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I. INTRODUCTION

A. Why Classical Field Theory?

The interactions between point-particles are described by some kind of forces in non-relativistic mechanics. This
picture meet unexpected difficulties when its relativistic extension is sought.

1. These forces can not be instantaneous because simultaneity is not a Lorentz-invariant concept.

2. The relativistic invariance is incompatible with the usual Cauchy-problem setup of classical mechanics. In fact,
the world line of a particle, xµ(s), parameterized by the proper time satisfies the condition

dxµ(s)

ds

dxµ(s)

ds
= 1 (1)

and the equation

d2xµ(s)

ds2
dxµ(s)

ds
= 0 (2)

follows, showing that the four-velocity must be perpendicular to the four-acceleration. But the Cauchy-problem
consists of the free prescription of the coordinates and the velocities for the initial conditions which might lead
to contradiction to Eq. (2) for a given interaction. The possible way out from this difficulty is to give up the
Cauchy-problem rearrangement and allow that the forces acting on the particles on a given instant are given
not only on some initial conditions but they depend on the whole past evolution of the system.

3. The algebraic study of the Poisson-bracket structure of relativistic Hamiltonian Mechanics leads to a ”no-go
theorem”, stating that any Lorentz-invariant particle dynamics given in terms of Lagrangians lead to vanishing
accelerations, ie. only non-interacting relativistic particles can be described by the usual Lagrangian formalism.

The solution of these problems is the use of the time honored field concept in Physics. They are supposed to play
the role of fundamental degrees of freedom in relativistic mechanics.

B. Why Quantum Field Theory?

There are several reasons Quantum Field Theory is required to extend and to complete the formalism of usual
non-relativistic Quantum Mechanics.
The conceptual problems, treated by Quantum Field Theory are the following:

1. According to special relativity mass and energy are equivalent. In other words, energy and mass can be converted
into each other. Mass is quantized, cf. mass spectrum of elementary particles, and kinetic energy can be used to
create particles, particles can annihilate leaving behind energy only in the form of other particles. The number
of degrees of freedom becomes a dynamical variable. The Schrödinger equation or its relativistically covariant
generalizations can not cope with this phenomenon.

2. The particle number is ill defined for any bound state. This is because interactions consists of particle exchanges
and there are infinitely many particles exchanged when a bound state is formed. The interaction between static
particles can be recast in terms of a potential acting between the particles. But the bounded particles are in
motion and their dynamics is influenced by the retarded effects of the particle exchange. This latter can not be
brought into the form of an interaction potential and requires the possibility of changing the particle number.
The strength of this many-body effect is proportional to the square of the coupling constant characterizing the
interaction and is therefore important for strong interactions.

3. The unique and well defined nature of the state vector is lost in Quantum Mechanics as soon as special relativity,
causality in particular, is imposed. But the transition amplitudes remain well defined and obey relativistic
transformation rules. Thus a formalism of Quantum Mechanics is sought which is based on amplitudes and
states remain hidden. This is achieved in Quantum Field Theory where observables are described in terms of
Green functions only.

The ’technical’ problems urging us to seek other formalism than those of the usual non-relativistic Quantum
Mechanics are:
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1. Particles with the same quantum numbers are indistinguishable in Quantum Mechanics and the multi-particle
states have to be symmetrized or anti-symmetrized in three dimensions. It is very clumsy and difficult to work
with the wave functions of such states because the same information is repeated N ! times in an N -particle
state. Quantum Field Theory offers a new representation of multi-particle state in which (anti)symmetrization
appears in a natural manner.

2. Observables always involve some particles, eg. kinetic energy is a one-body operator, the Coulomb energy is
a two-body operator, etc. Their expectation values are usually calculated in the framework of perturbation
expansion. Consider an observable for nO particles. The fundamental interactions are supposed to be simple,
involving few particles only. The expectation value of our observable, calculated in the k-th order of the
perturbation expansion in a theory where the interactions involve ni particles, should be made up by considering
nO + kni particles altogether. This number is far less than the total number of particles which is usually at
least in the order of magnitude of the Avogadro number. How can we organize our formalism to let the gigantic
number of spectator particles separate off the dynamics of nO + kni active particles? The answer is provided
by the perturbation expansion constructed for Green functions.

Finally, Quantum Field Theory is unique. The states of elementary particles are vectors of the irreducible rep-
resentations of the appropriate symmetry group, cf. Appendix B. It has been shown that Quantum Field Theory
actually produces the most general representation of the kinematic and internal symmetries obtained in terms of local
operators in space-time.

C. Basic idea of Quantum Field Theory

Let us start the heuristic introduction of quantum field for non-interacting particles characterized by their dispersion
relation, E =

√

m2 + p2, in units ~ = c = 1. The energy-momentum of a system of n(p) particles with momentum p

is

E =
∑

p

n(p)E(p), P =
∑

p

n(p)p (3)

Harmonic oscillator for each momentum: The only quantum system with similar, equidistant spectrum is the
harmonic oscillator. Therefore we introduce a harmonic oscillator for each momentum value. The state of the system
is characterized by the occupation number n(p). The quantum state can be represented for pedestrians by a set of
drawers, one for each value of the momentum and the drawer of momentum p contains n(p) balls. The balls are
indistinguishable within a drawer by construction because we know their numbers only.
We have canonical variables, Xp and Pq, defined by the canonical commutation relations

[X(p), P (q)]ξ = iδ(p− q), [X(p), X(q)]ξ = [P (p), P (q)]ξ = 0 (4)

where

[A,B]ξ = AB − ξBA, (5)

ξ = ±1 and the Hamiltonian is

H =

∫
d3p

(2π)3

(
P 2(p)

2M(p)
+
M(p)ω2(p)

2
X2(p)

)

(6)

In order to have the desired spectrum we choose

ω(p) = E(p) =
√

m2 + p2, (7)

with arbitrary M(p).

