$ −1 $_{\pi}^{n-1}\mathcal{D}')$

 $\mathcal{E} \times \mathcal{E} \rightarrow F$ separately continuous maps are jointly continuous.

 $\mathcal{E}'\times \mathcal{E}'\to F$ separately continuous bilinear maps are jointly continuous.
 F

For mixed, no guarantee.

For ${\cal D}$ or ${\cal D}'$ spaces, joint continuity from separate continuity of bilinear forms not automatic.
-For mixed, even less guarantee.

But as convergence vector spaces, everything is nice with mixed $\mathcal{E},$ $\mathcal{E}',$ $\mathcal{D},$ \mathcal{D}' multilinears (separate sequential continuity \Leftrightarrow joint sequential continuity).