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Chapter 1

Introduction

The following is a short notes of lectures about classical field theory, in par-
ticular classical electrodynamics for fourth or fifth year physics students. It is
not supposed to be an introductory course to electrodynamics whose knowledge
will be assumed. Our main interest is the consider electrodynamics as a par-
ticular, relativistic field theory. A slightly more detailed view of back reaction
force acting on point charges is given, being the last open chapter of classical
electrodynamics.

The concept of classical field emerged in the nineteenth century when the
proper degrees of freedom have been identified for the electromagnetic interac-
tion and the idea was generalized later. A half century later the careful study
of the propagation of the electromagnetic waves led to special relativity. One
is usually confronted with relativistic effects at high energies as far as massive
particles are concerned and the simpler, non-relativistic approximation is suffi-
cient to describe low energy phenomena. But a massless particle, such as the
photon, moves with relativistic speed at arbitrarily low energy and requires the
full complexity of the relativistic description.

We do not follow here the historical evolution, rather start with a very short
summary of the main idea of special relativity. This makes the introduction of
classical field more natural. Classical field theories will be introduced by means
of the action principle. This is not only a rather powerful scheme but it offers a
clear view of the role symmetries play in the dynamics. After having laid down
the general formalism we turn to the electrodynamics, the interactive system of
point charges and the electromagnetic field. The presentation is closed by a short
review of the state of the radiation back reaction force acting on accelerating
point charges.

This lecture notes differs from a text book to be written about classical
field theory in restricting the attention to subjects which can be covered in a
one semester course and as a result gauge theory in general and in particular
general relativity are not presented. Another difference is the inclusion of a
subject, special relativity, which might not be presented in other courses.

There are numerous textbooks available in this classical subject. The mono-
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2 CHAPTER 1. INTRODUCTION

graph [1] is monumental collection of different aspects of electrodynamics, the
basics can be found best in [2]. The radiation reaction force is nicely discussed
in [3], and [4].



Chapter 2

Elements of special

relativity

The main concepts of special relativity are introduced in this chapter. They
caused a genuine surprise a century ago because people had the illusion that
their intuition, based on the physics of slow moving object, covers the whole
range of Physics.

The deviation from Newton’s mechanics of massive bodies has systematically
been established few decades after the discovery of special relativity only. In the
meantime the only strong evidence of special relativity came from electromag-
netic radiation, from the propagation of massless particles, the photons. They
move with the speed of light at any energy and provide ample evidences of the
new physics of particles moving with speed comparable with the speed of light.
Therefore we rely on the propagation of light signals in the discussions below
without entering into the more detailed description of such signals by classical
electrodynamics, the only reference to the Maxwell equations being made in the
simple assumption 2 below.

2.1 Newton’s relativity

A frequently used concept below is the inertial coordinate systems. Simplest
motion is that of a free particle and the inertial coordinate systems are where
a free point particle moves with constant velocity. Once the motion of a free
particle satisfy the same equation, vanishing acceleration, in each inertial sys-
tems one conjectures that any other, interactive system follow the same laws
in different inertial systems. Newton’s law, mẍ = −∇U , includes the second
time derivative of the coordinates, therefore inertial systems are connected by
motion of constant speed,

x→ x′ = x− tv. (2.1)

3



4 CHAPTER 2. ELEMENTS OF SPECIAL RELATIVITY

This transformation is called Galilean boost because the invariance of the laws
of mechanics under such transformation, the relativity assumption of Newton’s
theory, was discovered by Galileo. In other words, there is no way to find out
the absolute velocity in mechanics because the physical phenomena found by
two observers, moving with constant velocity with respect to each other are
identical.

The point which marks the end of the applicability of Newton’s theory in
physics is which was assumed for hundreds of years but left implicit in Galilean
boost, namely that the time remains the same,

t→ t′ = t (2.2)

when an inertial system is changed into another one. In other words, the time
is absolute in Newton’s physics, can in principle be introduced for all inertial
system identically.

2.2 Conflict resolution

Special relativity results from the solution of a contradiction among the two
main pillars of classical physics, mechanics and electrodynamics.

The following two assumptions seem to be unacceptable:

1. Principle of Newton’s relativity: The laws of Physics look the same in the
inertial coordinate systems.

2. Electrodynamics: According to the Maxwell equations the speed of the
propagation of electromagnetic waves (speed of light) is c = 2.99793 ·
1010cm/s.

In fact, the Galilean boost of Eqs. (2.1)-(2.2) leads to the addition of ve-

locities, dx′

dt = dx
dt − v. This result is in contradiction with the inertial system

independence of the speed of light, encoded in the Maxwell-equations.
It is Einstein’s deep understanding physics which led him to recognize that

Eq. (2.2) is the weak point of the argument, not supported by observations
and special relativity is based on its rejection. Special relativity is based on the
following, weakened assumptions.

1’ There is a transformation x → x′ and t → t′ of the coordinate and time
which maps an inertial system into another and preserves the laws of
physics. This transformation changes the observed velocity of objects,
rendering impossible to measure absolute velocities.

2’ The speed of light is the same in every intertial system.

Once the time lost its absolute nature then the next step is its construction
for each inertial system by observations. After this point is completed one can
clarify the details of the relation mentioned in assumption 1’, between the time
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and coordinates when different inertial systems are compared. This will be our
main task in the remaining part of this chapter.

The loss of absolute nature of the time forces us to change the way we
imagine the motion of an object. In the Newtonian mechanics the motion of
a point particle was characterized by its trajectory x(t), its coordinates as the
function of the (absolute) time. If the time is to be constructed in a dynamical
manner then one should be more careful and not use the same time for different
objects. Therefore, the motion of a point particle is described by its world
line xµ = (ct(s),x(s)), µ = 0, 1, 2, 3, the parametrized form of its time and
coordinates. The trivial factor c, the speed of light, is introduced for the time
to have components with the same length dimensions in the four-coordinate
xµ(s). Each four-coordinate labels a point in the space-time, called event. The
world line of a point particle is a curve in the space time.

x

t

Figure 2.1: Synchronization of clocks to the one placed at the origin.

Let us suppose that we can introduce a coordinate system by means of meter
rods which characterize points in space and all are in rest. Then we place a clock
at each space point which will be synchronized in the following manner. We pick
the clock at one point, x = 0 in Fig. 2.1, as a reference, its finger being used to
construct the flow of time at x = 0, the time variable of its world line. Suppose
that we want now to set the clock at point y. We first place a mirror on this
clock and then emit a light signal which propagates with the speed of light
according to assumption 2’ from our reference point at time t0 and measure
the time t1 when it arrives back from y. The clock at y should show the time
(t1 − t0)/2 when the light has just reached.

The clocks, synchronized in such a manner show immediately one of the most
dramatic prediction of special relativity, the loss of absolute nature of time. Let
us imagine an experimental rearrangement in the coordinate system (x, y, z)
of Fig. 2.2 which contains a light source (A) and two light detectors (B and
C), placed at equal distance from the source. A light signal, emitted form the
source reaches the detectors at the same time in this intertial system. Let us
analyze the same process seen from another inertial system (ct′, x′, y′, z′) which
is attached to an observer moving with a constant velocity in the direction
of the y axis. A shift by a constant velocity leaves the free particle motion
unaccelerated therefore the coordinate system (ct′, x′, y′, z′) where this observes
is at rest is inertial, too. But the time ct′ when the detector C signals the



6 CHAPTER 2. ELEMENTS OF SPECIAL RELATIVITY

B  A
y

y’C

x’x

z z’

Figure 2.2: The arrival of the light to B and C are simultaneous (|AB|′ = |AC|′)
in the inertial system (ct, x, y, x) but the light signals arrive earlier to B than C
in the inertial system (ct′, x′, y′, x′).

arrival of the light for this moving observer is later than the time ct in the
co-moving inertial system. In fact, the light propagates with the same speed
in both systems but the detector moves away form the source int the system
(ct′, x′, y′, z′). In a similar manner, the time ct′ when the light reaches detector
B is earlier than ct because this detector moves towards the source. As a result,
two events which are in coincidence in one inertial system may correspond to
different times in another inertial system. The order of events may change when
we see them in different inertial systems where the physical laws are supposed
to be identical.

2.3 Invariant length

The finding of the transformation rule for space-time vectors xµ = (ct,x) is
rendered simpler by the introduction of some kind of length between events
which is the same when seen form different inertial systems. Since the speed
of light is the same in every inertial system it is natural to use light in the
construction of this length. We define the distance between two events in such
a manner that is is vanishing when there is a light signal which connects the
two events. The distance square is supposed to be quadratic in the difference
of the space-time coordinates, thus the expression

s2 = c2(t2 − t1)
2 − (x2 − x1)

2. (2.3)

is a natural choice. If s2 is vanishing in one reference frame then the two events
can be connected by a light signal. This property is valid in any reference frame,
therefore the value s2 = 0 remains invariant during change of inertial systems.

Now we show that s2 6= 0 remains invariant, as well. The change of inertial
system may consist of trivial translations in space-time and spatial rotation
which leave the the expression (2.3) unchanged in an obvious manner. What
is left to show is that a relativistic boost of the inertial system when it moves
with a constant speed leaves s2 6= 0 invariant.
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x
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Figure 2.3: The light cones.

Let us start with a reference frames S, and consider two others, S(u1) and
S(u2) which move with velocities u1 and u2 with respect to S. Because of
s2 = 0 is invariant and the transformation law for s2 should be continuous in
u for infinitesimal ds2 (no large distances involved where physical phenomena
might accumulate) we have

ds2 = a(|u1|)ds21,
ds2 = a(|u2|)ds22, (2.4)

where a(u) is a continuous function and the argument depends on the magnitude
|u| only owing to rotational invariance. When S(u1) is viewed from S(u1) then
one finds

ds21 = a(|u1 − u2|)ds22 (2.5)

and the comparison of (2.4) nd (2.5) gives

a(|u1 − u2|) =
a(|u2|)
a(|u1|)

(2.6)

which can be true only if a = 1.

One says that two events are time-, space- or light-like separated when s2 >
0, s2 < 0 or s2 = 0, respectively. Signals emitted from a point, shown as
the origin in Fig. 2.3 reaches the future light cone. The signals received may
be emitted form its past light cone. There is no communication between two
events when they are space-like. Events separated by light-like interval can
communicate by signals traveling with the speed of light only.

2.4 Lorentz Transformations

The use of the invariant length is a simple characterization of the transformation
of the space-time coordinates when the inertial system is changed, a Lorentz
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transformation is carried out. For this end we introduce the metric tensor

gµν =







1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1







(2.7)

which allows us to introduce a Lorentz-invariant scalar product

x · y = xµgµνy
ν (2.8)

where x = (ct,x), etc. The Lorentz-group consists of 4× 4 matrices which mix
the space-time coordinates

xµ → x′µ = Λµ
νx

ν , (2.9)

in such a manner that the scalar product or the invariant length is preserved,

x · y = xµ′

Λµ
µ′gµνΛ

ν
ν′yν

′

(2.10)

or
g = Λ̃ · g · Λ. (2.11)

The Lorentz group is 6 dimensional, 3 dimensions correspond to three-
dimensional rotations and three other directions belong to Lorentz-boosts, parametrized
by the three-velocity v relating the inertial systems. let us denote the the par-
allel and perpendicular projection of the three-coordinate on the velocity v by
x‖ and x⊥, respectively,

x = x‖ + x⊥, x‖ · x⊥ = v · x⊥ = 0. (2.12)

We can then write a general Lorentz transformation in a three-dimensional
notation as

x′ = α(x‖ − vt) + γx⊥, t′ = β
(

t− x · v
c̃2

)

(2.13)

The invariance of the length,

c2t2 − x2 = c2β2
(

t− x · v
c̃2

)2

− α2(x‖ − vt)2 − γx2
⊥, (2.14)

yields the relations

γ = ±1, v = 0 =⇒ γ = 1

c̃ = c

α = β =
1

√

1− v2

c2

(2.15)

x′
‖ =

x‖ − vt
√

1− v2

c2

, t′ =
t− vx‖

c2
√

1− v2

c2

(2.16)
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t t’

x

●

E

Figure 2.4: Lorentz transformations.

Note that the inverse Lorentz transformation is obtained by the change v →
−v,

x‖ =
x′
‖ + vt′
√

1− v2

c2

, t =
t′ +

vx′
‖

c2
√

1− v2

c2

. (2.17)

Fig. 2.4 shows that change of the space-time coordinates during a Lorentz
boost. For an Euclidean rotation in two dimensions both axes are rotated by
the same angle, here this possibility is excluded by the invariance of the light
cone. As a results the axes are moved by keeping the light cone, shown with
dashed lines, unchanged.

We remark that there are four disconnected components of the Lorentz
group. First note that the determinant of Eq. (2.11), det g = det g(det Λ)2

indicates that detΛ = ±1 and there are no infinitesimal Lorentz transforma-
tions 11+δΛ such that detΛ(11+δΛ) 6= detΛ. Thus the spatial inversion split the
Lorentz group into two disconnected sets. Furthermore, observe that the com-
ponent (00) of Eq. (2.11), 1 = g00 = (Λ0

0)
2 −∑j(Λ

j
0)

2 implies that Λ0
0| > 1,

and that time inversion, a Lorentz transformation, splits the :Lorentz group into
two disconnected sets. The four disconnected components consists of matrices
satisfying Eq. (2.11) and

1. detΛ = 1, Λ0
0 ≥ 1 (the proper Lorentz group, L↑

+),

2. det Λ = 1, Λ0
0 ≤ 1,

3. det Λ = −1, Λ0
0 ≥ 1,

4. det Λ = −1, Λ0
0 ≤ 1.

Note that one recovers the Galilean boost, x′ = x − vt, in the non-relativistic
limit.

One usually needs the full space-time symmetry group, called Poincar group.
It is ten dimensional and is the direct product of the six dimensional Lorentz
group and the four dimensional translation group in the space-time.
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2.5 Time dilatation

The proper time τ is the lapse the time measured the coordinate system attached
to the system. To find it for an object moving with a velocity v to be considered
constant during a short motion, in a reference system let us express the invariant
length between two consecutive events,

ref. system of the particle c2dτ2 = c2dt2 − dt2v2 lab. system (2.18)

which gives

dτ = dt

√

1− v2

c2
. (2.19)

Remarks:

1. A moving clock seems to be slower than a standing one.

2. The time measured by a clock,

1

c

∫ xf

xi

ds (2.20)

is maximal if the clock moves with constant velocity, ie. its world-line is
straight. (Clock following a motion with the same initial and final point
but non-constant velocity seems to be slower than the one in uniform
motion.)

2.6 Contraction of length

The proper length of a rod, ℓ0 = x′
2 − x′

1, is defined in the inertial system S′ in
which the rod is at rest. In another inertial system the end points correspond
to the world lines

xj =
x′
j + vt′j
√

1− v2

c2

, tj =
t′j +

vx′
j

c2
√

1− v2

c2

. (2.21)

The length is read off at equal time, t1 = t2, thus

t′2 − t′1 = − v

c2
(x′

2 − x′
1) = −

vℓ0
c2

(2.22)

and the invariant length of the space-time vector pointing to the event E is

−ℓ2 = c2
(
vℓ0
c2

)2

− ℓ20, (2.23)

yielding

ℓ = ℓ0

√

1− v2

c2
. (2.24)
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Figure 2.5: Lorentz contraction.

Lorentz contraction is that the length is the longest in the rest frame. It was
introduced by Lorentz as an ad hoc mechanism to explain the negative result
of the Michelson-Moreley experiment to measure the absolute speed of their
laboratory. It is Einstein’s essential contribution to change this view and instead
of postulating a fundamental effect he derived it by the detailed analysis of the
way length are measured in moving inertial system. Thus the contraction of the
length has nothing to do with real change in the system, it reflects the specific
features of the way observations are done only.