Quantum field: The operator algebra of harmonic oscillators is simpler in terms of the creation and destruction
operators. Let us then introduce the creation and destruction operators

a(p) =
M(p)ω(p)X(p) + iP (p)

√

2M(p)ω(p)

a†(p) =
M(p)ω(p)X(p)− iP (p)

√

2M(p)ω(p)
(8)
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whose commutation relation according to Eq. (4) is
[
a(p), a†(q)

]

ξ
= (2π)32ω(p)δ(p− q), [a(p), a(q)]ξ =

[
a†(p), a†(q)

]

ξ
= 0, (9)

where the operators a(p) and a†(q) were rescaled by the factor
√

(2π)32ω(p) for later convenience.
Our intuition is better in coordinate than momentum space because the local nature of the basic laws of physics

render the equations of motions simpler in the former case. Therefore, we introduce a linear superposition of the the
momentum dependent, operator valued function a(p), a formal Fourier integral to define the quantum field,

φ(x) =

∫
d3p

(2π)32ω(p)
a(p)eixp. (10)

D. Fock space

In order to become more familiar with the quantum system introduced above let us explore the structure of the Fock
space the field operators act. We shall consider multi-particle states with bosonic and fermionic exchange statistics.
According to the commutation relations (62)-(63) we have an harmonic oscillator for each value of the momentum

therefore, the Fock space is the direct product of the Hilbert spaces Hp corresponding to the harmonic oscillator of
the momentum p,

H = ⊗
∏

p

Hp. (11)

Bosons: Let us consider states with well defined particle number. The simplest state is without any particle, the
vacuum,

|0〉 = ⊗
∏

p

|0〉p. (12)

A state with a single particle with momentum p is

|p〉 = a†(p)|0〉. (13)

A one-particle state characterized by the wave function Ψ1(p) in momentum space is

|Ψ1〉 =
∫

d̃pΨ1(p)a
†(p)|0〉. (14)

A two-particle state with momenta p1 and p2 is

|p1,p2〉 = a†(p1)a
†(p2)|0〉. (15)

Notice that the symmetry of the state with respect to the exchange,

|p1,p2〉 = a†(p1)a
†(p2)|0〉 = |p2,p1〉 = a†(p2)a

†(p1)|0〉 (16)

imposes the vanishing canonical commutation relations (4) with ξ = +1.
A two-particle state with a given wave function is

|Ψ2〉 =
1

2

∫

˜dp1
˜dp2Ψ2(p1,p2)a

†(p1)a
†(p2)|0〉. (17)

Finally, an arbitrary state can be written by means of infinitely many wave functions as

|Ψ〉 =
[

Ψ0 +

∫

d̃pΨ1(p)a
†(p) +

1

2

∫

˜dp1
˜dp2Ψ2(p1,p2)a

†(p1)a
†(p2)|0〉+ · · ·

]

|0〉. (18)

Let us now introduce the particle number operator

N =

∫

d̃ka†(p)a(p) (19)
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which identifies the vacuum by the condition

N |0〉 = 0. (20)

One can easily identify the particle number in the states (14) and (17),

N |Ψn〉 = n|Ψn〉 (21)

by means of the commutation relations (62)-(63).

Fermions: The preceding discussion can easily be extended for fermions. The one and two particle states are

|Ψ1〉 =

∫
d3p

(2π)3
m

ωp

[Ψp1α(p)c
†
α(p) + Ψa1α(p)d

†
α(p)]|0〉

|Ψ2〉 =
1

2

∫
d3p1
(2π)3

m

ωp1

d3p1
(2π)3

m

ωp1

[Ψpp2αβ(p1,p2)c
†
α(p1)c

†
β(p2) + Ψpa2αβ(p1,p2)c

†
α(p1)d

†
β(p2)

+Ψap2αβ(p1,p2)d
†
α(p1)c

†
β(p2) + Ψaa2αβ(p1,p2)d

†
α(p1)d

†
β(p2)]|0〉 (22)

where the index p and a corresponds to particle or anti-particle state, respectively. The anti-symmetrization of the
multi-particle states, eg.

|p1,p2〉 = c†(p1)c
†(p2)|0〉 = −|p2,p1〉 = −c†(p2)c

†(p1)|0〉 (23)

requires the replacement of the canonical commutation relations with canonical anti-commutation relations by setting
ξ = −1 in Eq. (4).

Dynamics: The exponential function if the Fourier integral (10) is reminiscent of the wave function of a particle
with momentum p. The generalization for a time-dependent filed would be

φ(t,x) =

∫
d3p

(2π)32ω(p)
a(p)e−itω(p)+ixp. (24)

We need harmonic oscillator only for the mass shell ω2(p)− p2 = m2 therefore we impose the condition

∫
d3p

(2π)32ω(p)
a(p)[m2 − ω2(p) + p2]e−itωp+ixp = (�+m2)φ(t,x) = 0, (25)

ie. either the harmonic oscillator is on the mass-shell or its coordinate and momentum are vanishing. The Lorentz
invariance leads to an equation of motion, the Klein-Gordon equation in this manner.
The formal similarity of the field (24) with the one-particle wave function is the origin of the historic name, “second

quantization”, of quantum field theory. Because the representation of multi-particle systems by harmonic oscillator
requires quantization, the first one. The result, a “wave function (24) which is operator values appears as if we had
gone through a a second quantization process when the number valued wave function is replaced by operator valued
function. But the analogy between wave function and the field operator holds for non-interacting particles only. In
fact, there is no way to define the state of a single particle in an interactive quantum system since interaction generates
entanglement.
The same time dependence can be obtained in a more systematic manner by solving the Heisenberg equation, Eq.

(E5) for the quantum field. The Hamiltonian (6), written in terms of the creation and destruction operators,

H =

∫
d3p

(2π)32ω(p)
ω(p)

(

a†(t,p)a(t,p) +
1

2

)

(26)

(Since the Hamiltonian of a system of non-interacting particles is time independent we can take the creation and
destruction operators in this expression at arbitrary time t.) leads to the equation of motion

i∂0a(t,p) =

∫
d3p

(2π)32ω(p)
ω(p)[a(t,p), a†(t,p)a(p)]+. (27)

Notice that we have commutator in the Heisenberg equation irrespectively of the exchange statistics of the particles
handled by the field φ(x). The identity [A,BC]+ = B[A,C]+ + [A,B]+C and the canonical commutation relations
(9) give the equation of motion

i∂0a(t,p) = ω(p)a(t,p), (28)
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with solution (24).
Though the free particle dynamics can be constructed in such a simple manner, interactions render the previous

considerations far more involved. In order to find the possible interactions which are compatible with certain sym-
metries and work out the time dependence generated by them we turn to the variation formalism, introduced in
Appendix A, in the following Chapter.

II. CANONICAL QUANTIZATION

The generalization of the heuristic treatment of noninteracting many-particle system presented in the previous
Chapter for interactive particles can be achieved by means of the Lagrangian description.

A. Single particle

Let us start with a single d-dimensional particle, characterized by the Lagrangian L(x, ẋ). The coordinates are x,
canonical momentum is defined as

p =
∂L(x, ẋ)

∂ẋ
(29)

and the kinematic structure is given by imposing the Heisenberg commutation relation

[x̂j , p̂k] = iδj,k, [x̂j , x̂k] = [p̂j , p̂k] = 0, (30)

for the canonical operator pair. The operators will be equipped by a hat in this short introduction to canonical
quantization for the sake of clarity. The well known solution of the canonical commutation relations is

x̂ψ(x) = xψ(x), p̂ψ(x) =
1

i

∂

∂x
ψ(x). (31)

The dynamics is generated by the Hamiltonian

H = ẋp− L(x, ẋ), (32)

expressed in terms of the canonical pair x,p as the Schrödinger equation,

i∂0|ψ(t)〉 = Ĥ |ψ(t)〉 (33)

for the state |ψ〉. The states are characterized by their wave function, ψ(x) = 〈x|ψ〉, obtained by projecting them on
the coordinate eigenstates |x〉, satisfying the condition

x̂|x〉 = x|x〉. (34)

B. Quantum field

A classical, one real component scalar field theory can be obtained from this point particle by imagining it as a
system with coordinate whose components are labeled by space points, xj → xx which traditionally is denoted by
φ(x) in the case of a scalar field. In other words the field theory is a dynamical system specified by the coordinate
Φ(x), by a field configuration.
To render the subsequent mathematical expressions well defined one should introduce a lattice in the coordinate

space, x→ an, where a is the lattice spacing and n = (n1, n2, n3) is a vector with integer components, 0 ≤ nj ≤ N .
The minimal distance of this theory, a, is called ultraviolet (UV) cutoff. The maximal distance, L = Na, the size
of the quantization box is usually called the infrared (IR) cutoff. The continuum limit a→ 0, performed by keeping
the physical content of the theory fixed, is called renormalization. The removal of the IR cutoff, L → ∞ is the
thermodynamical limit. But the limiting procedure will be considered later only, we continue now our discussion with
a small but finite a and a large but finite L and the coordinate of our system is the field configuration φn = φ(an)
which can be considered as a point in the N3-dimensional coordinate space.



8

The action written as

S =

∫

dta3
∑

n

L(φn,∇φn) =
∫

dtLt[φ, ∂φ] (35)

defines the Lagrangian

Lt[φ, ∂φ] = a3
∑

n

L(φn,∇φn) (36)

where the space-derivatives in the Lagrangian are given as

∇jφ(x) =
φn+ej

− φn
a

, (37)

ej denoting the unit vector in the direction of j. The canonical momentum is

πn =
∂Lt[φ,∇φ]
∂∇0φn

= a3
∂L(φ(x), ∂φ(x))

∂∂0φ(an)
(38)

The quantization of the lattice regulated theory consists of replacing the canonical coordinates and momenta by

operators, φn → φ̂n, πn → π̂n, and imposing the Heisenberg commutation relation

[φ̂n, π̂n′ ] = iδn,n′ , [φ̂n, φ̂n′ ] = [π̂n, π̂n′ ] = 0. (39)

The construction of the momentum for continuous space starts with the definition of the functional derivative δ
δ ,

replacing the partial derivative in the definition of the canonical momentum, Eq. (38),

δ

δφ(an)
= lim
a→0

1

a3
∂

∂φn
. (40)

The factor 1/a3 is needed in this expression to reproduce the relation

δ

δφ(x)

∫

d3yf(y)φ(y) = lim
a→0

1

a3
∂

∂φn
a3
∑

n′

fn′φn′ = fn = f(x). (41)

which is reasonable to impose on a functional derivative. The Lagrangian

Lt[φ, ∂φ] =

∫

d3xL(φ(x)), ∂φ(x)) (42)

yields the canonical momentum

π(x) =
δLt[φ,∇φ]
δ∂0φ(x)

=
∂Lt(φ(x), ∂φ(x))

∂∂0φ(x)
, (43)

which satisfies

[φ̂(x), π̂(y)] = iδ(x− y), [φ̂(x), φ̂(y)] = [π̂(x), π̂(y)] = 0. (44)

The solution of the commutation relation is obtained by analogy with the usual, first quantized quantum mechanical

representation of the momentum operator in coordinate space. The coordinate is the field operator φ̂(x) acting on
the wave functionals as

φ̂(x)Ψ[φ(·)] = φ(x)Ψ[φ(·)] (45)

where the symbol · stands for an unspecified space location in these equations. The corresponding momentum operator
is

π̂(x)Ψ[φ(·)] = 1

i

δ

δφ(x)
Ψ[φ(·)]. (46)
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The wave functional

Ψ[φ(·)] = 〈φ(·)|Ψ〉 (47)

is defined by means of the field eigenstates

φ(x)|Φ(·)〉 = Φ(x)|Φ(·)〉. (48)

The time evolution is generated by the functional Schrödinger equation

i∂0|Ψ〉 = Ĥ |Ψ〉 (49)

with the Hamiltonian

H =

∫

ddx[∂0φ(x)π(x) − L(φ(x)), ∂φ(x)))]. (50)

For example, the Lagrangian

L =
1

2
∂µφ∂

µφ− m2

2
φ2 − U(φ) (51)

yields

π(x) = ∂0φ(x)) (52)

and

H =

∫

ddx

[

−1

2

δ2

δφ(x)δφ(x)
+

1

2
(∂φ(x))2 +

m2

2
φ2(x) + U(φ(x))

]

. (53)

Another, equivalent way of obtaining the Hamiltonian is to use the time-component of the energy-momentum tensor
(A52).
The calculation of the spectrum and the eigenstates of this Hamiltonian is exceeds our mathematical capabilities

for U(φ) 6= 0 but becomes easy in the absence of interaction, U(φ) = 0, cf. Appendix I. To prepare the way for
the perturbative treatment of the interactions we shall follow another, more algebraic construction of the quantum
dynamics of non-interacting particles which is equivalent with the procedure outlined above.