2.7 Transformation of the velocity

As mentioned above, the Galilean boost (2.1)-(2.2) leads immediately to the
addition of velocities, dx

dt → dx
dt − v. This rule is in contradiction with the

invariance of the speed of light under Lorentz boosts. It was mentioned that
the resolution of this conflict is the renounce of the absolute nature of the time.
This must introduce non-linear pieces in the transformation law of the velocities.
To find them we denote by V the velocity between the inertial systems S and
S′,

dx‖ =
dx′

‖ + V dt′
√

1− V 2

c2

, dx⊥ = dx′
⊥, dt =

dt′ +
V dx′

‖

c2
√

1− V 2

c2

. (2.25)

Then

dt

dt′
=

1 +
V v′

‖

c2
√

1− V 2

c2

(2.26)

and the velocity transform as

v‖ =
v′‖ + V

1 +
V v′

‖

c2

, v⊥ = v′⊥

√

1− V 2

c2

1 +
V v′

‖

c2

. (2.27)

Note that
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1. the rule of addition of velocity is valid for v/c≪ 1,

2. if v = c then v′ = c,

3. the expressions are not symmetrical for the exchange of v and V

2.8 Four-vectors

The space-time coordinates represent the contravariant vectors xµ = (ct,x). In
order to eliminate the metric tensor from covariant expressions we introduce
covariant vectors whose lower index is obtained by multiplying with the metric
tensor, xµ = gµνx

ν . Thus allows us to leave out the metric tensor from the
scalar product, x · y = xµgµνy

ν = xµyµ. The inverse of the metric tensor gµν is
denoted by gµν , gµρgρν = δµν .

Identities for Lorentz transformations:

g = Λ̃ · g · Λ
Λ−1 = g−1 · Λ̃ · g = (g · Λ · g−1)tr

x′µ = (Λ · x)µ = Λµ
νx

ν

xµ = (g · Λ · g−1) µ
ν x′ν = x′νΛ µ

ν = (x′ · Λ)µ

x′
µ = (g · Λ · x)µ = (g · Λ · g−1 · g · x)µ = Λ ν

µ xν

xµ = x′
νΛ

ν
µ = (x′ · Λ)µ (2.28)

One can define contravariant tensors which transform as

Tµ1···µn = Λµ1
ν1
· · ·Λµn

νn
T ν1···νn , (2.29)

covariant tensors with the transformation rule

Tµ1···µn
= Λν1

µ1
· · ·Λνn

µn
Tν1···νn

(2.30)

and mixed tensors which satisfy

T ρ1···ρm
µ1···µn

= Λρ1
κ1
· · ·Λρm

κm
Λν1

µ1
· · ·Λνn

µn
Tκ1···κm
ν1···νn

. (2.31)

There are important invariant tensors, for instance the metric tensor is pre-
served, gµν′ = Λµ′

µgµ′ν′Λν′

ν together with its other forms like gµν , gµν and
gνµ. Another important invariant tensor is the completely antisymmetric one

ǫµνρσ where the convention is ǫ0123 = 1. In fact, ǫµνρσ
′

= ǫµνρσ detΛ which
shows that ǫµνρσ is a pseudo tensor, is remains invariant under proper Lorentz
transformation and changes sign during inversions.
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2.9 Relativistic mechanics

Let us first find the heuristic generalization of Newton’s law for relativistic
velocities by imposing Lorentz invariance. The four-velocity is defined as

uµ =
dxµ(s)

ds
= ẋ(s) =

(
dx0

ds
,
dx0

ds

v

c

)

=




1

√

1− v2

c2

,
v
c

√

1− v2

c2



 (2.32)

and it gives rise the four-acceleration

u̇µ =
duµ

ds
, (2.33)

and the derivation of the identity u2(s) = 1 with respect to s yields u̇ · u = 0.
The four-momentum, defined by

pµ = mcuµ = (p0,p) =




mc

√

1− v2

c2

,
mv

√

1− v2

c2



 , (2.34)

satisfies the relation p2 = m2c2. The rate of change of the four-momentum
defines the four-force,

Kµ =
dpµ

ds
=

d

ds

(

mc
dxµ

ds

)

. (2.35)

The three-vector

F =
ds

dt
K

= mc
d

dt

dt

ds
v

=
ma

√

1− v2

c2

−
d2s
dt2

(dsdt )
2
mcv

=
ma

√

1− v2

c2

−
d
dt

√
c2 − v2

c2 − v2
mcv

=
m

√

1− v2

c2

[

a+
v(v · a)

c2(1− v2

c2 )

]

(2.36)

can be considered as the relativistic generalization of the the three-force in
Newton’s equation. The particular choice of O

(
v2/c2

)
corrections are chosen

in such manner that the temporal component of Eq. (2.35),

d

ds

(

mc
dx0

ds

)

=
d

ds

mc
√

1− v2

c2

= K0 (2.37)
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leads to the conservation law for the energy. This is because the constraint
0 = mcu̇ · u = K · u = mcẍ · ẋ = 0 gives

K0 dx
0

ds
= Ku =

(
dt

ds

)2

Fv (2.38)

what can be written as
d

dt
E(v) = Fv (2.39)

which gives the kinetic energy

E(v) =
mc2

√

1− v2

c2

(2.40)

and leads to the expressions

pµ =

(
E

c
,p

)

,
E2

c2
= p2 +m2c2, E(p) = c

√

p2 +m2c2. (2.41)

Note that the unusual relativistic correction in the three-force (2.36) is non-
vanishing when the velocity is not perpendicular to the acceleration, i.e. the
kinetic energy is not conserved and work done by the force on the particle.

2.10 Lessons of special relativity

Special relativity grew out from the unsuccessful experimental attempts of mea-
suring absolute velocities. This negative results is incorporated into the dy-
namics by postulating a symmetry of the fundamental laws in agreement with
Maxwell equations. The most radical consequences of this symmetry concerns
the time. It becomes non-absolute, has to be determined dynamically for each
system instead of assumed to be available before any observation. Furthermore,
two events which coincide in one reference frame may appear in different order
in time in other reference frames, the order of events in time is not absolute
either. The impossibility of measuring absolute acceleration and further, higher
derivatives of the coordinates with respect to the time is extended in general
relativity to the nonavailability of the coordinate system before measurements
where the space-time coordinates are constructed by the observers.

The dynamical origin of time motivates the change of the trajectory x(t)
as a fundamental object of non-relativistic mechanics to world line xµ(s) where
the reference system time x0 is parametrized by the proper time or simply
a parameter of the motion s. The world line offers a surprising extension of
the non-relativistic motion by letting x0(s) non-monotonous function. Turning
point where time turns back along the world line is interpreted in the quantum
case as an events where a particle-anti particle pair is created or annihilated.

We close this short overview of special relativity with a warning. The basic
issues of this theory , such as meter rods and clocks are introduced on the
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macroscopic level. Though the formal implementation of special relativity is
fully confirmed in the quantum regime their interpretation in physical term,
e.g. the speed of propagation of light within an atom, is neither trivial nor
parallel with the macroscopic reasoning.
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Chapter 3

Classical Field Theory

3.1 Why Classical Field Theory?

It seems nowadays natural to deal with fields in Physics. It is pointed out here
that the motivation to introduce fields, dynamical degrees of freedom distributed
in space, is not supported only by electrodynamics. There is a “no-go” theorem
in mechanics, it is impossible to construct relativistic interactions in a many-
body system. Thus if special relativity is imposed we need an extension of the
many-particle systems, such fields, to incorporate interactions.

The dynamical problem of a many-particle system is establishment and the
solution of the equations of motion for the world lines xµ

a(s), a = 1m. . . , n of the
particles. By generalizing the Newton equation we seek differential equations
for the world lines,

ẍµ
a = Fµ

a (x1, . . . , xn) (3.1)

where interactions are described by some kind of “forces” Fµ
a (x1, . . . , xn). The

problem is that we intend to use instantaneous force and to consider the ar-
gument of the force, the world lines at the same time x0

a as the particle in
question but the “equal time” is not a relativistically invariant concept and has
not natural implementation.

A formal aspect of this problem can be seen by recalling that ẋ2(s) = 1 long
the world line, therefore ẍ · ẋ = 0, the four-velocity and the four-acceleration are
orthogonal. Thus any Cauchy problem which provides the initial coordinates
and velocities on an initial spatial hyper-surface must satisfy this orthogonality
constraint. This imposes a complicated, unexpected restriction on the possible
forces. For instance when translation invariant, central two-particle forces are
considered then

Fµ
a (x1, . . . , xn) =

∑

b 6=a

(xµ
a − xµ

b )f((xa − xb)
2) (3.2)

and xa − xb is usually not orthogonal to ẋa and xb.

17
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The most convincing and general proof of the “no-go“ theorem is algebraic.
The point is that the Hamilton function is the generator of the translation
in time and its Poisson brackets, the commutator with the other generators
of the Poincar group are fixed by the relativistic kinematics, the structure of
the Poincar group. It can be proven that the any realization of the commutator
algebra of the Poincar group for a many-particle system must contains the trivial
Hamilton function, the sum of the free Hamilton functions for the particles.

What is left to introduce relativistic interactions is to give up instantaneous
force and allow the influence of the whole past history of the system on the forces.
This is an action-at-a-distance theory where particles interact at different space-
time points. We can simplify this situation by introducing auxiliary dynamical
variables which are distributed in space and describe the propagation of the
influence of the particles on each other. The systematical implementation of
this idea is classical field theory.

3.2 Variational principle

Our goal in Section is to obtain equations of motion which are local in space-
time and are compatible with certain symmetries in a systematic manner. The
basic principle is to construct equations which remain invariant under nonlinear
transformations of the coordinates and the time. It is rather obvious that such
a gigantic symmetry renders the resulting equations much more useful.

Field theory is a dynamical system containing degrees of freedom, denoted
by φ(x), at each space point x. The coordinate φ(x) can be a single real number
(real scalar field) or consist n-components (n-component field). Our goal is to
provide an equation satisfied by the trajectory φcl(t,x). The index cl is supposed
to remind us that this trajectory is the solution of a classical (as opposed to a
quantum) equation of motion.

This problem will be simplified in two steps. First we restrict x to a single
value, x = x0. The n-component field φ(x0) can be thought as the coordinate of
a single point particle moving in n-dimensions. We need the equation satisfied
by the trajectory of this particle. The second step of simplification is to reduce
the n-dimensional function φ(x0) to a single point on the real axis.

3.2.1 Single point on the real axis

We start with a baby version of the dynamical problem, the identification of
a point on the real axis, xcl ∈ R, in a manner which is independent of the
re-parametrization of the real axis.

The solution is that the point is identified by specifying a function with
vanishing derivative at xcl only:

df(x)

dx |x=xcl

= 0 (3.3)
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To check the re-parametrization invariance of this equation we introduce new
coordinate y by the function x = x(y) and find

df(x(y))

dy |y=ycl

=
df(x)

dx |x=xcl
︸ ︷︷ ︸

0

dx(y)

dy |y=ycl

= 0 (3.4)

We can now announce the variational principle. There is simple way of
rewriting Eq. (3.3) by performing an infinitesimal variation of the coordinate
x→ x+ δx, and writing

f(xcl + δx) = f(xcl) + δf(xcl)

= f(xcl) + δx f ′(xcl)
︸ ︷︷ ︸

0

+
δx2

2
f ′′(xcl) +O

(
δx3
)
. (3.5)

The variation principle, equivalent of Eq. (3.3) is

δf(xcl) = O
(
δx2
)
, (3.6)

stating that xcl is characterized by the property that an infinitesimal variation
around it, xcl → xcl + δx, induces an O

(
δx2
)
change in the value of f(xcl).

3.2.2 Non-relativistic point particle

We want to identify a trajectory of a non-relativistic particle in a coordinate
choice independent manner.

Let us identify a trajectory xcl(t) by specifying the coordinate at the initial
and final time, xcl(ti) = xi, xcl(tf ) = xf (by assuming that the equation of
motion is of second order in time derivatives) and consider a variation of the
trajectory x(t): x(t)→ x(t) + δx(t) which leaves the initial and final conditions
invariant (ie. does not modify the solution). Our function f(x) of the previous
section becomes a functional, called action

S[x(·)] =
∫ tf

ti

dtL(x(t), ẋ(t)) (3.7)

involving the Lagrangian L(x(t), ẋ(t)). (The symbol x(·) in the argument of the
action functional is supposed to remind us that the variable of the functional is a
function. It is better to put a dot in the place of the independent variable of the
function x(t) otherwise the notation S[x(t)] can be mistaken with an embedded
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function S(x(t)).) The variation of the action is

δS[x(·)] =

∫ tf

ti

dtL

(

x(t) + δx(t), ẋ(t) +
d

dt
δx(t)

)

−
∫ tf

ti

dtL(x(t), ẋ(t))

=

∫ tf

ti

dt

[

L(x(t), ẋ(t)) + δx(t)
δL(x(t), ẋ(t))

δx

+
d

dt
δx(t)

δL(x(t), ẋ(t))

δẋ
+O

(
δx(t)2

)
−
∫ tf

ti

dtL(x(t), ẋ(t))

]

=

∫ tf

ti

dtδx(t)

[
δL(x(t), ẋ(t))

δx
− d

dt

δL(x(t), ẋ(t))

δẋ

]

+ δx(t)
︸ ︷︷ ︸

0

δL(x(t), ẋ(t))

δẋ

∣
∣
∣
∣

ti

tf

+O
(
δx(t)2

)
(3.8)

The variational principle amounts to the suppression of the integral in the last
line for an arbitrary variation, yielding the Euler-Lagrange equation:

δL(x, ẋ)

δx
− d

dt

δL(x, ẋ)

δẋ
= 0 (3.9)

The generalization of the previous steps for a n-dimensional particle gives

δL(x, ẋ)

δx
− d

dt

δL(x, ẋ)

δẋ
= 0. (3.10)

It is easy to check that the Lagrangian

L = T − U =
m

2
ẋ2 − U(x) (3.11)

leads to the usual Newton equation

mẍ = −∇U(x). (3.12)

It is advantageous to introduce the generalized momentum:

p =
∂L(x, ẋ)

∂ẋ
(3.13)

which allows to write the Euler-Lagrange equation as

ṗ =
∂L(x, ẋ)

∂x
(3.14)

The coordinate not appearing in the Lagrangian in an explicit manner is called
cyclic coordinate,

∂L(x, ẋ)

∂xcycl
= 0. (3.15)

For each cyclic coordinate there is a conserved quantity because the generalized
momentum of a cyclic coordinate, pcycl is conserved according to Eqs. (3.13)
and (3.15).
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3.2.3 Relativistic particle

After the heuristic generalization of the non-relativistic Newton’s law let us con-
sider now more systematically the relativistically invariant variational principle.
The Lorentz invariant action must be proportional to the invariant length of the
world-line, this latter being the only invariant of the problem. Dimensional con-
siderations lead to

S = −mc

∫ sf

si

ds =

∫ τf

τi

dτLτ (3.16)

where τ is an arbitrary parameter of the world-line and the corresponding La-
grangian is

Lτ = −mc

√

dxµ

dτ
gµν

dxµ

dτ
. (3.17)

The Lagrangian

L = −mc2
√

1− v2

c2
= −mc2 +

v2

2m
+O

(
v4

c2

)

(3.18)

corresponds to the integrand when τ is the time and justifies the dimensionless
constant in the definition of the action (3.16).

We have immediately the energy-momentum

p =
∂L

∂v
=

mv
√

1− v2

c2

E = ~p~v − L =
mc2

√

1− v2

c

= mc2 +
v2

2m
+O

(
v4

c2

)

. (3.19)

The variation of the world-line,

δS =

∫ xf

xi

ds

(

δLs

δxµ
δxµ +

δLs

δ dxµ

ds

δ
dxµ

ds

)

=
δLs

δ dxµ

ds

δxµ

∣
∣
∣
∣

xf

xi

+

∫ xf

xi

dsδxµ

(

δLs

δxµ
− d

ds

δLs

δ dxµ

ds

)

(3.20)
or

δS = −mc

∫

ds
δdxµ

ds
dxµ

ds
√

dxµ

ds
dxµ

ds

= −mc

∫

ds
δdxµ

ds

dxµ

ds
= −mcδxµ dxµ

ds

∣
∣
∣
∣

xf

xi

+mc

∫

dsδxµ d
2xµ

ds2

(3.21)
leads to the Euler-Lagrange equation

mc
d2xµ

ds2
= 0. (3.22)

The four momentum is

pµ = − δS

δxµ
f

= mcgµν
dxν

ds
. (3.23)
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The projection of the non-relativistic angular momentum on a given unit
vector n can be defined by the derivative of the action with respect to the angle
of rotation around n. Such a rotation generates δx = δRx = δφn× x and gives

δS

δφ
=

δS

δxℓ
f

δxℓ

δφ
= pRx = p(n× x) = n(x× p). (3.24)

The relativistic generalization of this procedure is δxµ = δLµνx
ν ,

δS

δφ
=

δS

δxρ

δxρ

δφ
= −pµLµνx

ν =
1

2
Lµν(p

νxµ − pµxν) (3.25)

yielding
Mµν = xµpν − pµxν . (3.26)

3.2.4 Scalar field

We turn now the dynamical variables which were evoked in avoiding the “no-
go“ theorem, fields. We assume the simple case where there are n scalar degree
of freedom at each space point, a scalar field φa(x), a = 1, . . . , n whose time
dependence gives a space-time dependent field φa(x).