C. Explicit solution for free neutral, scalar particle

Instead of working with the functional formalism, generating the dynamics by the functional Schrödinger equation
we construct here directly the space-time dependent field operator as a Fourier integral,

φ(t,x) =

∫
d4k

(2π)4
2πδ(k2 −m2)a(k)e−ik·x. (54)

The desired dynamics is obtained by imposing the equation of motion (�+m2)φ(x) = 0. The operator valued Fourier
transform a(k) on the mass shell is the free parameter of the solution. The hermitian nature of the field operator,
φ(x) = φ†(x), requires a(−k) = a†(k). Not all components of the energy-momentum vector k are independent and it
is useful to express the energy in terms of the momentum,

k0 = ωk = +
√

m2 + k2. (55)

The positive and negative energy modes play different role in the dynamics thus it is advantageous to separate them
from the very beginning. For this end we introduce the notation a(k) = a(k) where (55) is used to express k0 on the
right hand side and write

φ(t,x) =

∫
d4k

(2π)4
2πδ(k2 −m2)Θ(k0)[a(k)e−ik·x + a†(k)eik·x]|k0=ωk

. (56)
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One should bear in mind that the convention (55) is used always for the operator valued Fourier integrals. One
integrates over k0,

φ(x) =

∫

d̃k[a(k)e−ik·x + a†(k)eik·x]. (57)

The integration measure

d̃k =
d4k

(2π)4
2πδ(k2 −m2)Θ(k0) =

d3k

(2π)32ωk

(58)

is invariant under the proper Lorentz group thus the operator a(k) is scalar.
The operator φ(x) introduced right now differs from the one mentioned in Eq. (48) in having explicit time depen-

dence. It is easy to check that the Heisenberg equation of motion, introduced in Appendix E 1, generates the same
time dependence for the field operator as seen in Eq. (56).
Let us now look at the canonical commutation relation. The Lagrangian (51) gives the canonical momentum

π(x) = −i
∫

d̃kωk[a(k)e
−ik·x − a†(k)eik·x] (59)

and the equal time canonical commutation relation reads

[φ(x), π(y)]|x0=y0 = −i
∫

d̃kd̃ℓωℓ[a(k)e
−ikx + a†(k)eikx, a(ℓ)e−iℓy − a†(ℓ)eiℓy]|x0=y0

= −i
∫

d̃kd̃ℓωℓ

{

[a(k), a(ℓ)]
︸ ︷︷ ︸

0

e−i(kx+ℓy) − [a†(k), a†(ℓ)]
︸ ︷︷ ︸

0

ei(kx+ℓy)

+ [a†(k), a(ℓ)]
︸ ︷︷ ︸

−(2π)32ωkδ(k−ℓ)

ei(kx−ℓy) − [a(k), a†(ℓ)]
︸ ︷︷ ︸

(2π)32ωkδ(k−ℓ)

e−i(kx−ℓy)
}

|x0=y0
(60)

which is supposed to be

iδ(x− y) = i

∫
d3k

(2π)3
eik·(x−y). (61)

This is satisfied only if the commutation relations

[a(k), a†(ℓ)] = (2π)32ωkδ(k − ℓ), (62)

and

[a(k), a(ℓ)] = [a†(k, a†(ℓ)] = 0 (63)

are imposed. These commutation relations show that we can indeed interpret a(k) and a†(k) as the annihilation and
creation operator of excitations of an harmonic oscillator corresponding to each allowed value of the spatial momentum
of a free particle.
Note that the coefficient of the Dirac-delta on the right hand side of the non-vanishing commutation relation must

always be identical with the inverse of the integral measure used in the Fourier integral of the field variable. Such a
different, relativistically invariant normalization of the creation and destruction operators in Eq. (57) as opposed to
Eq. (24) which explains the different normalizations of the right hand sides of the non-trivial canonical commutation
relations in Eqs. (9) and (62).
We find further support of this interpretation of these operators by writing the energy-momentum vector in terms

of a(k) and a†(k). Straightforward calculation leads to the result

Pµ =

∫

d3xT 0µ

=

∫

d3x

[

∂0φ∂
µφ− g0µ

(
1

2
∂µφ∂

µφ− m2

2
φ2
)]

=
1

2

∫

d̃kkµ[a(k)a†(k) + a†(k)a(k)], (64)
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c.f. Appendix ??.
The commutation relation (63) can be used to obtain finally the form

Pµ =

∫

d̃kkµa†(k)a(k) + g0µV

∫
d3k

(2π)3
ωk

2
, (65)

where the volume V/(2π)3 is actually the value of the momentum space Dirac-delta on the right hand side of (63)
at k = ℓ. It is easy to understand the first term on the right hand side, it is the sum of the energy-momentum for
the particles in different momentum sector of the the theory. The momentum is always additive, the additivity of the
energy is valid for non-interacting particles only.
The second term represents the sum of energy of the zero-point fluctuations of the harmonic oscillators. This

expression is ultraviolet (large momentum) divergent but being a number we can subtract from the energy without
changing the dynamics (The only interaction which is coupled to the energy is gravitation which is ignored here.)
One can formally make this subtraction by introducing the normal ordered product A →: A :. The normal ordered
product of the creation and annihilation operators is the product of the same operators written in an order where the
annihilation operators precede the creation operators, eg. : a(p1)a(p1) := a(p2)a(p1), : a(p1)a

†(p2) := a†(p2)a(p1),
etc. and define Pµ →: Pµ :.

D. Free charged scalar particle

Most of the particles participate in interactions where the particle number is conserved. The simplest way to
impose this conservation law is the introduce a continuous symmetry. In case of a single conserved charge thee
natural symmetry group is one dimensional, G = U(1). The corresponding field variable φ(x) = 1√

2
[φ1(x) + iφ2(x)]

is complex and the symmetry transformation is φ(x)→ eiΦφ(x). The simplest way of constructing an U(1) invariant
Lagrangian without self-interaction is to add up two identical free Lagrangians for the two real field,

L =
∑

a=1,2

[
1

2
∂µφa∂

µφa −
m2

2
φ2a

]

= ∂µφ
†∂µφ−m2φ†φ. (66)

Self-interaction can be introduced by the potential L → L − U(φ†φ). We can treat either the real fields φ1 and φ2
or the complex fields φ and φ† as independent variables. The latter choice is preferred because it leads to simpler
expressions.
The canonical momentum of the free system (66) is

π(x) =
∂L

∂∂0φ
= ∂0φ

†, π†(x) =
∂L

∂∂0φ†
= ∂0φ (67)

and the non-vanishing canonical commutation relations

[φ(x), π(y)] = [φ†(x), π†(y)] = iδ(x− y). (68)

The plane-wave representation yields

φ(t,x) =

∫

d̃k[a(k)e−ik·x + b†(k)eik·x] (69)

with the non-vanishing commutators

[a(k), a†(ℓ)] = [b(k), b†(ℓ)] = (2π)32ωkδ(k − ℓ). (70)

We have two kinds of particles, both characterized by the same dispersion relation ωk. In fact, the energy-momentum
is

Pµ =

∫

d3xT 0µ

=

∫

d3x :
[
∂0φ
†∂µφ+ ∂µφ†∂0φ− g0µ(∂µφ†∂µφ−m2φ†φ)

]
:

=
1

2

∫

d̃kkµ : [a(k)a†(k) + a†(k)a(k) + b(k)b†(k) + b†(k)b(k)] :

=

∫

d̃kkµ[a†(k)a(k) + b†(k)b(k)]. (71)
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The difference between these particles can be read off from the charge

Q(t) =

∫

d3xj0(t,x)

∫

d̃k[a†(k)a(k)− b†(k)b(k)] (72)

belonging to the Noether current

jµ = i : φ†
↔
∂ µφ : (73)

where f(x)
↔
∂ µg(x) = f(x)∂µg(x)− (∂µf(x))g(x). One particle is anti-particle of the other and has opposite conserved

internal quantum numbers. The current corresponding to the global U(1) phase symmetry is identified with the
electromagnetic current.

E. Neutral vector field

The dynamics of a real vector field Aµ(x) is usually governed by the Maxwell Lagrangian,

L = −1

4
FµνFµν (74)

where Fµν = ∂µAν−∂νAµ. The special feature of this Lagrangian is that it contains no ∂0A0, the temporal component
A0 has no dynamics. This is the result of gauge invariance, the condition that the Lagrangian and physical quantities
must remain invariant under the transformation

Aµ(x)→ Aµ(x) + ∂µΦ(x). (75)

This circumstance leads to serious problems which can be settled by involved constructions, the separation physical
and non-physical sectors in the theory. A quantity is called physical and belong the physical sector if it is invariant
under gauge transformation. The best way to separate these sectors is the use of the projectors into transverse
ATµ(x) = TµνA

ν(x) and longitudinal ALµ(x) = LµνA
ν(x), components of the vector field with

Tµν = gµν −
∂µ∂ν
�

, Lµν =
∂µ∂ν
�

(76)

which become

Tµν = gµν −
kµkν
k2

, Lµν =
kµkν
k2

(77)

in Fourier space. Gauge transformations influence the longitudinal components only and the aforementioned problem
of the dynamics of A0(x) can be avoided by adding a so called gauge fixing term to the Lagrangian which is now
written as

L = −1

4
FµνFµν −

λ

2
(∂µAµ)

2 (78)

The longitudinal and transverse components decouple in the dynamics and follow independent time evolution therefore
the gauge fixing term does not modify the dynamics in the physical sector. The equation of motion is

�Aµ − (1− λ)∂µ∂νAν = 0 (79)

and the generalized momenta are given by

Πµ =
δL

δ∂0Aµ
= Fµ0 − λgµ0∂νAν . (80)

The canonical quantization is the replacement of the classical field variables by operators satisfying the canonical
commutation relations

[Aµ(t,x), πν(t,y)] = −igµνδ(x− y). (81)

The left hand side is a tensor and the only tensor at our disposal which may appear on the right hand side is the
metric tensor gµν . Another complication of the dynamics of vector fields is that the metrics is non-definite, ie. there
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will be components of the vector field which have the wrong sign in their canonical commutation relation. The overall
sign in Eq. (81) is chosen in such a manner that most of the components have the right sign. This leaves A0 with
the wrong sign which problem is usually fixed by the Gupta-Bleuer quantization performed in Fock-space equipped
with indefinite scalar product. We do not follow this line of thought here and remark only that the plane-wave
decomposition of the vector field is

Aµ(x) =

∫

d̃k
3∑

λ=0

[aλ(k)ǫλµ(k)e
−ik·x + a†λ(k)ǫλµ(k)e

ik·x], (82)

where the four polarization vector, ǫλµ(k) are usually defined in the following manner. Let us introduce a time-like
unit vector nµ, nµnµ = 1 and set ǫ0µ(k) = nµ for the time-like polarization state. The longitudinal polarization
is ǫ3µ(k) = (ωk,k) and the transverse states are defined by two orthogonal directions ǫλµ(k), λ = 1, 2 which are
orthogonal to ǫ0µ(k) and ǫ3µ(k), too. One arrives finally at the condition

ǫµλ(k)ǫ
∗
λ′µ(k) = gλλ′ . (83)

The non-vanishing canonical commutation relations for the creation and annihilation operators are

[aλ(k), a
†
λ′(ℓ)] = −gλλ′2ωkδ(k − ℓ). (84)

F. Charged fermion

The Lagrangian for charged, non-interacting fermions is

L =→ i

2
[ψ̄γµ(∂µψ)− (∂µψ̄)γ

µψ]−mψ̄ → ψψ̄[i∂µγ
µ −m]ψ. (85)

The corresponding energy-momentum tensor is

T µν = ∂νψ̄
∂L

∂∂µψ̄
+

∂L

∂∂µψ
∂νψ − gµνL =

i

2
[ψ̄γµ∂νψ − ∂νψ̄γµψ] (86)

and the Noether current reads as

jµ = ψ̄γµψ. (87)

The plane-wave representation of the solution of the Dirac equation is

ψ(x) =

∫
d3k

(2π)3
m

ωk

∑

α=1,2

[cα(k)u
(α)(k)e−ik·x + d†α(k)v

(α)(k)(k)eik·x] (88)

where the bi-spinors u(α)(k) and v(α)(k) are given by Eqs. (D66). The energy-momentum vector in terms of the
operators cα(k) and dα(k) is

Pµ =

∫

d3xT 0µ

=

∫
d3k

(2π)3
m

ωk

kµ
∑

α=1,2

[c†α(k)cα(k)− dα(k)d†α(k)] (89)

the negative sign on the right hand side coming from that of the normalization of v in Eq. (D67). The canonical
commutation relations, such as Eqs. (62)-(63) would yield unbounded Hamiltonian from below and the system had no
ground state due to the negative sign mentioned above. To avoid this problem on imposes canonical anti-commutation
relations,

(2π)32ωkδα,βδ(k − ℓ) = {cα(k), c†β(ℓ)} = {dα(k), d
†
β(ℓ)},

0 = {cα(k), cβ(ℓ)} = {dα(k), dβ(ℓ)} (90)

for fermion fields.
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The energy-momentum vector after the subtraction of the divergent contribution of the zero-point fluctuations,
realized by the use of the normal ordered product,

Pµ =

∫
d3k

(2π)3
m

ωk

kµ
∑

α=1,2

[c†α(k)cα(k) + d†α(k)dα(k)]. (91)

The definition of the normal ordering is the same as for bosonic operators except a sign factor corresponding to each

exchange, eg. : cα(p1)cβ(p1) := −cβ(p2)cα(p1), : cα(p1)c
†
β(p2) := −c†β(p2)cα(p1).