To establish the variational principle we consider the variation of the trajec-
tory φ(x)

φ(x)→ φ(x) + δφ(x), δφ(ti,x) = δφ(tf ,x) = 0. (3.27)

The variation of the action

S[φ(·)] =
∫

V

dtd3x
︸ ︷︷ ︸

dx

L(φ, ∂φ) (3.28)

is

δS =

∫

V

dx

(
∂L(φ, ∂φ)

∂φa
δφa +

∂L(φ, ∂φ)

∂∂µφa
δ∂µφa

)

+O
(
δ2φ
)

=

∫

V

dx

(
∂L(φ, ∂φ)

∂φa
δφa +

∂L(φ, ∂φ)

∂∂µφa
∂µδφa

)

+O
(
δ2φ
)

=

∫

∂V

dsµδφa
∂L(φ, ∂φ)

∂∂µφa

+

∫

V

dxδφa

(
∂L(φ, ∂φ)

∂φa
− ∂µ

∂L(φ, ∂φ)

∂∂µφa

)

+O
(
δ2φ
)

(3.29)

The first term for µ = 0,

∫

∂V

ds0δφa
∂L(φ, ∂φ)

∂∂0φa
=

∫

t=tf

d3x δφa
︸︷︷︸

0

∂L(φ, ∂φ)

∂∂0φa
−
∫

t=ti

d3x δφa
︸︷︷︸

0

∂L(φ, ∂φ)

∂∂0φa
= 0

(3.30)



3.3. NOETHER THEOREM 23

is vanishing because there is no variation at the initial and final time. When
µ = j then

∫

∂V

dsjδφa
∂L(φ, ∂φ)

∂∂jφa
=

∫

xj=∞

dsjδφa
∂L(φ, ∂φ)

∂∂jφa
︸ ︷︷ ︸

0

−
∫

xj=−∞

dsjδφa
∂L(φ, ∂φ)

∂∂jφa
︸ ︷︷ ︸

0

= 0

(3.31)
and it is still vanishing because we are interested in the dynamics of localized
systems and the interactions are supposed to be short ranged. Therefore, φ = 0
at the spatial infinities and the Lagrangian is vanishing. The suppression of the
second term gives the Euler-Lagrange equation

∂L(φ, ∂φ)

∂φa
− ∂µ

∂L(φ, ∂φ)

∂∂µφa
= 0. (3.32)

The simplest scalar field theory consists of a free, massive field and is de-
scribed by the Lagrangian

L =
1

2
∂µφ∂

µφ− m2c2

2~2
φ2 (3.33)

and the corresponding equation of motion is the Klein-Gordon equation,

(�+ Λ−2
C )φ = 0 (3.34)

where ΛC = ~

mc is the Compton wavelength of a particle of mass m. The
parameter m can be interpreted as mass because the plane wave solution

φk(x) = e−ik·x (3.35)

to the equation of motion satisfies the mass shell condition,

~
2k2 = m2c2 (3.36)

c.f. Eq. (2.41).

3.3 Noether theorem

It is shown below that there is a conserved current for each continuous symmetry.
Symmetry: A transformation of the space-time coordinates xµ → x′µ, and

the field φa(x) → φ′
a(x) preserves the equation of motion. Since the equation

of motion is obtained by varying the action, the action should be preserved by
the symmetry transformations. A slight generalization is that the action can
in fact be changed by a surface term which does not influence its variation,
the equation of motion at finite space-time points. Therefore, the symmetry
transformations satisfy the condition

L(φ, ∂φ)→ L(φ′, ∂′φ′) + ∂′
µΛ

µ (3.37)
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with a certain vector function Λµ(x′).

Continuous symmetry: There are infinitesimal symmetry transforma-
tions, in an arbitrary small neighborhood of the identity, xµ → xµ + δxµ,
φa(x) → φa(x) + δφa(x). Examples: Rotations, translations in the space-time,
and φ(x)→ eiαφ(x) for a complex field.

Conserved current: ∂µj
µ = 0, conserved charge: Q(t):

∂0Q(t) = ∂0

∫

V

d3xj0 = −
∫

V

d3x∂vj = −
∫

∂V

ds · j (3.38)

It is useful to distinguish external and internal spaces, corresponding to the
space-time and the values of the field variable. Eg.

φa(x) : R
4

︸︷︷︸

external space

→ R
m

︸︷︷︸

internal space

. (3.39)

Internal and external symmetry transformations act on the internal or external
space, respectively.

3.3.1 Point particle

The main points of the construction of the Noether current for internal symme-
tries can be best understood in the framework of a particle. To find the analogy
of the internal symmetries let us consider a point particle with the continuous
symmetry x→ x+ ǫf(x) for infinitesimal ǫ,

L(x, ẋ) = L(x+ ǫf(x), ẋ+ ǫ(ẋ · ∂)f(x)) +O
(
ǫ2
)
. (3.40)

Let us introduce a new, time dependent coordinates, y(t) = y(x(t)), based
on the solution of the equation of motion, xcl(t), in such a manner that one
of them will be y1(t) = ǫ(t), where x(t) = xcl(t) + ǫ(t)f(xcl(t)). There will
be n − 1 other new coordinates, yℓ, ℓ = 2, . . . , n whose actual form is not
interesting for us. The Lagrangian in terms of the new coordinates is defined
by L(y, ẏ) = L(y(x), ẏ(x)). The ǫ-dependent part assumes the form

L(ǫ, ǫ̇) = L(xcl + ǫf(xcl), ẋcl + ǫ(ẋcl · ∂)f(xcl) + ǫ̇f(xcl)) +O
(
ǫ2
)
. (3.41)

What is the equation of motion of this Lagrangian? Since the solution is ǫ(t) = 0
it is sufficient to retain the O (ǫ) contributions in the Lagrangian only,

L(ǫ, ǫ̇)→ L(1)(ǫ, ǫ̇) = ǫ
∂L(xcl, ẋcl)

∂x
·f(xcl)+

∂L(xcl, ẋcl)

∂ẋ
[ǫ(ẋcl ·∂)f(xcl)+ ǫ̇f(xcl)]

(3.42)
up to an ǫ-independent constant. The corresponding Euler-Lagrange equation
is

∂L(1)(ǫ, ǫ̇)

∂ǫ
− d

dt

∂L(1)(ǫ, ǫ̇)

∂ǫ̇
= 0. (3.43)
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(this is the point where the formal invariance of the equation of motion under
nonlinear, time dependent transformations of the coordinates is used). Accord-
ing to Eq. (3.40) ǫ is a cyclic coordinate,

∂L(ǫ, ǫ̇)

∂ǫ
= 0 (3.44)

and its generalized momentum,

pǫ =
∂L(ǫ, ǫ̇)

∂ǫ̇
(3.45)

is conserved.
The external space transformation corresponds to the shift of the time, t→

t + ǫ which induces x(t) → x(t − ǫ) = x(t) − ǫẋ(t) for infinitesimal ǫ. This is
a symmetry as long as the Hamiltonian (and the Lagrangian) does not contain
explicitly the time. In fact, the action changes by a boundary contribution only
which can be seen by expanding the Lagrangian in time around t− ǫ,
∫ tf

ti

dtL(x(t), ẋ(t)) =

∫ tf

ti

dt

[

L(x(t− ǫ), ẋ(t− ǫ)) + ǫ
dL(x(t), ẋ(t))

dt

]

+O
(
ǫ2
)

(3.46)
and as a result the variational equation of motion remains unchanged. But
the continuation of the argument is slightly different from the case of internal
symmetry. We consider ǫ as a time dependent function which generates a trans-
formation of the coordinate, x(t)→ x(t− ǫ(t)) = x(t)− ǫ(t)ẋ(t) +O

(
ǫ2
)
. The

Lagrangian of ǫ(t) as new coordinate for x(t) = xcl(t) is

L(1)(ǫ, ǫ̇) = L(xcl(t− ǫ), ẋcl(t− ǫ))− L(xcl(t), ẋcl(t))

= −ǫẋcl
∂L(xcl, ẋcl)

∂x
− dǫẋcl

dt

∂L(xcl, ẋcl)

∂ẋ
+O

(
ǫ2
)

= −ǫẋcl
∂L(xcl, ẋcl)

∂x
− ǫẍcl

∂L(xcl, ẋcl)

∂ẋ
︸ ︷︷ ︸

−ǫ
dL(xcl,ẋcl)

dt

−ǫ̇ẋcl
∂L(xcl, ẋcl)

∂ẋ
+O

(
ǫ2
)

= −ǫ
[
dL(xcl, ẋcl)

dt
− d

dt

(
∂L(xcl, ẋcl)

∂ẋ
ẋcl

)]

− d

dt

(
∂L(xcl, ẋcl)

∂ẋcl
ǫẋcl

)

+O
(
ǫ2
)

(3.47)

up to an ǫ-independent constant. Its Euler-Lagrange equation (3.43) assures
the conservation of the energy,

H =
∂L(x, ẋ)

∂ẋ
ẋ− L(x, ẋ). (3.48)

3.3.2 Internal symmetries

An internal symmetry transformation of field theory acts on the internal space
only. We shall consider linearly realized internal symmetries for simplicity where

δxµ = 0, δiφa(x) = ǫ τab
︸︷︷︸

generator

φb(x). (3.49)
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This transformation is a symmetry,

L(φ, ∂φ) = L(φ+ ǫτφ, ∂φ+ ǫτ∂φ) +O
(
ǫ2
)
. (3.50)

Let us introduce new ”coordinates”, ie. new field variable, Φ(φ), in such a
manner that Φ1(x) = ǫ(x) where φ(x) = φcl(x) + ǫ(x)τφcl(x), φcl(x) being the
solution of the equations of movement. The linearized Lagrangian for ǫ(x) is

L̃(ǫ, ∂ǫ) = L(φcl + ǫτφ(x), ∂φcl + ∂ǫτφ(x) + ǫτ∂φ(x))

→ ǫτ
∂L(φcl, ∂φcl)

∂φ
+ [∂ǫτφ(x) + ǫτ∂φ(x)]

∂L(φcl, ∂φcl)

∂∂φ
.(3.51)

The symmetry, Eq. (3.50), indicates that ǫ is a cyclic coordinate and the equa-
tion of motion

∂L̃(ǫ, ∂ǫ)

∂ǫ
− ∂µ

∂L̃(ǫ, ∂ǫ)

∂∂µǫ
= 0. (3.52)

shows that the current,

Jµ = −∂L̃(ǫ, ∂ǫ)

∂∂µǫ
= −∂L(φ, ∂φ)

∂∂µφ
τφ (3.53)

defined up to a multiplicative constant as the generalized momentum of ǫ, is
conserved. Notice that (i) we have an independent conserved current corre-
sponding to each independent direction in the internal symmetry group and (ii)
the conserved current is well defined up to a multiplicative constant only.

Let us consider a scalar field as an example. The four momentum is repre-

sented by the vector operator p̂µ = −
(

~

ic∂0,
~

i
~∂
)

in Quantum Mechanics which

leads to the Lorentz invariant invariant Klein-Gordon equation

0 = (p̂2 −m2c2)φa = −~2
(

∂µ∂
µ +

m2c2

~2

)

φa, (3.54)

generated by the Lagrangian

L =
1

2
(∂φ)2 − m2c2

2~2
φ2 =⇒ 1

2
(∂φ)2 − m2

2
φ2. (3.55)

One may introduce a relativistically invariant self-interaction by means of a
potential V (φ),

L =
1

2
(∂φ)2 − m2

2
φ2 − V (φ) (3.56)

and the corresponding equation of motion is

(∂µ∂
µ +m2) = −V ′(φ). (3.57)

The complex field theory with symmetry φ(x) → eiαφ(x) is defined by the
Lagrangian

L = ∂µφ
∗∂µφ−m2φ∗φ− V (φ∗φ) (3.58)
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xδ

V

V’

Figure 3.1: Deformation of the volume in the external space.

where it is useful to considered φ and φ∗ as independent variables. The infinites-
imal transformations δφ = iǫφ, δφ∗ = −iǫφ∗ yield the conserved current

jµ =
i

2
(φ∗∂µφ− ∂µφ∗φ) (3.59)

up to a multiplicative constant.

3.3.3 Canonical energy-momentum tensor

The most general transformations leaving the action invariant may act in the
external space, too. Therefore, let us consider the transformation xµ → x′µ =
xµ + δxµ and φ(x)→ φ′(x′) = φ(x) + δφ(x) where δφ(x) = δiφ(x) + δxµ∂µφ(x)
where δiφ(x) denotes the eventual internal space variation. The variation of the
action is

δS =

∫

V

dxδL+

∫

V ′−V

dxL

=

∫

V

dxδL+

∫

∂V

dSµδx
µL (3.60)

according to Fig. 3.1 what can be written as

δS =

∫

V

dx

(
∂L

∂φ
− ∂µ

∂L

∂∂µφ

)

δφ+

∫

∂V

dSµ

(
∂L

∂∂µφ
δiφ+ δxµL

)

=

∫

V

dx

(
∂L

∂φ
− ∂µ

∂L

∂∂µφ

)

δφ+

∫

∂V

dSµ

[
∂L

∂∂µφ
δφ+ δxν

(

Lgµν −
∂L

∂∂µφ
∂νφ

)]

.(3.61)

For field configurations satisfying the equation of motion the first integral is
vanishing leaving the current

Jµ =
∂L

∂∂µφ
δφ+ δxν

(

Lgµν −
∂L

∂∂µφ
∂νφ

)

(3.62)

conserved.
The case of internal space variation only δxµ = 0 reproduces the conserved

Noether current of Eq. (3.53). For translations we have δxµ = aµ and δiφ = 0
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is chosen such that the field configuration is displaced only, δφ = 0. The four
conserved current are collected in the canonical energy-momentum tensor

Tµν
c =

∂L

∂∂µφ
∂νφ− Lgµν (3.63)

obeying the conservation laws

∂µT
µν
c = 0. (3.64)

They show that

P ν =

∫

d3xT 0ν
c (3.65)

can be identified by the energy-momentum vector and we have the form

Tµν
c =

(
ǫ cp
1
cS σ

)

(3.66)

where ǫ is the energy density, p is the momentum density, S is the density of
the energy flux and σjk is the flux of pk in the direction j.

3.3.4 External symmetries

When Lorentz transformations and translations are performed simultaneously
then we have δxµ = aµ+ωµ

ν x
ν and δφ = Λνµωµνφ 6= 0 for field with nonvanishing

spin and the conserved current is

Jµ =
∂L

∂∂µφ
(Λνκωκνφ− δxν∂νφ) + δxµL. (3.67)

Let us simplify the expressions be introducing the tensor

fµνκ =
∂L

∂∂µφ
Λνκφ (3.68)

and write

Jµ = fµνκωκν −
∂L

∂∂µφ
δxν∂νφ+ δxµL. (3.69)

By the cyclic permutation of the indices µνκ we can define another tensor

f̃µνκ =

(
∂L

∂∂µφ
Λνκ +

∂L

∂∂νφ
Λκµ − ∂L

∂∂κφ
Λµν

)

φ (3.70)

which is antisymmetric in the first two indices,

f̃νµκ =

(
∂L

∂∂νφ
Λµκ +

∂L

∂∂µφ
Λκν − ∂L

∂∂κφ
Λνµ

)

φ

=

(

− ∂L

∂∂νφ
Λκµ − ∂L

∂∂µφ
Λνκ +

∂L

∂∂κφ
Λµν

)

φ

= −f̃µνκ (3.71)
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and verifies the equation

f̃µνκωνκ =

(
∂L

∂∂µφ
Λνκ +

∂L

∂∂νφ
Λκµ − ∂L

∂∂κφ
Λµν

)

φωνκ

= fµνκωνκ −
(

∂L

∂∂νφ
Λµκ +

∂L

∂∂κφ
Λµν

)

φωνκ

= fµνκωνκ. (3.72)

As a result we can replace fµνκ by it in Eq. (3.69),

Jµ = f̃µνκωκν −
∂L

∂∂µφ
δxν∂νφ+ δxµL

= f̃µνκ∂ν(δxκ)−
∂L

∂∂µφ
δxν∂νφ+ δxµL

= δxκ

(

gµκL− ∂L

∂∂µφ
∂κφ− ∂ν f̃

µνκ

)

+ ∂ν(f̃
µνκδxκφ). (3.73)

The last term J ′µ = ∂ν(f̃
µνκδxκφ) gives a conserved current thus can be

dropped and the conserved Noether current simplifies as

Jµ = Tµν(aν + ωνκx
κ) = Tµνaν +

1

2
(Tµνxκ − Tµκxν)ωνκ (3.74)

where we can introduced the symmetric energy momentum tensor

Tµν = Tµν
c + ∂κf̃

µκν (3.75)

and the tensor
Mµνσ = Tµνxσ − Tµσxν . (3.76)

Due to ∫

∂V

Sµ∂κf̃
µκν =

∫

V

∂µ∂κf̃
µκν = 0 (3.77)

the energy momentum extracted from Tµν and Tµν
c agree and M is conserved

∂µM
µνσ = 0, (3.78)

yielding the relativistic angular momentum

Jνσ =

∫

d3x(T 0νxσ − T 0σxν). (3.79)

with the usual non-relativistic spatial structure. The energy-momentum tensor
Tµν is symmetric because the conservation of the relativistic angular momen-
tum, Eq. (3.78) gives

0 = ∂ρM
ρµν = ∂ρ(T

ρµxν − T ρνxµ) = T νµ − Tµν . (3.80)
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Chapter 4

Electrodynamics

4.1 Charge in an external electromagnetic field

The three-dimensional scalar and vector fields make up the four-dimensional
vector potential as Aµ = (φ,A) and the simplest Lorentz invariant Lagrange
function we can construct with it is Aµẋ

µ therefore the action for a point-charge
moving in the presence of a given, external vector potential is

S = −
∫ xf

xi

(

mcds+
e

c
Aµdx

µ
)

= −
∫ xf

xi

(

mcds− e

c
A · dx+ eφdt

)

=

∫ τf

τi

Lτdτ, (4.1)

where the index τ in the Lagrangian is a reminder of the variable used to
construct the action,

Lt = −mc2
√

1− v2

c2
+

e

c
A · v − eφ, (4.2)

or

Ls = −mc

√

dxµ

ds
gµν

dxν

ds
− e

c
Aµ(x)

dxµ

ds
. (4.3)

The Euler-Lagrange equation for the manifest invariant Ls which is parametrized
by the invariant length s of the world line is

0 =
δL

δxµ
− d

ds

δL

δ dxµ

ds

= −e

c
∂µAν(x)

dxν

ds
+mc

d

ds

gµν
dxµ

ds
√

dxµ

ds gµν
dxν

ds

+
e

c

d

ds
Aµ(x)

= mc
d2xµ

ds2
− e

c
Fµν

dxν

ds
(4.4)

31
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where the field-strength is given by

Fµν = ∂µAν(x)− ∂νAµ(x). (4.5)

The interaction term in the action can be written as a space-time integral
involving the current density,

S = −mc

∫

ds− 1

c

∫

dxAµ(x)j
µ(x). (4.6)

The relativistically covariant generalization of the non-relativistic current
j = ρv for a single charge is

jµ = ρ
dxµ

dt
= (cρ, j) = (cρ, ρv) = ρ

ds

dt
ẋµ (4.7)

In the case of a system of charges, xa(t), we have

jµ(x) = c
∑

a

ea

∫

dsδ(x− xa(s))ẋ
µ

= c
∑

a

ea

∫

dsδ(x− xa(s))δ(x
0 − x0

a(s))ẋ
µ

= c
∑

a

eaδ(x− xa(s))
1

|dx0

ds |
ẋµ

=
∑

a

eaδ(x− xa(s))

︸ ︷︷ ︸

ρ(x)

dxµ

dt
. (4.8)

It is easy to verify that the continuity equation

∂µj
µ = ∂0ρ+∇ · j

=
∑

a

ea[−va(t)∇δ(x− xa(t)) +∇δ(x− xa(t))va(t)] = 0 (4.9)

is satisfied.

4.2 Dynamics of the electromagnetic field

The action (4.6) dos not contain the time derivatives of the vector potential
therefore we have to extend our Lagrangian, L→ L+LA, to generate dynamics
for the electromagnetic field. The guiding principle is that LA should be

1. quadratic in the time derivative of the vector potential to have the usual
equation of motion,

2. Lorentz invariant and
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3. gauge invariant, ie. remain invariant under the transformation

Aµ → Aµ + ∂µα. (4.10)

The simplest solution is

LA = − 1

16π
FµνFµν (4.11)

where the factor −1/16π is introduced for later convenience. The complete
action is S = Sm + SA where

Sm = −mc
∑

a

∫

ds

√

dxµ
a

ds
gµν

dxν
a

ds
(4.12)

and

SA = −e

c

∑

a

∫

Aµ(x)dx
µ − 1

16πc

∫

FµνFµνdx

= −e

c

∑

a

∫

δ(3)(x− xa(t))Aµ(x)dx
µ
adV −

1

16πc

∫

FµνFµνdx

= − e

c2

∑

a

∫

δ(4)(x− xa(t))Aµ(x)
dxµ

dt
dx− 1

16πc

∫

FµνFµνdx

=

∫

LAdV dt (4.13)

with

LA = −1

c
jµAµ(x)−

1

16π
FµνFµν

= −1

c
jµAµ(x)−

1

8π
∂µAν∂

µAν +
1

8π
∂µAν∂

νAµ. (4.14)

It yields the Maxwell-equations

0 =
δL

δAµ
− ∂ν

δL

δ∂νAµ
= −1

c
jµ − 1

4π
∂νF

µν . (4.15)

Note that the necessary condition for the gauge invariance of the action is the
current conservation, Eq. (4.9).

A simple calculation shows that any continuously double differentiable vector
potential satisfies the Bianchi identity,

∂ρFµν + ∂νFρµ + ∂µFνρ = 0. (4.16)

The usual three-dimensional notation is achieved by the parametrization
Aµ = (φ,A), Aµ = (φ,−A), giving the electric and the magnetic fields

E = −∂0A−∇φ = −1

c
∂tA−∇φ,

H = ∇×A. (4.17)
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Notice that transformation jµ = (ρ, j) → (ρ,−j) under time reversal and the
invariance of the term jµAµ interaction Lagrangian requires the transformation
law φ→ φ, A→ A, E→ E, H→ −H for time reversal. The equation

ǫjkℓHℓ = ǫjkℓǫℓmn∇mAn = (δjmδkn − δjnδkm)∇mAn = ∇jAk −∇kAj (4.18)

relates the electric and magnetic field with the field strength tensor as

Fµν =







0 Ex Ey Ez

−Ex 0 −Hz Hy

−Ey Hz 0 −Hx

−Ez −Hy Hx 0







, Fµν =







0 −Ex −Ey −Ez

Ex 0 −Hz Hy

Ey Hz 0 −Hx

Ez −Hy Hx 0







.

(4.19)
One defines the dual field strength as

F̃µν =
1

2
ǫµνρσF

ρσ. (4.20)

Duality refers to the exchange of the electric and the magnetic fields up to a
sign,

F̃0j =
1

2
ǫjkℓF

kℓ = Bj , F̃jk = ǫjkℓF
ℓ0 = −ǫjkℓEℓ, (4.21)

giving

F̃µν =







0 Bx By Bz

−Bx 0 Ez −Ey

−By −Ez 0 Ex

−Bz Ey −Ex 0







, F̃µν =







0 −Bx −By −Bz

Bx 0 Ez −Ey

By −Ez 0 Ex

Bz Ey −Ex 0







.

(4.22)
We have two invariants,

FµνFµν = −2E2 + 2H2

Fµν F̃µν = −4EH (4.23)

but the first can be used only in classical electrodynamics which is invariant
under time reversal. The field strength tensor transforms under Lorentz trans-
formations as

φ =
φ′ + v

cA
′
‖

√

1− v2

c2

, A‖ =
A′

‖ +
v
cφ

′

√

1− v2

c2

, (4.24)

and

F⊥⊥ = F⊥⊥′

F ‖⊥ =
F ‖⊥′

+ v
cF

0⊥′

√

1− v2

c2

F 0⊥ =
F 0⊥′

+ v
cF

‖⊥′

√

1− v2

c2

F ‖0 = F ‖0′ (∼ ǫ01). (4.25)



4.3. ENERGY-MOMENTUM TENSOR 35

For v = (v, 0, 0) we have in the three-dimensional notation

E‖ = E′
‖, Ey =

E′
y +

v
cH

′
z

√

1− v2

c2

, Ez =
E′

z − v
cH

′
y

√

1− v2

c2

H‖ = H ′
‖, Hy =

H ′
y − v

cE
′
z

√

1− v2

c2

, Hz =
H ′

z +
v
cE

′
y

√

1− v2

c2

, (4.26)

i.e. the homogeneous electric and magnetic fields transform into each other
when seen by an observer moving with constant speed.

4.3 Energy-momentum tensor

Let us first construct the energy-momentum tensor for the electromagnetic field
by means of the Noether theorem. The translation xµ → xµ + ǫµ is a symme-
try of the dynamics therefore we have a conserved current for each space-time
direction, (Jµ)ν which can be rearranged in a tensor, Tµν = (Jµ)ν , given by

Tµν
c = −gµνL+

δL

δ∂µAρ
∂νAρ = gµν

(
1

16π
F ρσFρσ +

1

c
jρAρ

)

− 1

4π
Fµρ∂νAρ

(4.27)
for the canonical energy-momentum tensor. The conservation law, ∂µT

µν
c = 0

suggests the identification of T 0ν
c with the energy-momentum P ν of the system

up to a multiplicative constant. But the physical energy-momentum may con-
tain a freely chosen three index tensor Θµρν as long as Θµρν = −Θρµν because

Tµν → Tµν + ∂ρΘ
µρν (4.28)

is still conserved. This freedom can be used to eliminate an unphysical property
of the canonical energy-momentum tensor, namely its gauge dependence. The
choice Θµρν = 1

4πF
µρAν gives

Tµν = gµν
(

1

16π
F ρσFρσ +

1

c
jρAρ

)

− 1

4π
Fµρ∂νAρ +

1

4π
∂ρ(F

µρAν)

=
gµν

16π
F ρσFρσ +

1

4π
FµρF ν

ρ + gµν
1

c
jρAρ +

1

4π
∂ρF

µρAν

=
gµν

16π
F ρσFρσ +

1

4π
FµρF ν

ρ + gµν
1

c
jρAρ − jµAν (4.29)

where the equation of motion was used in the last equation. The new energy-
momentum tensor in the absence of the electric current, the true energy-momentum
tensor of the EM field,

Tµν
ed =

gµν

16π
F ρσFρσ +

1

4π
FµρF ν

ρ , (4.30)

is gauge invariant, symmetric and traceless. But it is not conserved, the energy-
momentum is continuously exchanged between the charges and the EM field.
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The amount of non-conservation, Kν = −∂µTµν
ed 6= 0, identifies the energy-

momentum density of the charges,

Kν = −∂µ
(
gµν

16π
F ρσFρσ +

1

4π
FµρF ν

ρ

)

= − 1

8π
F ρσ∂νFρσ −

1

4π
Fµρ∂µF

ν
ρ − 1

4π
∂µF

µρF ν
ρ . (4.31)

We use the Bianchi identity for the first term and the equation of motion

Kν = − 1

8π
F ρσ(−∂ρF ν

σ − ∂σF
ν
ρ

︸ ︷︷ ︸

Bianchi

−2∂σF ν
ρ )− 1

c
jρF ν

ρ

= − 1

8π
F ρσ(∂ρF

ν
σ + ∂σF

ν
ρ)

︸ ︷︷ ︸

=0

+
1

c
jρF ν

ρ

= ρF ν
0 +

1

c
jkF ν

k

= ρF ν0 − 1

c
jkF νk. (4.32)

Since

−jkF 0k = jE

ρF ℓ0 = ρEℓ

jkF ℓk = jkǫℓkmHm (4.33)

we have the source of the energy-momentum of the EM field

Kµ = (K0,K) =

(
1

c
jE, ρE+

1

c
j×H

)

. (4.34)

The time-like component is indeed the work done on the charges by the EM
field. The spatial components is the rate of change of the momentum of the
charges, the Lorentz force.

The energy-momentum density of the EM field P ν = T 0ν is

P 0 =
1

8π
(−E2 +H2) +

1

4π
E2 =

1

8π
(E2 +H2)

P ℓ =
1

4π
F 0kF ℓ

k =
1

4π
EkǫkℓmHm = −1

c
Sℓ (4.35)

where the energy flux-density

S =
c

4π
E×H (4.36)

is given by the Poynting vector. In fact, the symmetry of the energy-momentum
tensor allows us to identify the energy flux-density with c times the momentum
density.
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4.4 Electromagnetic waves in the vacuum

Let us consider first the EM field waves in the absence of charges, the solution
of the Maxwell equations, (4.15) for j = 0. We shall use the Lorentz gauge
∂µA

µ = 0 where the equations of motion are

0 = ∂νF
µν = ∂ν∂

µAν −�Aµ = −�Aµ. (4.37)

we shall consider plane and spherical waves, solutions which display the same
value on parallel planes or concentric spheres.

The plane wave solution depends on the combination

t± = t± n · x
c

(4.38)

of the space-time coordinates. The linearity of the Maxwell equation allows us
to write the solution as the linear superposition

Aµ(x) = A+
µ (t

+) +A−
µ (t

−) (4.39)

where (
1

c2
∂2
t −∆

)

A±
µ (x) = �A±

µ (t
±) = 0 (4.40)

for arbitrary functions A±
µ (t), to be determined by the boundary conditions.

The plane waves read in the three-dimensional notation as

H = ∇×A(t±) = ∇
(

t± n · x
c

)

×A′ = ±1

c
n×A′

E = −1

c
∂tA(t±)−∇φ(t±) = −1

c
A′ ∓ 1

c
nφ′. (4.41)

The relation

H = ±1

c
n× (−cE∓ nφ′) = ∓n×E (4.42)

shows that H orthogonal both to the direction of the propagation, n and to E.
The Lorentz gauge condition,

0 =
1

c
∂tφ+∇ ·A =

1

c
φ′ ± 1

c
n ·A′ (4.43)

together with the second equation in (4.41) shows that E is orthogonal to n, as
well. The energy-momentum density

P ν =

(
E2 +H2

8π
,−E×H

4π

)

=

(
E2

4π
,±E× (n×E)

4π

)

=
E2

4π
(1,±n), (4.44)

is a light-like vector, P 2 = 0.
The spherical waves are of the form (4.39) with

t± = t± r

c
(4.45)
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in spherical coordinate system. We consider them in d spatial dimensions where

they satisfy the wave equation ∂µ∂
µA = 0. We write A±(x) = r

1−d
2 a±(t±)

where a± is a solution of the equation

0 =

(
1

c2
∂2
t −

1

rd−1
∂rr

d−1∂r

)

A±(t±) =

(
1

c2
∂2
t +

(d− 1)(d− 3)

4r2
∂r − ∂2

r

)

a±(t±).

(4.46)
The functions a±(t±) correspond to 1+1 dimensional plane waves in d = 1, 3
only.



Chapter 5

Green functions

The Green functions provide a clear and compact solution of linear equations of
motion. But the transparency pf the result hides a drawback, the suppression
of the the boundary conditions which are imposed both in space and time. The
spatial boundary conditions are usually simpler, they amount to some suppres-
sion of the fields at spatial infinity when localized phenomena are investigated.
The boundary conditions in time are more complicated and are dealt with briefly
in the next section.

5.1 Time arrow problem

The basic equations of Physics, except weak interactions, are invariant under a
discrete space-time symmetry, the reversal of the direction of time, T : (t,x)→
(−t,x). Despite this symmetry, it is a daily experience that the this symmetry
is not respected in the world around us. It is enough to recall that we are
first born and die later, never in the opposite order. A more tangible example is
that the radio transmission arrives at our receivers after its emission, namely the
electromagnetic signals travel forward in time rather than backward which is in
principle always possible with time reversal invariant equations of motion. What
eliminates the backward moving electromagnetic waves? This is one aspect of
the time arrow problem in Physics, the problem of pinning down the direction
of time, the dynamical origin of the apparent breakdown of the time reversal
invariance.