The Noether current corresponding to the ψ(x)→ eiΦψ(x) U(1) symmetry, identified by the electric current, is

Q =

∫
d3k

(2π)3
m

ωk

∑

α=1,2

[c†α(k)cα(k)− d†α(k)dα(k)]. (92)

III. SCATTERING PROCESSES

Neither the coordinate x nor the momentum p can be defined experimentally with arbitrary precision in high
energy physics. The fine resolution in space finds the vacuum-polarization pairs around a point-like charge, the e+e−

pairs in the case of an electron e−. The equivalence of fermionic states leads to the indistinguishability of the original
valence electron and the electron of the polarized pairs and introduces a finite charge distribution around even point-

like charges. The dispersion relation E =
√

m2 + p2 becomes E = |p| at high energy and the uncertainty relation
∆pt ≈ ∆Et ≈ ~ introduces the error ∆p ≈ ~/t whcich diverges because t→ 0 for fast processes. But scattering cross
sections remain measurable and serve as basic observables at high energy.

A. Asymptotic states

Let us suppose that the interactions between the particles making up the beam and the target is short ranged
and therefore can be neglected before and after the collision. One can then introduce non-interacting asymptotic
states, |i〉 and |f〉 for the description of the the system before and after the collision, respectively. These states
should contain well separated wave-packets, characterized by their average momenta, because any overlap between
the packets induces interactions. The asymptotic in and our spaces are unitary equivalent when any bound state
formation between the particles is ignored. The time evolution gives a unitary map of the asymptotic in space into
the asymptotic out space, in particular |i〉 → |f〉 = S|i〉 where

S = T [e−i
∫∞
−∞

dtHi(t)] (93)

in the interaction representation. Let us denote the free field operators belonging to the asymptotic in and out
particles by φi(x) and φo(x), respectively. One expects then that the true, interacting field operator interpolates
between the asymptotic fields,

lim
t→±∞

φ(t,x) = φo

i
(t,x). (94)

But the problem is that the asymptotic states and fields are well defined for well separated wave-packets only,

lim
t→±∞

〈f |φ(t,x)|i〉 = 〈f |φo

i
(t,x)|i〉. (95)

Such a weak relations are not sufficient to establish a strong, operator equation like Eq. (94) which will be violated
for products of operators which are evaluated by inserting the resolution of the identity as a summation over all basis
states. A formal consideration, namely that the omission of the interaction from the equations of motion leaves behind
linear equations whose solutions are well defined up to multiplicative constant, suggests that the relation

φo

i
(t,x) =

√

Zo

i
φ(x) (96)

can be used in weak equations, ie. in matrix elements between well separated wave-packets. Time inversion imposes
the constraint Zi = Zo = Z.
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B. Cross section

Let us consider an inelastic scattering process of two scalar particles going into n particles, 1, 2 → 1, . . . , n. The
initial state will be given by

|i〉 =
∫

d̃p1d̃p2ψ1(p1)ψ2(p1)|p1,p2〉 (97)

and the transition probability Wf←i = |〈f |i(t =∞)〉|2 is given in terms of the scattering amplitude

〈f |i(t =∞)〉 = 〈f |S|i〉. (98)

We are not interested in trivial forward scattering and separate off a trivial energy-momentum conserving Dirac-delta
by writing

〈f |S|i〉 = i〈f |T |i〉 =
∫

d̃p1d̃p2ψ1(p1)ψ2(p1)i(2π)
4δ(pf − p1 − p2)〈f |T |p1,p2〉 (99)

where S = 11 + iT and the matrix elements of T are obtained from those of T by separating off a singular function of
the four-momenta, the Dirac delta standing for the energy-momentum conservation. Therefore, we find

Wf←i =

∫

d̃p1d̃p2d̃q1d̃q2ψ
∗
1(p1)ψ

∗
2(p1)ψ1(q1)ψ2(q1)(2π)

4δ(pf − p1 − p2)(2π)4δ(q1 + q2 − p1 − p2)

×〈f |T |p1,p2〉∗〈f |T |q1, q2〉. (100)

For sufficiently monochromatic (but still non-overlapping!) wave-packets we have 〈f |T |p1,p2〉 ≈ 〈f |T |p̄1, p̄2〉 where
p̄j is the average momentum of the j-th particle and we simplify the transition probability as

Wf←i = 〈f |T |p̄1, p̄2〉∗〈f |T |p̄1, p̄2〉
∫

d̃p1d̃p2d̃q1d̃q2ψ
∗
1(p1)ψ

∗
2(p1)ψ1(q1)ψ2(q1)

×(2π)4δ(pf − p1 − p2)(2π)4δ(q1 + q2 − p1 − p2)

= 〈f |T |p̄1, p̄2〉∗〈f |T |p̄1, p̄2〉
∫

d4xd̃p1d̃p2d̃q1d̃q2ψ
∗
1(p1)ψ

∗
2(p1)ψ1(q1)ψ2(q1)

×(2π)4δ(pf − p1 − p2)e−ix·(q1+q2−p1−p2)

= |〈f |T |p̄1, p̄2〉|2(2π)4δ(pf − p̄1 − p̄2)
∫

d4x|ψ1(x)|2|ψ2(x)|2 (101)

where

f(x) =

∫

d̃pe−ix·pf(p)|p0=ωq
. (102)

Eq. (101) tells that the transition probability density in the space-time is

dWf←i
dV dt

= (2π)4δ(pf − p̄1 − p̄2)|ψ1(x)|2|ψ2(x)|2|〈f |T |p̄1, p̄2〉|2. (103)

In the next step we factorize off the characteristic quantities of the beam and the target. Let us suppose that particle
1 makes up the beam and particle 2 is the target, at rest in the laboratory frame. For sufficiently monochromatic
state we have the flux

iψ∗(x)
↔
∂ µψ(x) ≈ 2p̄µ|ψ(x)|2. (104)

giving the target particle density

dn2

dV
= 2p̄02|ψ2(x)|2, p̄02 = m2 (105)

and the incident flux of the beam

jb =
p̄1

p̄01
︸︷︷︸

velocity

· 2p̄01|ψ1(x)|2
︸ ︷︷ ︸

density

= 2p̄1|ψ1(x)|2. (106)
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The normalized transition probability (103) defines the Lorentz invariant differential cross section dσ by

dWf←i
d3xdt

=
dn2

d3x
|jb|dσ, (107)

in particular

dσ = (2π)4δ(pf − p̄1 − p̄2)
|〈f |T |p̄1, p̄2〉|2

4m2|p̄1|

= (2π)4δ(pf − p̄1 − p̄2)
|〈f |T |p̄1, p̄2〉|2

4
√

(p1 · p2)2 −m2
1m

2
2

. (108)