This problem can be discussed at four different level. The most obvious
is the level of electromagnetic radiation where it appears as the suppression of
backward moving electromagnetic waves in time. It is believed that the origin of
this problem is not in Electrodynamics and this property of the electromagnetic
waves is related to the boundary conditions chosen in time. We can prescribe
the solution we seek in terms of initial or final conditions or even by a mixture of
these two possibilities and depending on our choice we see forward or backward
going waves or even their mixture in the solution. Why are we interested mainly
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initial problems rather than final condition problems in physics?

A tentative answer comes from Thermodynamics, the non-decreasing nature
of entropy in time. It seems that the composite systems tend to become more
complicated and to expand into more irregular regions in the phase space as
the time elapses. This property is might not be related to the breakdown of
the time reversal invariance because it must obviously hold for either choice of
the time arrow. It seems more to have something to do with the nature of the
initial conditions we encounter in Physics.

The choice of the initial condition leads us to the astrophysical origin of
the time arrow. The current cosmological models, solutions of the formally
time reversal invariant Einstein equations of General Relativity, suggest that
our Universe undergone a singularity in the distant past. This singular initial
condition might be the origin of the peculiar features of the choice of the time
arrow.

Yet another level of this issue is the quantum-classical crossover, the scale
regime where quantum effects give rise to classical physics. Each measure-
ment traverses this crossover, it magnifies some microscopic quantum effects
into macroscopic, classical one. This magnification process, such as the con-
densation of the drops in the Wilson cloud chamber or the ”click” of a Geiger
counter indicating th presence of an energetic particle, breaks the time reversal
invariance. In fact, the end result of the measurements, a classical ”record”
created endures the flow of time and can not be reconverted into microscopic
phenomena without macroscopic trace. Hence the deepest level of the break-
down of the time reversal invariance comes from the scale regions because any
quantum gravitational problem must be handled by this scheme.

Instead of following a more detailed analysis of this dynamical issue we con-
fine the discussion of the separation of the kinematical aspects of this problem.
The question we turn to is the way a certain initial of final condition problem can
be handled within the framework of Classical Field Theory. The problem arises
from the use of the variational principle in deriving the equations of motion.
The variational equations of motion can not break the time reversal invariance
and can not handle any boundary conditions which does it.

We start the discussion with the formal introduction of the Green function.
Let us consider a given function of the time f(t) and the inhomogeneous linear
differential equation

Lf = g, (5.1)

where L is a differential operator acting on the time variable. The Green func-
tion is the inverse of the operator L and satisfies the equation

LtG(t, t′) = δ(t− t′). (5.2)

The index in Lt is a reminder that the differential operator acts on the variable
t of the two variable function G(t, t′). Note that for translation invariant L we
have G(t, t′) = G(t−t′). The Dirac-delta is the identify operator on the function
space, thus G = L−1
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The solution of Eq. (5.1) can now formally be written as

f(t) =

∫

dt′G(t, t′)g(t′). (5.3)

The time reversal invariance of the propagation of perturbations requires that
the Green function be symmetric with respect to the exchange of its time vari-
ables, G(t, t′) = G(t′, t). When the propagation of a signal violates time reversal
invariance then the Green function must contain antisymmetric part.

The variation principle which reproduces Eq. (5.1) as an equation of motion
is based on the action

S[x] =
1

2

∫

dtdt′f(t)G−1(t, t′)f(t′)−
∫

dtf(t)g(t). (5.4)

But the quadratic action is invariant under the exchange of the integral variables
t ↔ t′. Therefore, any time reversal breaking antisymmetric part of G−1(t, t′)
is canceled in the action, the variation principle can not produce time reversal
breaking.

The way out of this deadlock is the observation that Eq. (5.2) yields a well
defined Green function when the operator L has trivial null-space only. The null-
space of an operator is the linear subspace of its domain of definition which is
mapped into 0. Whenever there is a non-trivial solution of the equation Lh = 0
it can freely be added to the solution of Eq. (5.1), rendering G ill-defined in
Eqs. (5.2)-(5.3). The variational problem has nothing to say on the trajectories,
corresponding to the null-space of the equation of motion. But this null-space
consists of the physically most important functions, the solution of the free
equation of motion, in the absence of external source g. This component of the
solution must be fixed by the boundary conditions. We shall bring it into the
dynamics and the variational equations by adding an infinitesimal, imaginary
piece to the inverse propagator,

G−1 → G−1 + iO (ǫ) . (5.5)

It renders the Green function well defined by making the null-space of G−1

trivial and breaks the time reversal invariance in the desired manner because
the time reversal implies complex conjugation.

The relation between the time arrow problem and this formal discussion
is that these freely addable solutions are to assure the particular boundary
conditions. Therefore, the handling of the boundary conditions must come from
devices beyond the variational principle, such as the non-symmetrical part of
the Green function.

5.2 Invertible linear equation

We start with the simple case where L is invertible and has trivial null-space.
The invertible differential operators usually arise in time independent problems.
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We consider here the case of a static, 3 dimensional equation

∆f = g (5.6)

in the three-volume V when f and ∇f⊥ are given on ∂V . The null-space of
the operator ∆ is nontrivial, it consists of harmonic functions. But by impos-
ing boundedness on the solution on an infinitely large domain, a rather usual
condition in typical physical cases, the null-space becomes trivial.

One can split the solution as f = fpart + fhom where fpart is a particular
solution of the inhomogeneous equation and fhom, the solution of the homoge-
neous equation. Due to boundedness fhom must be a trivial constant and will
be ignored. A useful particular solution is found by inspecting the first two
derivatives of the function

D(x,y) = − 1

4π

1

|x− y| . (5.7)

which read as

∂k
1

|x| = − xk

|x|3

∂ℓ∂k
1

|x| = − δkℓ

|x|3 + 3
xkxℓ

|x|5 (5.8)

give

∆
1

|x| = 0 (5.9)

for x 6= 0. Apparently ∆ 1
|x| is a distribution what can be identified by calculat-

ing the integral
∫

x2<ǫ2
dV f(x)∆

1

|x| = −
∫

x2<ǫ2
dV∇f(x) · ∇ 1

|x|
︸ ︷︷ ︸

O(ǫ)

+

∫

x2=ǫ2
dSf(x) · ∇ 1

|x|
︸ ︷︷ ︸

−4πf(0)

(5.10)
giving

∆xD(x,y) = δ(x− y) (5.11)

or

D(x,y) = 〈x| 1
∆
|y〉. (5.12)

Thus we have

fpart(x) =

∫

d3yD(x,y)g(y) = −
∫

d3y
g(y)

4π|x− y| . (5.13)

To find the homogeneous solution we start with Gauss integral theorem,
∫

∂V

dSyF(y) =

∫

V

d3y∇F(y) (5.14)
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and by applying for F(y) = D(x,y)∇f(y)− f(y)∇D(x,y) we arrive at Green
theorem
∫

∂V

dSy[D(x,y)∇f(y)−f(y)∇D(x,y)] =

∫

V

d3y[D(x,y)∆f(y)−f(y)∆yD(x,y)].

(5.15)
which gives

f(x) = − 1

4π

∫

V

d3y
g(y)

|x− y| +
1

4π

∫

∂V

dSy

(∇f(y)
|x− y| − f(y)∇y

1

|x− y|

)

. (5.16)

5.3 Non-invertible linear equation with bound-

ary conditions

The non-invertible operators usually appears in dynamical problems. Let us
consider the equation

�f = g (5.17)

on 4-dimensional space-time where the function f is sought for a given g. We
follow first the extension of the previous argument for four-dimensions: We
define a Green-function which is the solution of the equation

�xD(x, y) = δ(x− y) (5.18)

and take the time integral of Eq. (5.15) with a Green function D(x, y) =
D(x− y),

∫

[ti,tf ]⊗∂V

dtdS[D(x, y)∇f(y)− f(y)∇yD(x, y)] (5.19)

=

∫

[ti,tf ]⊗V

dy[D(x, y)∆f(y)− f(y)∆yD(x, y)]

=

∫

[ti,tf ]⊗V

dy[−D(x, y)�f(y) +D(x, y)∂2
t f(y)− f(y)∂2

tyD(x, y) + f(y)�yD(x, y)]

= f(x)−
∫

[ti,tf ]⊗V

dyD(x, y)�f(y) +

∫

[ti,tf ]⊗V

dy∂ty [D(x, y)∂tf(y)− f(y)∂tyD(x, y)].

The resulting equation

f(x) =

∫

[ti,tf ]⊗V

dyD(x, y)g(y) +

∫

[ti,tf ]⊗∂V

dtdS[D(x, y)∇f(y)− f(y)∇yD(x, y)]

−
∫

V

d3y[D(x, y)∂tf(y)− f(y)∂tyD(x, y)]

∣
∣
∣
∣

tf

ti

(5.20)

expresses the solution in terms of the boundary conditions, the value of the
function f and its derivatives on the boundary of the space-time region where
the equation (5.17) is to be solved.
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5.4 Retarded and advanced solutions

The definition (5.18) determines the Green-function up to a null-space function,
a solution of the homogeneous equation. It is easy to see that the solution
(5.20) is well defined and is free of ambiguity. We turn now the more formal
method to make the Green-function well defined by introducing an infinitesimal
imaginary part. To see better the role of the boundary conditions in time let us
drop the spatial boundary conditions by extending the three-volume where the
solution of Eq. (5.17) is sought to infinity. The Fourier representation of the
Green-function is

D̃(k) = − 1

k2
(5.21)

for k2 6= 0 because

∫
d4k

(2π)4
(−k2)e−ikµx

µ

D̃(k) =

∫
d4k

(2π)4
e−ikµx

µ

. (5.22)

To make this integral well defined we have to avoid the singularities of D̃(k2)
by some infinitesimal shift of the singularities in the complex frequency plane,
k0 → k0 ± iǫ. The different modifications of the propagator in the vicinity of
k2 = 0 introduce different additive homogeneous solutions of Eq. (5.17) in the
Green-function.

Let us introduce first the retarded Green-function, Dr(x, y) ≈ Θ(x0 − y0)
which is used when the initial conditions are known. It is obtained by shifting
the poles of D̃(k2) slightly below the real axes on the complex energy plane. In
fact, the frequency integral

D(k, t) =

∫
dk0

2π
e−ik0tD̃(k) (5.23)

is non-vanishing just for t > 0. The advanced Green-function is used when the
final conditions are known and it is obtained by shifting the poles slightly above
the real axis,

D
r
a(x) = −

∫
d3k

(2π)3

∫
dk0
2π

e−ikµx
µ

(k0 + |k| ± iǫ)(k0 − |k| ± iǫ)
(5.24)
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The explicit calculation gives

Dr(x) = −
∫

d3k

(2π)3
eikx

∫
dk0
2π

e−ick0t

(k0 + iǫ− |k|)(k0 + iǫ+ |k|)

= i

∫
d3k

(2π)3
eikx

(
e−ickt

2k
− eickt

2k

)

=
i

(2π)3

∫

dkk2dφd(cos θ)eikr cos θ e
−ickt − eickt

2k

=
i

(2π)2

∫

dkk2
eikr − e−ikr

ikr

e−ickt − eickt

2k

=
1

2(2π)2r

∫ ∞

0

dk(eikr − e−ikr)(e−ickt − eickt)

=
1

8πr

∫ ∞

−∞

dk

2π
(eik(r−ct) + eik(−r+ct) − e−ik(r+ct) − eik(r+ct))

=
1

4πr
[δ(−r + ct)− δ(r + ct)] (t > 0)

=
δ(ct− r)

4πr
(t > 0) (5.25)

and

Da(x) = −
∫

d3k

(2π)3
eikx

∫
dk0
2π

e−ick0t

(k0 − iǫ− |k|)(k0 − iǫ+ |k|)

= i

∫
d3k

(2π)3
eikx

(
eickt

2k
− e−ickt

2k

)

=
δ(r + ct)− δ(−r + ct)

4πr
(t < 0)

=
δ(ct+ r)

4πr
. (5.26)

Finally we have

f(x) =

∫

d4yD
r
a(x− y)g(y) + f in

out
(x)

=

∫

d4y
δ(x0 − y0 ∓ |x− y|)g(y)

4π|x− y| + f in
out

(x)

=

∫

d3y
g
(

tx ∓ |x−y|
c ,y

)

4π|x− y| + f in
out

(x) (5.27)

where f(t i

f
,x) = f in

out
(t i

f
,x) and �f in

out
= 0. It is easy to find the relativistically
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invariant form of the Green functions,

D
r
a(x) = Θ(±t)δ(ct∓ r)

4πr

= Θ(±t)δ(ct+ r) + δ(ct− r)

4πr

= Θ(±t)δ(c
2t2 − r2)

2π

= Θ(±x0)
δ(x2)

2π
. (5.28)

There is no dynamical issue in choosing one or other solution. The trivial
guiding principle in selecting a Green-function is the information we possess, the
initial the final conditions. One can imagine another, rather unrealistic problem
where the sum agin(x) + (1− a)gout(x) is known to the solution of Eq. (5.17).
Then the solution is

f(x) =

∫

dy[aDr(x, y)+(1−a)Da(x, y)]g(y)+agin(x)+(1−a)gout(x). (5.29)

We are accustomed to think in terms of initial rather than final conditions
and therefore use the retarded solutions. This is due to the experimental fact
that the homogeneous solution of the Maxwell-equation, the incoming radiation
field is negligible compared to the final, outgoing field after some local manipu-
lation. The deep dynamical question is why is this the case, why is the radiation
field rather weak for t → ∞ when the basic equations of motion are invariant
with respect to the inversion of the direction of the time.

Since Da(x, y) = Drtr(x, y) = Dr(y, x) the symmetric and antisymmetric
Green-functions

D
n

f =
1

2
(Dr ±Da) (5.30)

give the solutions of the inhomogeneous and homogeneous equation, respec-
tively. The inhomogeneous Green-functions are connected by the relation

D
r
a(x, y) = 2Dn(x, y)Θ(±(x0 − y0)) (5.31)

where the near field Green function is

Dn(x) =
δ(x2)

4π
(5.32)

according to Eq. (5.28). The Fourier representation of the homogeneous Green
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Figure 5.1: Huygens principle for a wave front.

function can be obtained in an obvious manner,

Df (x) =
1

4π
δ(x2)ǫ(x0)

= − i

2

∫
d3k

(2π)3
eikx

(
eickt

2k
− e−ickt

2k

)

=
i

2

∫
d4k

(2π)3
e−ikx δ(k0 − |k|)− δ(k0 + |k|)

2|k|

=
i

2

∫
d4k

(2π)3
eikxδ(k2)ǫ(k0) (5.33)

where ǫ(x) = sign(x). A useful relation satisfied by this Green-function is

∂x0D(x)x0=0 =
1

2

∫
d3k

(2π)3
eikxk0

δ(k0 − |k|)− δ(k0 + |k|)
2|k|

=
1

2

∫
d3k

(2π)3
eikx

1

2
[δ(k0 − |k|) + δ(k0 + |k|)]

=
1

2
δ(x) (5.34)

The far field, given by Df is closely related to the radiation field. The
expressions

A
r
a(x) =

4π

c

∫

dyD
r
a(x, y)j(y) +A in

out
(x) (5.35)

suggest the definition
Arad = Aout −Ain = 2Af . (5.36)

Let us close this discussion with a remark about the Huygens principle stat-
ing that the wavefront of a propagating light coincide with the envelope of
spherical waves emitted by the points of the wavefront at an earlier time. This
implies a fixed propagation speed. The retarded Green-function for d space-time
dimensions

Dr(x) =

{
1

2πd/2−1Θ(x0)( d
dx2 )

(d/2−2)δ(x2),

(−1) d−3
2

1
2π2/dΓ(

d
2 − 1)Θ(x0 − |x|)(x2)1−d/2,

v =

{

c d even

≤ c d odd.

(5.37)
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shows that the propagation of the EM wave is restricted to the future light cone
in even dimensional space-times only. For odd space-time dimensions the speed
of the propagation is not fixed, special relativity takes a radically different form
and the Huygens principle is violated.



Chapter 6

Radiation of a point charge

We consider in this chapter a point charge following a prescribed world line and
and determine the induced electromagnetic field.

6.1 Liénard-Wiechert potential

As the first step we seek the electromagnetic field Aµ(x) at x = (t,x) created
by a point charge e following the world line xµ(s). The current is

jµ(x) = ce

∫

dsδ(x− x(s))ẋµ(s) (6.1)

and Aµ
in = 0. It is easy to check that at any point x we have a single, definite

event on the world line which contribute either to the retarded or to the advanced
radiation. In fact, the world-line, having time-like tangent vector can traverse
of the future or the past light cone of any point at a single event only as shown
in Fig. 6.1. We shall find the answer in two different ways, by a simple heuristic
argument and by a more general and complicated manner.

Heuristic method: The charge at x′ = (t′,x′) can contribute to this field if
the difference x− x′ is a null-vector,

ct− ct′ = ±|x− x′| (6.2)

(+:retarded propagation, −:advanced propagation). In the coordinate system
where the charge is at rest at the emission of the electromagnetic field we have

φ =
e

|x− x′| , A = 0. (6.3)

Let us generalize this expression for an arbitrary inertial system, in particular
where the four vector of the charge in the retarded or advanced time is

ẋµ =
dxµ(s)

ds
= (c,v)

dt

ds
(6.4)

49
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x(s)

x

x

xret

av

Figure 6.1: The observer at x receives the signal emitted from the point xret or
xav for the retarded or the advanced propagation, respectively.

For this end we introduce the four-vector Rµ = (ct− ct′,x− x′) and write

A
r
aµ = ± eẋµ

R · ẋ (6.5)

Due to R · ẋ = (rc− rv) dtds , r = |x− x′| we have

φ = ± e

r − r·v
c

, A = ± ev

c(r − r·v
c )

. (6.6)

The part O
(
v0
)
is the static Coulomb potential, the v-dependent pieces in the

denominator represent the retardation or advanced effects. Finally, A gives the
magnetic field induced from the Coulomb potential by the Lorentz boost.

The more systematical way of obtaining the induced field is based on the
use of the Green-functions,

A
r
aµ(x) = e4π

∫

dx′

∫

dsD
r
a(x− x′)δ(x′ − x(s))ẋµ(s)

= 2e

∫

dx′

∫

dsδ((x− x′)2)Θ(±(x0 − x
′0))δ(x′ − x(s))ẋµ(s)

= 2e

∫

dsδ((x− x(s))2)Θ(±(x0 − x0(s)))ẋµ(s) (6.7)

x−x(s
r
a) can be written as the linear superposition of two orthogonal vectors,

x− x(s
r
a) = (±ẋ+ w)R

r
a (6.8)

where w is space-like. Since (x − x(s
r
a))2 = 0, ẋ2 = 1 and ẋ · w = 0 we have

w2 = −1 and

R
r
a = −w · (x− x(s

r
a)) = ±ẋ · (x− x(s

r
a)) (6.9)
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The use of the rule δ(f(x)) → δ(x − x0)/|f ′(x0)| where f(x0) = 0 and the
relation

d(x− x(s))2

ds
= ∓2R

r
a (6.10)

gives

A
r
aµ(x) = e

ẋµ(s
r
a)

R
r
a

. (6.11)

6.2 Field strengths

The field strength is obtained by calculating the space-time derivatives of the
Liénard-Wiechert potential (6.11),

∂µA
ν(x) = e4π

∫

dx′

∫

ds∂xµDr(x− x′)δ(x′ − x(s))ẋν(s)

= e4π

∫

ds
∂Dr(x− x(s))

∂(x− x(s))2
∂(x− x(s))2

∂xµ
ẋν(s)

= e8π

∫

ds
∂Dr(x− x(s))

∂s

∂s

∂(x− x(s))2
︸ ︷︷ ︸

1/[−2(x−x(s))·ẋ(s)]

(x− x(s))µẋ
ν(s)

= −e4π
∫

ds
∂Dr(x− x(s))

∂s

(x− x(s))µẋ
ν(s)

(x− x(s)) · ẋ

= −e4πDr(x− x(s))
(x− x(s))µẋ

ν(s)

(x− x(s)) · ẋ

∣
∣
∣
∣

∞

−∞
︸ ︷︷ ︸

=0

+e4π

∫

dsDr(x− x(s))
∂

∂s

(x− x(s))µẋ
ν(s)

(x− x(s)) · ẋ(s)

= 2e

∫

dsδ((x− x(s))2)Θ(x0 − x0(s))
∂

∂s

(x− x(s))µẋ
ν(s)

(x− x(s)) · ẋ(s)

= e
1

(x− x(s)) · ẋ(s)
∂

∂s

(x− x(s))µẋ
ν(s)

(x− x(s)) · ẋ(s) |s=sr
(6.12)

The introduction of the scalar

Q = (x− x(s)) · ẍ(s) = R(±ẋ+ w) · ẍ(s) = Rw · ẍµ(s) (6.13)

allows us to write

Fµν =
e

R3
[(x− x(s))µẍνR− ẋµẋνR− (x− x(s))µẋνQ+ ẋ · ẋ(x− x(s))µẋν − (µ↔ ν)]

=
e

R3
[(x− x(s))µẍνR− (x− x(s))µẋνQ+ (x− x(s))µẋν − (µ↔ ν)]

=
e

R2
[(±ẋ+ w)µẍνR− (±ẋ+ w)µẋνQ+ (±ẋ+ w)µẋν − (µ↔ ν)]

=
e

R2
[(±ẋ+ w)µẍνR− wµẋνRw · ẍ+ wµẋν − (µ↔ ν)] (6.14)
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The field strength is the sum of O
(
R−1

)
and O

(
R−2

)
terms, called far and

near fields.

The tree-dimensional notation is introduced by

ẋ = (c,v)
dt

ds
, R

r
a = ±(±rc− rv)

dt

ds
= (rc∓ rv)

dt

ds
=

r ∓ rβ
√

1− β2
(6.15)

where β = v
c . The formally introduced spatial unit vector w is determined by

the condition

(±r, r) = R

[

±(c,v) dt
ds

+ w

]

(6.16)

which yields

w =
1

R
(±r, r)∓ (c,v)

dt

ds

=
(±r, r)

(rc∓ rv)

ds

dt
∓ (c,v)

dt

ds
(6.17)

which reads

w =
r

(r ∓ rβ)

√

1− β2 ∓ β
√

1− β2

w0 = ± r

(rc∓ rv)

ds

dt
∓ c

dt

ds

= ±
[

r

(r ∓ rβ)

√

1− β2 − 1
√

1− β2

]

(6.18)

in three-dimensional notation.

The near-field depends on the coordinate and the velocity,

Fnµν =
e

R3
[(x− x(s))µẋν − (x− x(s))ν ẋµ]

=
e

R2
[wµẋν − wν ẋµ] (6.19)
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The near electric field, Ej = F j0, is

En =
e

R2
[wẋ0 − w0ẋ]

=
e(1− β2)

(r ∓ rβ)2

[(

r

(r ∓ rβ)

√

1− β2 ∓ β
√

1− β2

)

1
√

1− β2

∓
(

r

(r ∓ rβ)

√

1− β2 − 1
√

1− β2

)

β
√

1− β2

]

=
e(1− β2)

(r ∓ rβ)2

[(
r

(r ∓ rβ)
∓ β

1− β2

)

∓
(

r

(r ∓ rβ)
− 1

1− β2

)

β

]

=
e(1− β2)

(r ∓ rβ)2

(
r

(r ∓ rβ)
∓ rβ

(r ∓ rβ)

)

= e
(1− β2)(r∓ rβ)

(r ∓ r · β)3

= e
(1− v2

c2 )(r∓ r v
c )

(r ∓ r·v
c )3

(6.20)

The far-field depends on the acceleration as well,

F fµν =
e

R3
[(x− x(s))µ(ẍνR− ẋνQ)− (x− x(s))ν(ẍµR− ẋµQ)] (6.21)

and

Ef = e
r× [(r− r v

c )× a]

c2(r − r·v
c )3

, (6.22)

where a = dv
dt . We have the relation

H =
r×E

r
(6.23)

for both fields.

6.3 Dipole radiation

The complications in obtaining the Liénard-Wiechert potential come from the
retardation. Thus it is advised to see the limits when the retardation effects are
weak and the final result can be expanded in them. Let us suppose that the
characteristic time and distance scales of the prescribed charge distribution are
tch and rch, respectively. The period length of the radiation is approximately
tch, yielding the wavelength λ = ctch. The retardation time is when is needed for
the EM wave to traverse the charge distribution, tret = rch/c. The retardation
effects are therefore weak for tret/tch ≪ 1 which gives rch ≪ λ. Another way
to express this inequality is to consider the characteristic speed of the charge
system, vch = rch/tch, to write λ = crch/vch which yields vch ≪ c.
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We assume that these inequalities hold and consider the leading order effect
of the retardation on the retarded Liénard-Wiechert potential (6.11)

A(x) =
∑

a

eaẋ
µ(sra)

Rr
a

. (6.24)

It is sufficient to find the magnetic field,

A(x) =
1

cr

∑

a

eava

(

1 +O
( |v|

c

))

(6.25)

where r denotes the distance between the observation point and the center of the
charges and va stands for the velocity of the charge a at the time of observation.
Since

∑

a

eava =
d

dt

∑

a

eaxa =
d

dt
d (6.26)

where d is the dipole moment of the charge system we have

A(x) =
1

cr

dd

dt
(6.27)

in the leading order. Then the magnetic field is given by

H = ∇× 1

cr

dd(t− r
c )

dt

= − 1

cr2
n× dd

dt
− 1

c2r
n× d2d

dt2
(6.28)

which reduces to the far field

H =
1

c2r

d2d

dt2
× n =

1

c2r

∑

a

eaaa × n (6.29)

for the retarded solution. Since the vectors E, H and n form an orthogonal
basis we have

E =
1

c2r

(
d2d

dt2
× n

)

× n =
1

c2R

∑

a

ea(aa × n)× n (6.30)

The far field, dipole radiation depends on the acceleration of the charges only.
The radiation power passing trough a surface df is

dI = Sdf (6.31)

where S is the Poynting vector and is given by

dI =
c

4π
H2r2dΩ (6.32)



6.3. DIPOLE RADIATION 55

according to Eq. (4.44) where dΩ denotes the solid angle. In the case of the
dipole radiation we find

dI =
1

4πc3

(
d2d

dt2
× n

)2

dΩ =
1

4πc3

(
d2d

dt2

)2

sin2 θdΩ (6.33)

where θ is the angle between d2

dt2d and n. The total radiated power is obtained
by integrating over the solid angle,

I =

∫

dφ

∫

d(cos θ)
1

4πc3

(
d2d

dt2

)2

sin2 θ =
2

3c3

(
d2d

dt2

)2

. (6.34)

For a single charge we have

I =
2a2

3c3
. (6.35)

(J. Larmor, 1897).
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Chapter 7

Radiation back-reaction

The charges and the electromagnetic fields interact in electrodynamics. The
full dynamical problem where both the charges and the electromagnetic field
are allowed to follow the time dependence described by their dynamics, the
mechanical equation of motion and the Maxwell equations is quite a wonderful
mathematical problem. A simpler question is when the motion is partially
restricted, when one members of this system is forced to follow a prescribed
time dependence and the other is allowed to follow its own dynamics only. For
instance, the world lines of a point charge moving in the presence of a fixed
electromagnetic field can easily be found by integrating the equation of motion
(4.4). The use of the Green functions provides the solution for a number or
engineering problems in electrodynamics where the electromagnetic fields are
sought for a given charge distribution. We devote this chapter to a question
whose complexity is in between the full and the restricted dynamical problems
but appears a more fundamental issue.

7.1 The problem

Let us consider a charge moving under the influence of a nonvanishing external
force. The force accelerates it and in turn radiation is emitted. The radia-
tion has some energy and momentum which is lost in the supposedly infinite
space surrounding the charge. Thus the energy and momentum of our charge
is changed and we have to assume that there is some additional force acting on
the charge.

The very question is rather perplexing because one would have thought that
the equation of motion for the charge, Eq. (4.4), containing the Lorentz force,
the second term on the right hand side is the last word in this issue. There
is apparently another force in the ”true” equation of motion! The complexity
of this problem explains that this is perhaps the last open chapter of classical
electrodynamics.

There is a further, even more disturbing question. Does a point-like charge

57
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interact with the electromagnetic field induced by its own motion? It is better
not, otherwise we run into the problem of singularities like a point-charge at
rest at the singular point of its own Coulomb-field. But the electric energy of a
given static charge distribution ρ(x),

E =
1

2

∫

d3xd3y
ρ(x)ρ(y)

|x− y| (7.1)

suggests that the answer is affirmative.
The radiation reaction force whose derivation is the goal of this chapter

touches a number of subtle issues.

1. The problem about the limit r0 → 0 where r0 is the characteristic size of
the charge distribution of a particle raises the possibility that the limits
~ → 0 and r0 → 0 do not commute. In fact, in discussing a point charge
in classical electrodynamics one tacitly takes the limit ~ → 0 first to get
the laws of classical electrodynamics where the limit r0 → 0 is performed
at the end. But a strongly localized particle induces quantum effects what
should be taken into account by keeping ~ finite, ie. we should start with
the limit r0 → 0 to introduce a point-like particle in Quantum Mechanics
and the classical limit ~→ 0, should be performed at the end only. There
are no point charges in this scheme because even if one starts with a strictly
point-like charge the unavoidable vacuum-polarization effect generates a
charge density polarization cloud of the size of the Compton wavelength
around the point charge.

2. Is there regular solutions at all for the set of coupled equations for point
charges and the electromagnetic field? It may happen that some smearing,
provided by the unavoidable vacuum polarization of quantum electrody-
namics is needed to render the solution of the classical equations of motion
regular.

3. The existence of the radiation back reaction force is beyond doubt but its
derivation is non-trivial. It is a friction force, describing the loss of energy
to the radiation field, and can not be derived by variational principle ie.
it is not present in the usual variational system of equations of motion of
classical electrodynamics.

4. The energy radiated out by the charge can not be recovered anymore in
an infinite system. Thus the sign of the radiation reaction force represents
a dynamical breakdown of the time inversion invariance of the basic laws
of electrodynamics.

5. The radiation back reaction force acting on point charges can be calculated
exactly and turns out to be proportional to the third derivative of the
coordinates. Such kind of force generates self-accelerating motion which
is unacceptable.
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V

Figure 7.1: A body moving in viscous fluid.

7.2 Hydrodynamical analogy

Before embarking the detailed study of classical electrodynamics let us consider
a simpler, related problem in hydrodynamics, in another classical field theory.
We immerse a spherical rigid body of mass M in a viscous fluid as depicted in
Fig. 7.1. What is the equation of motion for the center of mass x of this body?

The naive answer,

M
d2x

dt2
= Fext (7.2)

the right hand side being the external force acting on the body is clearly in-
adequate because it ignores the environment of the body. The full equation of
motion must contain a rather involved friction force Ffl(v),

M
dv

dt
= Fext + Ffl(v) (7.3)

where v is the velocity of the body.
There are two ways to find the answer. The direct, local one is to construct

the force Fext(v) the fluid exerts on the body by the detailed study of the flow
in is vicinity. If we have not enough information to accomplish this calculation
then another, more indirect global possibility is to calculate the total momentum
Pfl(v) of the fluid which is usually easier to find and to set

Ffl(v) = −
d

dt
Pfl(v), (7.4)

or equivalently to state that the total momentum of the body is

Ptot(v) = Mv +Pfl(v). (7.5)

We shall find the electromagnetic analogy of both schemes in the rest of this
chapter.

7.3 Radiated energy-momentum

We start the establishment of the energy-momentum balance for accelerating
charges by considering the energy loss for a slow, non-relativistic charges. In the
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absence or other intrinsic scales the EM field generated by slow motion agrees
with the dipole radiation and the far field expression (6.22)-(6.23) gives the total
radiation power (6.35), indicating the presence of forces acting on accelerating
charges. We regard now the EM field of a point charge in a more detailed
manner.

The field strength of the general, relativistic case satisfies few important
relations. The equation

F̃µνFµν =
1

2
ǫµνρσFµνFρσ = 0 (7.6)

follows from the symmetry of FµνFρσ for µ ↔ σ according to Eq. (6.14). In a
similar manner,

F̃ ρσ(x− x(s))σ =
1

2
ǫµνρσFµν(x− x(s))σ = 0 (7.7)

follows from the symmetry of Fµν(x − x(s))σ for ν ↔ σ. Thus H ⊥ E, H ⊥
x− x(s) and E ⊥ x− x(s).