As an example let us suppose that the final state contains n scalar particles with momenta constrained in the region
∆ ⊂ R3n,

dσ =
1

4
√

(p1 · p2)2 −m2
1m

2
2

∫

∆

˜dq1 · · · ˜dqn(2π)
4δ(pf − p̄1 − p̄2)|〈q1 · · · qn|T |p̄1, p̄2〉|2. (109)

The general lesson of this particular example is that the experimentally accessible cross sections are expressed in
terms of trivial kinematic factors characterizing the detectors and the transition amplitude magnitude square. The
latter is usually obtained in the framework of the perturbation expansion.

IV. PERTURBATION EXPANSION

The only general method to calculate transition amplitudes is based on perturbation expansion. The perturbation
series is usually written in terms of the Green-functions.

A. Green functions

Let us write the Hamiltonian as H = H0 + Hi where the perturbation, Hi, is a space of the interaction energy
density, Hi(t,x), in the interaction representation. For example, in the case of neutral, self-interacting scalar particles,
described by the Lagrangian

L =
1

2
∂µφ∂

µφ− m2

2
φ2 − g

4!
φ4 (110)

the interaction Hamiltonian is

Hi =
g

4!

∫

d3xφ4(t,x). (111)

The initial and final states are created from the vacuum by the application of the asymptotic in and out field
operators, therefore we write |i〉 = φi(y1) · · ·φi(ymi

)|0〉, |f〉 = φf (z1) · · ·φf (zmf
)|0〉 where y01 , . . . , y0mi

→ −∞ and

z01 , . . . , z
0
mf
→∞. The transition amplitude is

A = 〈0|φf (z1) · · ·φf (zmf
)T [e−i

∫

d4xHi(x)]φi(y1) · · ·φi(ymi
)|0〉0

= Z−
1
2 (ni+nf )〈0|T [φ(z1) · · ·φ(zmf

)e−i
∫

d4xHi(x)φ(y1) · · ·φ(ymi
)]|0〉0, (112)

where the definition of the time ordered product allows us to put the asymptotic fields under the time ordering.
Notice the index 0, reminding that the expectation value refers to free field operators (as always in the interaction
representations). The perturbation for these Green function consists of the expansion of the S-matrix,

A = 〈0|T [φf(z1) · · ·φf (zmf
)e−

ig
4!

∫

d4xφ4(x)φf (y1) · · ·φf (ymi
)]|0〉0

=

∞∑

n=0

1

n!

(−ig
4!

)n ∫

dx1 · · · dxn〈0|T [φf(z1) · · ·φf (zmf
)φ4(x1) · · ·φ4(xn)φf (y1) · · ·φf (ymi

)]|0〉0, (113)
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and the result is that the transition amplitude becomes a sum of vacuum expectation values of the time ordered
product of the free, elementary field operators.
The n-th order Green function, briefly the free n-point function of a free, hermitian field operator φ(x) is the

vacuum expectation value

in/2G0(x1, . . . , xn) = 〈0|T [φ(x1) · · ·φ(xn)]|0〉0. (114)

The index 0 is to reminder us to take the expectation value for non-interacting particles. For conserved charge the
field operator is non-hermitian and we define

inG0(x1, . . . , xm, y1, . . . , yn) = 〈0|T [φ(x1) · · ·φ(xm)φ†(y1) · · ·φ†(yn)]|0〉0. (115)

The dynamics, and in particular the vacuum state |0〉 and the Green functions, remain invariant under the phase
transformation ψ(x)→ eiΦψ(x), ψ†(x)→ e−iΦψ†(x) therefore G = 0 for m 6= n and we have the definition

in/2G0(x1, . . . , xn, y1, . . . , yn) = 〈0|T [φ(x1) · · ·φ(xn)φ†(y1) · · ·φ†(yn)]|0〉0 (116)

for the n-point function which describes the propagation of n particles or anti-particles. We start at the vacuum at
the right of the matrix element with no excitations. Since a particle (anti-particle) is created by φ (φ†) and is removed
by φ† (φ) we need the same number of φ as φ† in the expectation value in order to have non-vanishing result. This
is another argument for the vanishing of Green functions with n 6= m.

B. Propagator

First we start with the Green function with n = 1, called the propagator,

iG0(x, x
′) = 〈0|T [φ(x)φ†(x′)]|0〉

=

∫

d̃kd̃q〈0|T [(a(k)e−ik·x + b†(k)eik·x)(a†(q)eiq·x
′

+ b(q)e−iq·x
′

)]|0〉

=

∫

d̃kd̃q[Θ(t− t′)〈0|a(k)a†(q)|0〉eiq·x′−ik·x +Θ(t′ − t)〈0|b(q)b†(k)|0〉eik·x−iq·x′

] (117)

where the properties a(p)|0〉 = b(p)|0〉 = 0 of the vacuum were used in the last equation. The canonical commutation
relation gives finally

iG0(x, x
′) =

∫

d̃k[Θ(t− t′)e−ik·(x−x′) +Θ(t′ − t)eik·(x−x′)]. (118)

What happened in the equations can be said in words in the following manner: Depending on the order of the time
argument either φ ≈ a+ b† or φ† ≈ b+ a† acts first on the vacuum and an anti-particle or a particle is created. This
object must be removed by the action of the second operator in order to arrive at the vacuum and yield a non-vanishing
contribution. The two-point functions G(x, y) therefore describes the propagation (transition amplitude) of a particle
or anti-particle for x0 > y0 or x0 < y0, respectively.
There is another, more elegant and general procedure to obtain a simple expression for the propagator. For this

end we start with an apparently more complicated problem, the proof that the operator T [φ(x)φ†(y)] satisfies the
equation