The far field satisfies beyond Eqs. (7.6)-(7.7) the conditions

F f
µνF

fµν = 0 (7.8)

and

F f
µν(x− x(s))ν = 0, (7.9)

ie. |Hf | = |Ef |.
The null-field is defined by the properties FµνFµν = F̃µνFµν = 0. The far

field is null-field, therefore its energy-momentum tensor is

T fµν =
1

4π
F fµσF fν

σ

=
e2

4πR6
[(x− x(s))µ(ẍσR− ẋσQ)− (x− x(s))σ(ẍµR− ẋµQ)]

×[(x− x(s))σ(ẍ
νR− ẋνQ)− (x− x(s))ν(ẍσR− ẋσQ)]. (7.10)

Due to (x− x(s))2 = 0 we have

T fµν =
e2

4πR6
[(x− x(s))µ(ẍνR− ẋνQ)(ẍR− ẋQ) · (x− x(s))

−(x− x(s))µ(x− x(s))ν(ẍR− ẋQ)2

+(ẍµR− ẋµQ)(x− x(s))ν(x− x(s)) · (ẍR− ẋQ)]. (7.11)

The relation

(ẍR− ẋQ) · (x− x(s)) = {ẍ[ẋ · (x− x(s))]− ẋ[ẍ · (x− x(s))]} · (x− x(s))

= [ẍ · (x− x(s)][ẋ · (x− x(s))]− [ẋ · (x− x(s))][ẍ · (x− x(s))] = 0
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allows us to write

T fµν = − e2

4πR6
(x− x(s))µ(x− x(s))ν(ẍR− ẋQ)2

= − e2

4πR6
(x− x(s))µ(x− x(s))ν(ẍ2R2 +Q2) (7.12)

because ẋ · ẍ = 0.

The radiation reaction four-force acting on the charge, Kµ = −∂νT νµ, can
be obtained by considering the integral I of ∂νT

νµ over the four-volume V of
Fig. 7.2, bounded by the hyper-surfaces S1, C1, S2, C2. For sufficiently far from
the charges the far field survives only and we have

I =

∫

dV ∂νT
νµ

=

∫

∂V

dSνT
νµ

=

∫

S2

dSνT
νµ −

∫

S1

dSνT
νµ +

∫

C1

dSνT
νµ +

∫

C2

dSνT
νµ (7.13)

for the far field contributions. The last two terms are vanishing because T fνµ ≈
(x−x(s))ν and dSνT

νµ = 0 and no energy-momentum crosses the hyper-surfaces
C1 and C2. It is important to note that this is not true for the near field because
Tnµν 6≈ (x − x(s))ν , the near-field, eg. Coulomb field moves with the charge.
The co-moving nature of the near-field contrasted with the decoupled, freely
propagating nature of the far field which defines identifies the radiation field.

Since the energy-momentum tensor tµν of the localized charge is vanishing
in the integration volume the energy-momentum conservation ∂ν(T

νµ+tνµ) = 0
assures I = 0, and

∆Pµ = −
∫

S

dSνT
fνµ, (7.14)

the radiated energy-momentum, is a four-vector and is independent of the choice
of the surface S.

To calculate ∆P we choose a suitable surface S in such a manner that
dSµ is space-like. We write x − x(s) = Rẋ + y where y · ẋ = 0 and define
dSµ = yµRdΩds. S becomes a sphere of radius R, y2 = −R2 in the rest-frame
of the charge at the emission of the radiation for infinitesimal proper length ds
and we have

∆Pµ = −ds
∫

dΩRyνT
fµν

=
e2

4π
ds

∫

dΩyν
(Rẋ+ y)µ(Rẋ+ y)ν

R3

(

ẍ2 +
Q2

R2

)

= − e2

4π
ds

∫

dΩ
(Rẋ+ y)µ

R

(

ẍ2 +
Q2

R2

)

. (7.15)
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Figure 7.2: Energy momentum emitted by an accelerating charge

Since ∫

dΩyµ = 0 (7.16)

for a sphere and

Q2 = [(x− x(s)) · ẍ]2 = [(Rẋ− y) · ẍ]2 = (y · ẍ)2 = y2ẍ2 cos2 θ = −R2ẍ2 cos2 θ
(7.17)

the energy-flux for relativistic charge is

∆Pµ = − e2

4π
dsẋµ

∫

dΩ

(

ẍ2 +
Q2

R2

)

= − e2

4π
dsẋµẍ2

∫

dΩ(1− cos2 θ)

= −e2

2
ẋµẍ2ds

∫ 1

−1

d(cos θ) sin2 θ

︸ ︷︷ ︸
4
3

. (7.18)

and
∆Pµ

ds
= −2

3
e2ẋµẍ2. (7.19)

7.4 Brief history

We summarize the stages the radiation reaction force has passed with more
attention payed to relatively recent developments.
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7.4.1 Extended charge distribution

The energy of a charge e distributed in a sphere of radius r0 which moves with
velocity v, was written by Thomson as E = K+Eed where K = 1

2mmechv
2 and

Eem =
1

2

∫

d3x(E2 +H2), (7.20)

and the actual calculation [5] yields

Eem = f
e2

r0c2
v2

2
, (7.21)

f being a dimensionless constant depending on the charge distribution with
value f = 2/3 for uniformly distributed charge within the sphere. One can
introduce the electromagnetic mass for such charge distribution,

med =
2

3

e2

r0c2
(7.22)

giving

Eem =
med

2
v2. (7.23)

We thereby recover E = m
2 v

2 where m = mmech+med. Assuming pure electro-
magnetic origin of the mass, mmech = 0, we have the classical charge radius

rcl =
2

3

e2

mc2
, (7.24)

the distance where the non-mechanical origin of the mass becomes visible.
The next step was made by Lorentz who held the conviction that all elec-

trodynamics phenomena arise from the structure of the electron [6]. Larmor’s
formule gives

∆EL =
2e2

3c3

∫

a2dt =
2e2

3c3

∫ (
d(a · v)

dt
− da

dt
· v
)

dt (7.25)

for the energy loss due to radiation. The contribution of the first term in the
last equation is negligible for long time and motion with bounded velocity and
acceleration and we have

∆EL ≈ −2e2

3c3

∫
da

dt
· vdt

= −
∫

Fraddx (7.26)

yielding the first time first an expression for the radiation reaction force,

FL =
2e2

3c3
da

dt
. (7.27)
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In another work [7] Lorentz sets out to calculate the direct (Lorentz) force
acting on a rigid charge distribution ρ(x) of size r0 due to the radiation back-
reaction. He found

Frad = ρ

(

Erad +
1

c
v ×Hrad

)

= − 4

3c2
1

2

∫
ρ(x)ρ(x′)

|x− x′| d
3xd3x′

︸ ︷︷ ︸
4
3med

a+
2e2

3c3
da

dt
︸ ︷︷ ︸

FL

−2e2

3c3

∞∑

n=2

(−1)n
n!cn

dma

dtn
O
(
rn−1
0

)

The problems, opened by this result are the following.

1. The electromagnetic mass, with its factor 3/2 in front of med, given by
Eq. (7.22) differs from Thomson’s result.

2. Higher order derivatives with respect to the time appear in the equation
of motion. They contradict with our daily experience in mechanics.

3. There is no place in electrodynamics for cohesive forces, appearing for
finite charge distribution, r0 6= 0, in equilibrium.

4. The divergence med =∞ in the limit r0 → 0 spoils our ideas about point
charges.

While Lorentz concentrated on the energy loss of the charge system Abraham
approached the problem from the point of view of the momentum loss. He
identified the momentum of the Coulomb field of an charge in uniform motion
by its Poyting’s vector [8],

prad =
1

4πc2

∫

(E×H)d3x. (7.28)

The actual calculation yields

prad =
4

3
medv (7.29)

where the electromagnetic mass is given by Eq. (7.22).
The factor 4/3 is the same as in Lorentz’s expression and is in contradiction

with the considerations based on the energy conservation. One way to under-
stand its origin is the note that the rigidly prescribed charge distribution, used
in these early calculations before 1905 violates special relativity in the absence
of Lorentz contraction.

Approximately in the same time Sommerfeld calculated the self force acting
on a charge distribution ρ(x) in its co-moving coordinate system by ignoring
the higher order than linear terms in the acceleration and its time derivatives
[9],

Frad =
2

3
e2

∞∑

n=0

(−1)n
n!

cn
dn

dtn+1
v, (7.30)
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where

cn =

∫

d3xd3yρ(x)|x− y|nρ(y). (7.31)

He considered charges distributed homogeneously on the surface of a sphere of
radius r0 when

cn =
1

(2r0)n−1

2

n+ 1
(7.32)

and managed to resum the series which results the non-relativistic equation of
motion

m
dv

dt
= Fext +med

v(t− 2a)− v(t)

2r0
(7.33)

which is a finite difference equation, the delay time needed to reach the opposite
points of the sphere.

Soon after the discovery of special relativity Laue has found the relativistic
extension of Lorentz’s result (7.27), [10]

mẍµ = −2

3
e2(ẋµẍ2 +

...
xµ), (7.34)

an equation to be derived in a more reliable manner later by Dirac. The first
term is positive definite and represents the breakdown of the time inversion
invariance, the loss of energy due to the ’friction’ caused by the radiation. The
second, the so called Schott term can change sign and stands for the emission
and absorption processes.

A particularly simple, phenomenological argument to arrive at the self force
(7.34) [11] is based on the constraint ẍ · ẋ = 0 on the world line of a point
particle which asserts that the four-force Fµ

rad = mmechẍ
µ must be orthogonal

to the four-velocity. One can easily construct the linearized equation of motion,
an orthogonal vector which is linear in the velocity and its derivatives by means
of the projector

Pµν = gµν − ẋµẋν (7.35)

as

Fµ
rad = Pµν

∞∑

n=1

an
dnxν(s)

dsn
. (7.36)

The use of the derivative of the constraint,
...
x · ẋ+ ẍ2 = 0 gives for the self force

truncated at the third derivative

mmechẍ
µ ≈ a2ẍ

µ + a3(
...
xµ + ẋµẍ2). (7.37)

The mass renormalization m = mmech − a2 eliminates the first term on the
right hand side and expresses the physical mass as the sum of the mechanical
and part and the contribution from electrodynamics. The comparison with Eq.
(7.34) gives a3 = −2e2/3.
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The third derivative with respect to the time in the equation of motion
presents a new problem, such an equation has runaway, self-accelerating solu-
tion,

ẋ0 = cosh[r0(e
s/r0 − 1)], ẋ1 = sinh[r0(e

s/r0 − 1)], ẋ2 = ẋ3 = 0, (7.38)

with rc being the classical electron radius (7.24). This is unacceptable. Dirac
proposed an additional boundary condition in time for the charges which is
needed for the equation of motion with third time derivative. This is to be
imposed at the final time and it eliminates the runaway solutions. The problem
which renders this proposal difficult to accept is that it generates acausal effects
on the motion of the charges, acceleration before the application of the forces.

The origin of this problem is the sharp boundary of the homogeneously dis-
tributed charge in a sphere when the radius r0 tends to zero. It was shown that
both the runaway and the preaccelerating solutions are absent for Sommerfeld’s
equation of motion (7.33) as long as r0 > rcl [12]. It is the truncated power se-
ries approximation for this finite difference equation which creates the problem
in the point charge limit.

7.4.2 Point charge limit

We present here Dirac’s work [13] where he returns to the point-like electron
and introduces the manifestly Lorentz-covariant separation of the near and far
fields, A = Dr · j +Ain = Da · j +Aout

Arad = Aout −Ain = Ar −Aa

Ar =
1

2
Arad

︸ ︷︷ ︸

Af

+
1

2
(Ar +Aa)
︸ ︷︷ ︸

An

. (7.39)

He found that the correction force to the equation of motion comes entirely from
Af which is finite and regular at the point charge and the near field is responsible
of the divergences arising in the point charge limit. The actual calculation is
subtle because the emission of radiation does not commute with the limit r0 → 0
since the radiation is constrained onto the future light-cone which can not be
pierced by the world-line of a massive particle. In other words, a strictly point
charge can not have back reaction force, this latter comes entirely from r0 > 0.

We start with

Fµν
rad(s

′) = 4πe

∫

ds[Dr(x− x′)−Da(x− x′)
︸ ︷︷ ︸

1
2π ǫ(x0−x′0)δ((x−x′)2)

]
d

ds

(x− x(s))µẋν(s)

(x− x(s)) · ẋ(s) − (µ←→ ν)

(7.40)
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where we write s = s′ + u and expand in u,

x(s)− x(s′) = uẋ+
u2

2
ẍ+

u3

6

d3x

ds3
+ · · ·

ẋ(s) = ẋ+ uẍ+
u2

2

d3x

ds3
+ · · ·

(x(s)− x(s′))2 = u2 +O
(
u4
)

(x(s)− x(s′)) · ẋ = u+O
(
u3
)

ǫ(x0(s)− x′0(s′)) = ǫ(u) (7.41)

to find

Fµν
rad(s

′) = 2e

∫

dsǫ(u)δ(u2)
d

du

[(

ẋ+
u

2
ẍ+

u2

6

d3x

ds3

)µ(

ẋ+ uẍ+
u2

2

d3x

ds3

)ν]

−(µ←→ ν)

= 2e

∫

duǫ(u)δ(u2)
d

du

(

uẋµẍν +
u

2
ẍµẋν +

u2

2
ẋµ dx

ν

ds3
+

u2

6

dxµ

ds3
ẋν

)

−(µ←→ ν). (7.42)

The small but finite size of the charge compared with the width of the light
cone where the radiation field is constrained is taken into account by the formal
steps witnessing the insight of the inventor of the delta function,

δ(u2) = lim
v→0+

δ(u2 − v2) = lim
v→0+

[
δ(u− v)

2v
+

δ(u+ v)

2v

]

ǫ(u)δ(u2) = lim
v→0+

[
δ(u− v)

2v
− δ(u+ v)

2v

]

= −δ′(u), (7.43)

yielding

Fµν
rad(s

′) = 2e

∫

duδ(u)
d2

du2

(
u

2
ẋµẍν +

u2

3
ẋµ dx

ν

ds3

)

− (µ←→ ν)

=
4

3
e

(

ẋµ d
3xν

ds3
− ẋν d

3xµ

ds3

)

(7.44)

and

Kµ
react = mcẍµ

rad(x
′) =

e

2c
Fµν
rad(x

′)ẋν

=
2

3
e2
(

ẋµ d
3x

ds3
· ẋ− d3xµ

ds3

)

. (7.45)

Since ẋ · ẋ = 1, ẍ · ẋ = 0 and

d3x

ds3
· ẋ+ ẍ2 = 0 (7.46)
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we find finally

Kµ
react = −2

3
e2
(

ẋµẍ2 +
d3xµ

ds3

)

. (7.47)

The near field represents no loss or gain in energy and momentum, it rather
enriches the structure of the charge by modifying, renormalizing its free equation
of motion. Dirac found that Lorentz’s divergent mreact is given by the near-field
and gives rise a mass renormalization. To see this we start with the action

S = −mbc

∫

ds+ Sed

Sed = −e

c

∫

d4xAν(x)jν(x)

= −e

2

∫

d4x[Ar
ν(x) +Aa

ν(x)]

∫

ds ρ(x− x(s))
︸ ︷︷ ︸

form factor

ẋν(s) (7.48)

We write the near field as

1

2
[Ar

ν(x) +Aa
ν(x)] = 4πe

∫

d4x′ds′
1

2
[Dr(x− x′) +Dadv(x− x′)]ρ(x′ − x(s′))ẋν(s

′)

= e

∫

d4x′ds′δ((x− x′)2)ρ(x′ − x(s′))ẋν(s
′) (7.49)

which yields, upon inserted into the action

Sed = −e2
∫

d4xd4x′dsds′δ((x− x′)2)ρ(x′ − x(s′))ρ(x− x(s))ẋ(s′) · ẋ(s)

= −e2
∫

d4wd4w′dsds′δ((w − w′ + x(s)− x(s′))2)ρ(w′)ρ(w)ẋ(s′) · ẋ(s).

(7.50)

This was the decisive step, this action does not contain the Liénard-Wiechert
potentials anymore, the Green functions were used to eliminate the electromag-
netic field from the problem by means of their equations of motion. We follow
the limit r0 →, s′ = s+ u, ẋ(s′) = ẋ+ uẍ+ · · · , x(s)− x(s′) = −uẋ+ · · · and
write

Sed ≈ −e2
∫

dsd4wd4w′duδ((w − w′ − uẋ)2)ρ(w′)ρ(w)

= −e2

2

∫

dsd4wd4w′

(
1

(w − w′ − uretẋ) · ẋ
+

1

(w − w′ − uadvẋ) · ẋ

)

ρ(w′)ρ(w)

= −e2

2

∫

ds

∫

d4wd4w′

(
1

(w − w′) · ẋ− uret
+

1

(w − w′) · ẋ− uadv

)

ρ(w′)ρ(w)

︸ ︷︷ ︸

tends to be divergent and independent of s for ρ(x)→δ4(x)

= −medc

∫

ds (7.51)
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with

med =
e2

2c

∫

d4wd4w′

(
1

(w − w′) · ẋ− uret
+

1

(w − w′) · ẋ− uadv

)

ρ(w′)ρ(w)

(7.52)
What is found is a renormalization of the mass, the combinationmph = mb+mel

is observable only which sets mb = mph −med.

7.4.3 Iterative solution

The coupled equations of motion for the charge and the electromagnetic field
can be solved iteratively, by reinserting the Liénard-Wiechert potential obtained
by means of the solution of the mechanical equation [2]. They set up a pertur-
bation expansion in the retardation which comprises the nontrivial effects of the
radiation and obtain the radiation force in two steps. First they calculate the
effective Lagrangian for the charge, obtained by eliminating the electromagnetic
field by the Maxwell equation in order O (v/c). The next order contain the ra-
diational friction force and is obtained by iterating the equation of motion. It
is reassuring to see that the further iterations in the retardation yield vanishing
result in the point charge limit.

The retarded Liénard-Wiechert potential (which can not be obtained from
an action principle due to its non time reflection symmetrical form) leads to the
effective Lagrangian

L = −
∑

a

mac
2

√

1− v2a
c2
−
∑

a

eaφ+
∑

a

ea
c
A · va

=
∑

a

[
mav

2
a

2
+

mav
4
a

8c2
+O

(
v6

c6

)]

−
∑

a

ea

∫

d3x′ ρ(t−
|xa−x′|

c ,x′)

|xa − x′| +
∑

a

ea
c2

∫

d3x′ j(t−
|xa−x′|

c ,x′)

|xa − x′| · va(7.53)

for a system of charges when the self-interaction is retained.
We make an expansion in the retardation by assuming v ≪ c, R/c ≪ τ , τ

being the characteristic time scale of the charges. Note that the factor |xa −
x′|n in the higher, O

(

( v
2

c2 )
n
)

order contributions with n ≥ 3 suppresses the

singularity at |xa − x′| = 0. We find

φ(t, ra) =
∑

b

[∫

drb
ρ(t, rb)

Rab
− 1

c
∂t

∫

drbρ(t, rb)

︸ ︷︷ ︸

Q=const.

+
1

2c2
∂2
t

∫

drbRabρ(t, rb)

− 1

6c3
∂3
t

∫

drbR
2
abρ(t, rb)

]

+O
(

1

c4

)

A(t, ra) =
∑

b

[
1

c

∫

drb
j(t, rb)

Rab
− 1

c2
∂t

∫

drbj(t, rb)

]

+O
(

1

c3

)

, (7.54)
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what yields

φa =
∑

b

[
eb
Rab

+
eb
2c2

∂2
tRab −

eb
6c3

∂3
tR

2
ab

]

Aa =
∑

b

[
ebvb

cRab
− eb

c2
∂tvb

]

(7.55)

in the point charge limit. We perform the gauge transformation

φ′
a = φa −

1

c

∑

b

[

∂t

( eb
2c

∂tRab −
eb
6c2

∂2
tR

2
ab

)]

=
∑

b

eb
Rab

= φ′(0)
a

A′
a = Aa +∇

∑

b

[( eb
2c

∂tRab −
eb
6c2

∂2
tR

2
ab

)]

=
∑

b





ebvb

cRab
− eb

c2
∂tvb +

eb
2c
∇∂tRab −

eb
6c2

∂2
t ∇R2

ab
︸ ︷︷ ︸

2Rab




 = A′(1)

a +A′(2)
a .(7.56)

The Lagrangian is

L(0) =
∑

a

mav
2
a

2
− 1

2

∑

a 6=b

eaeb
Rab

(7.57)

in the non-relativistic limit, O
(
( vc )

0
)
after ignoring an unimportant, diverging

self energy for a = b.
For the next non-relativistic order, O

(
v
c

)
, we need

∇∂tR = ∂t∇R = ∂tn =
∂tR

R
− R∂tR

R2
(7.58)

where n = (r − r′)/|r − r′| denotes the unit vector from the charge to the
observation point and R∂tR = R∂tR = −Rv, with

∂tn =
−v + n(n · v)

R
. (7.59)

One finds

φ′(0)
a =

∑

b

eb
Rab

A′(1)
a =

∑

b

eb
vb + nb(nb · vb)

2cRab
(7.60)

and the Lagrangian is

L(2) =
∑

a

(
mav

2
a

2
+

mav
4
a

8c2

)

−1

2

∑

a 6=b

eaeb
Rab

+
1

2

∑

a 6=b

eaeb
c2Rab

[va·vb+(va·nab)(vb·nab)]

(7.61)
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in this order after a diverging self energy is ignored again for a = b.
The next, O

(
( vc )

2
)
electromagnetic field contains the radiation induced fric-

tion force and can not be represented in the Lagrangian. We set R = r − r′,
∂tR = −∂tr′ and write

A
′(2)
a =

∑

b

[eb
c2

∂tvb +
eb
3c2

∂tvb

]

= −
∑

b

2

3

eb
c2

∂tvb. (7.62)

In the absence of explicit x-dependence the magnetic field is vanishing in this
order, H(2) = 0. The force acting on the charge is of electric origin alone and
the self force arises from the electric field

E(2)
a = −1

c
∂tA

′(2)
a −∇ φ(2)

a
︸︷︷︸

=0

=
2

3

ea∂
3
t xa

c3
(7.63)

The energy loss per unit time is

W =
∑

a

Fa · va

=
3

2

1

c3

∑

b

eb∂
3
t xb ·

∑

a

ea∂txa

=
3

2

1

c3

∑

ab

eaeb[∂t(∂
2
t xb · ∂txa)− (∂2

t xa · ∂2
t xb)] (7.64)

with the time average

W = −3

2

1

c3

∑

ab

eaeb(∂2
t xa · ∂2

t xb) (7.65)

where the total derivative term can be neglected.
The higher order contributions in the retardation become negligible in the

point-like charge limit when R→ 0 and the expression for the radiation reaction
force

Frr =
2

3

e2∂2
t v

c3
(7.66)

becomes exact! We see that we recover the second term in the right hand side of
the last equation of Eqs. (7.34) but not the first one in this manner, by relying
on the retarded potentials.

The non-relativistic equation of motion,

m∂tv =
2

3

e2∂2
t v

c3
(7.67)

leads unavoidable to the runaway solution

∂tv = v0e
t 3
2

mc3

e2 . (7.68)



72 CHAPTER 7. RADIATION BACK-REACTION

The equation of motion with the Lorentz-force, corrected by the radiation
reaction is

m∂tv = eEext +
e

c
v ×Hext +

2

3

e2∂2
t v

c3
. (7.69)

We arrived finally at a central question: at what length scales can we see
the radiation reaction forces? The condition for the radiation back-reaction be
small and an iterative solution is applicable is the following. In the rest frame

∂2
t v =

e

m
∂tEext +

e

mc
∂tv ×Hext +O

(
c−3
)
. (7.70)

Since ∂tv = eEext/m,

∂2
t v =

e

m
∂tEext +

e2

m2c
Eext ×Hext +O

(
c−3
)

(7.71)

and the radiation reaction force is

Frr =
2

3

e3

mc3
∂tEext

︸ ︷︷ ︸

O
(

e3ω
mc3

E
)

+
2

3

e4

m2c4
Eext ×Hext

︸ ︷︷ ︸

O
(

e4

m2c4
EH

)

+O
(
c−5
)
. (7.72)

The first term is negligible compared with the force generated by the external
electric field for a monochromatic field with frequency ω if

|Frr|
|Fext|

≈ e2ω

mc3
≪ 1 (7.73)

or
e2

mc2
≪ c

ω
=

λ

2π
. (7.74)

Thus classical electrodynamics becomes inconsistent due to pair creations at
distances shorter than the classical charge radius, ℓ ≈ λC = e2/mc2.

We note that the second term is negligible,

H ≪ m2c4

e3
(7.75)

for realistic magnetic fields.

7.4.4 Action-at-a-distance

A different approach to electrodynamics which might be called effective theory
in the contemporary jargon is based on the elimination of the electromagnetic
field altogether from the theory [14, 15, 16].

Let us write the action of a system of charges described by their world lines
xµ
a(s) and the electromagnetic field in a condensed notation as

S =
∑

a

Sm[xa] +
1

2
A ·D−1 ·A−

∑

a

ja ·A (7.76)
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where the dot stands for space-time integration and index summation, j · A =
∫
dxjµ(x)Aµ(x), etc. The Maxwell equation, δS

δA = 0, yields

A = D · j. (7.77)

This equation can be used to eliminate A from the action and to construct the
effective theory for the charges with the action

S =
∑

a

Sm[xa] +
1

2

∑

ab

ja ·D ·D−1 ·D · jb −
∑

ab

ja ·D · jb

=
∑

a

Sm[xa]−
1

2

∑

ab

ja ·D−1 · jb

→
∑

a

Sm[xa]−
1

2

∑

a 6=b

ja ·D−1 · jb (7.78)

without the electromagnetic field. The elimination of the field degrees of free-
dom generates action-at-a-distance. The self-interaction was omitted in the last
equation.

The Maxwell equation indicates that D should be a Green-function. But
which one? According to Dirac’s proposal we have near and far field Green-
functions

A
n

f =
1

2
(Ar ±Aa) =

1

2
(Dr ±Da) · j (7.79)

which motivates the notation D
n

f = 1
2 (D

r ± Da). Whatever Green-function
we use, the symmetric part survives only because A · B · A = 0 for an anti-
symmetrical operator, Btr = −B. Since Da(x, y) = Dr(y, x), Dn and Df are
just the symmetric and antisymmetric part of the inhomogeneous propagator
and we have to use Dn in the action principle. The self-interaction generated
by the near-field and ignored in the last line of Eqs. (7.78) is indeed a world-line
independent, divergent term.

The support of the Green-function is the light-cone therefore the charge a
at point xa interacts with the charge b if the world-line xb(s) of the charge b
pierces the light-cone erected at point xa. The interaction is governed by the
near-field Green-function and it is 50% retarded and 50% advanced. Such an
even distribution of the retarded and advanced interaction assures the formal
time inversion invariance.

The unwanted complication of the near-field mediated interactions is that it
eliminates radiation field and the retardation effects. It is a quite cumbersome
procedure to add by hand the appropriate free field to the solution which restores
the desired initial conditions.

The use of the retarded Green-function assumes that the in-fields are weak.
This is not the case for the out-fields and the time inversion symmetry is broken.
A sufficient plausible assumption to explain this phenomenon is the proposition
that the Universe is completely absorptive, there is no electromagnetic radiation
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reaching spatial infinities due to the elementary scattering processes of the inter-
galactic dust [17]. The equation of motion for the charge a in the theory given
by the action (7.78),

mcẍµ
a =

e

c
Fnµν ẋaν

=
e

2c

∑

b 6=a

(F rµν
b + F aµν

b )ẋaν (7.80)

can be written as

mcẍµ
a =

e

c




∑

b 6=a

F rµν
b +

1

2
(F rµν

a − F aµν
a )− 1

2

∑

b

(F rµν
b − F aµν

b )



 ẋaν . (7.81)

The first term represents the usual retarded interaction with the charges, self
interactions ignored. The second term is the regular far field generated by the
charge and provides the forces needed for the energy-momentum conservation
for radiating charges. The last expression, the radiation field of all charges is
vanishing in a completely absorbing Universe. The origin of the breakdown of
the time reversal invariance needed for the appearance of the radiation friction
force which can be derived without difficulty from Eq. (7.81) is thus located
in the absorbing nature of the Universe. Calculations performed in Quantum
Electrodynamics in finite, flat space-time support the absorbing Universe hy-
pothesis.

7.4.5 Beyond electrodynamics

Similar radiation back-reaction problem exist in any interactive particle-field
theory, for instance gravity or a more academic model where the interaction is
mediated by a massive scalar field.

A mass curves the space-time around itself and is actually moves in such
a distorted geometry. part of the distortion is instantaneous, the analogy of
the Coulomb force of electrodynamics, another part displays retardation and
represents gravitational radiation. It was found [18, 19] that there is indeed
a radiation back-reaction force in gravity and its additional feature is that it
has a non-local component parallel to the four-acceleration, hence the mass is
renormalized by a term which depends on the whole past of the motion. It is the
special vector algebra which rendered the mass renormalization a part and time
independent constant in Eq. (7.22) for the electromagnetic interaction in flat
space-time. But a conceptual issue which remains to settle in the gravitational
case is that in general any explicit use of the space-time coordinate corresponds
to a gauge choice, in particular the form of the self force one can get is gauge
dependent and not physical. The satisfactory solution of this problem which is
still ahead of us is to translate all relevant dynamical issues into gauge invariant,
coordinate choice independent form. The loss of the mass as a constant to
characterize the motion of a point particle obviously forces radical changes upon
our way to imagine classical physics.
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The origin of the non-local nature of the self-force can easily be understood.
An external background curvature acts as a mass term for the gravitational
radiation. Therefore, the dynamical problem here is like the radiation back-
reaction arising from interacting with a massive field. This problem can specially
easily analyzed in the case of a massive scalar field. Its retarded Green function
is non-vanishing within the future light cone as opposed to the massless Green
function whose support is the future light cone only. Therefore whole past of
the world-line for the point x(s) lies within the past light cone of x(s) and
contribute to the self-force as opposed to the simple situation of the massless
electromagnetic interaction, depicted in Fig. 6.1.

7.5 Epilogue

The recent developments in High Energy Physics, namely the construction of
effective theories based on the use of the renormalization group shows clearly the
origin of the Abraham-Lorentz force. When degrees of freedom are eliminated
in a dynamical system by means of their equation of motion then the equations
of motion of the remaining degrees of freedom change. The new terms represent
the correlations realized by the eliminated degrees of freedom in the dynamics of
the remaining part of the system. When the effect of the self field is considered
on a charge then we actually eliminate the EM field and generate new pieces to
the equations of motion for the charges. These are the radiation back-reaction
forces, their importance can systematically be estimated by the method of the
renormalization group, applied either on the classic or the quantum level.



76 CHAPTER 7. RADIATION BACK-REACTION



Bibliography

[1] J. D. Jackson, Classical Electrodynamics, John Wiley and Sons, New York.

[2] L. D. Landau, E. M. Lifshitz, The Classical Theory of Fields, Vol2. (4th
ed.) Butterworth-Heinemann.

[3] F. Rohrlich, Classical Charged Particles, Addison-Wesley Publishing Co.,
Redwood City, (1965).

[4] A. O. Barut, Electrodynamics and Classical Theory of Fields and Particles,
The MacMillan Co., New York,1964.

[5] J. J. Thomson, Phil. Mag. 11, 229 (1881).

[6] H. A. Lorentz, Enzykl. Math. Wiss. V. 1, 188 (1903).

[7] H. A. Lorentz The Theory of Electrons and Its Applications to the Phe-

nomena of Light and Radiant Heat, Dover, New York, (1962).

[8] M. Abraham, Ann. Physik 10, 105 (1903).

[9] A. Sommerfeld, Akad. Van Wetensch, Amsterdam 13, 346 (1904).

[10] M. von Laue, Ann. Physik 28, 436 (1909).

[11] F. Rohrlich, Am. J. Phys. 65, 1051 (1977).

[12] E. J. Moniz, D. H. Sharp, Phys. Rev. 15, 2850 (1977).

[13] P. A. M. Dirac, Proc. Roy. Soc. A167, 148 (1938).

[14] K. Schwarzschild, Göttinger Nachrichten 128, 132 (1903).

[15] H. Tetrode, Zeits. f. Physik 10, 317 (1922).

[16] A. D. Fokker, Zeits. f. Physik 58, 386 (1929); Physica 9, 33 (1929); Physica
12, 145 (1932).

[17] J. A. Wheeler, R. Feynman, Rev. Mod. Phys. 21, 425 (1949).

[18] Y. Mino, M. Sasaki, T. Tanaka, Phys. Rev. D55, 3457 (1997).

[19] T. C. Quinn, R. M. Wald, Phys. Rev. D56, 3381 (1997).

77