(�x +m2)T [φ(x)φ†(y)] = −iδ(x− y)11 (119)

off the mass-shell. The left hand side is an operator in two senses: It is an operator acting in the Fock space and
can be viewed as another operator which acts on functions, defined on the space-time. The right hand side states
that both operators are proportional to the identity. The equation (119) can not be valid within the null-space of
the Klein-Gordon operator. (The null-space of a linear operator consists of vectors which are mapped into the zero
vector.) The null-space of the equation of motion is the mass-shell, it contains just the free particle plane waves in
our case. The identity for space-time functions, δ(x − y), must be replaced by zero on the right hand side hence the
properties of the operator T [φ(x)φ†(y)] can not be read off from eq. (119) within the null-space.
By taking the expectation value of this equation between the vacuum we get

(�x +m2)〈0|T [φ(x)φ†(y)]|0〉 = (�x +m2)iG(x, y) = −iδ(x− y) (120)
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FIG. 1: Poles of the free propagator and the integration contour, corresponding to the Feynman propagator, Eq. (117).

namely the propagator is the inverse of the Klein-Gordon operator, a genuine Green function in the sense of the
mathematical theory of linear differential equations. There are different Green-functions, depending on their definition
on the mass-shell. We introduce below a single Green-function only. It will be the causal Green-function, needed for
the construction of transition amplitudes.
The proof of (119) starts with the definition of the time ordered product,

(�x +m2)T [φ(x)φ†(y)] = (�x +m2)[Θ(x0 − y0)φ(x)φ†(y) + Θ(y0 − x0)φ†(y)φ(x)] (121)

where contribution not involving time derivative can be brought into the time ordering,

(�x +m2)T [φ(x)φ†(y)] = T [(−∆x +m2)φ(x)φ†(y)] + ∂2x0 [Θ(x0 − y0)φ(x)φ†(y) + Θ(y0 − x0)φ†(y)φ(x)]. (122)

The two time derivatives give

(�x +m2)T [φ(x)φ†(y)] = T [(−∆x +m2)φ(x)φ†(y)] + ∂x0{T [∂0φ(x)φ†(y)] + δ(x0 − y0)[φ(x)φ†(y)− φ†(y)φ(x)]}
= T [(−∆x +m2)φ(x)φ†(y)] + ∂x0{T [∂0φ(x)φ†(y)] + δ(x0 − y0)[φ(x), φ†(y)]}. (123)

The equal time commutator in the last line, being taken for coordinates only without momenta, is vanishing, thus

(�x +m2)T [φ(x)φ†(y)] = T [(−∆x +m2)φ(x)φ†(y)] + ∂x0T [∂0φ(x)φ
†(y)]

= T [(−∆x +m2)φ(x)φ†(y)] + T [∂20φ(x)φ
†(y)] + δ(x0 − y0)[∂0φ(x), φ†(y)]. (124)

The equal time commutator is now for the coordinate φ† and it canonical momentum π† = ∂L/∂∂0φ
† = ∂0φ and

assumes the value −iδ(x−y)11, yielding Eq. (119). Another lesson this equation has is that the operator T [φ(x)φ†(y)]
is c-number times the identity operator of the Fock-space outside of the null-space of the Klein-Gordon operator�+m2.
The solution of Eq. (120) can easily be obtained in the Fourier transformation because the Klein-Gordon operator

is diagonal in the energy-momentum space,

G(x, y) = −(�+m2)−1

=

∫
dp

(2π)4
e−ip·(x−y)

p2 −m2
. (125)

This expression for the inverse if ill defined unfortunately because the denominator is vanishing just in the physically
most important regime, for plane waves satisfying the equation of motion!
The usual strategy, followed in the mathematical literature is to define the Fourier integral by deforming slightly

the integration contour in such a manner the the singularities are avoided. For a given momentum p there are poles
at p0 = ±ωp, depicted in Fig. 1. There are four possible way to go around two poles. What is the physical content
of this procedure?
This question is rather involved because one hesitates to accept that an infinitesimal change of the contour of

integration may lead to finite, observable physical differences in the result. But this is not the first such a situation,
the spontaneous magnetization of a ferromagnet, spontaneous symmetry breaking in general, has similar features. In
fact, the infinitesimal, asymmetrical fluctuations break the symmetry of the ground state of the ferromagnet whose
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instability amplifies this effect to a finite, observable phenomenon. One is faced with the issue of the invariance
with respect to the time reversal, t → −t. The Lagrangian of the known fundamental interactions (except to weak
interaction, ignored at the moment) show this discrete symmetry. But this is not what we see in reality where the
excited states of an isolated composite system, such as an atom, relaxes to its ground state and never become excited
due to its coupling to a radiation field. What happens in infinitely large volume is that any energy passed over the
field variables gets radiated out in the Universe and the chance of its recollection at the place of the atom is vanishing.
We want to describe such a physics, involving this slight breakdown of the time reversal invariance and we have to

put this feature in already at the level of the free system, before the interactions are introduced. This need is indicated
by the singularity in defining the free propagator. The way we resolve this problem captures a certain pattern of
symmetry breaking because the time reversal always involves a complex conjugation which distinguishes among the
different ways of avoiding the poles.
The different integration contours correspond to adding different infinitesimal imaginary part to the one-particle

energy, ωp → ωp ± iǫ, with ǫ → 0+ which is equivalent to the infinitesimal imaginary shift of the rest mass, m2 →
m2 ± iǫ.
What we want to achieve is the slight suppression of the excited states. In view of the phase factor e−iEt generated

by the time evolution for an eigenstate of the Hamiltonian we needs E → E − iǫ for the excited states, E > 0. The
two-point function (117) propagates the anti-particle like excitations backward in time therefore, the negative energy
single particle states should be suppressed for t→ −∞ which requires E → E + iǫ for E < 0. The Feynman-contour,
C in Fig. 1, is called after his inventor and corresponds to the shift m2 → m2 − iǫ. The correct expression of the
Feynman propagator is

G(x, y) =

∫
dp

(2π)4
e−ip·(x−y)

p2 −m2 + iǫ
(126)

and one should bear in mind that whenever we carry out the energy-momentum integral the energy integral must be
made first leaving the momentum integration at later stage.
For completeness we give the propagator for higher spin particles, too. The Lagrangian

L = −1

4
FµνFµν +

m2

2
AµAµ −

λ

2
(∂µAµ)

2 (127)

describes a massive spin 1 particle and the corresponding free propagator is

iGµν(x, y) = 〈0|T [Aµ(x)Aν (y)]|0〉

= −i
∫

dp

(2π)4
e−ip·(x−y)

(

gµν − pµpν
m2

p2 −m2 + iǫ
+

pµpν
m2

p2 − m2

λ2 + iǫ

)

. (128)

The propagator of spin 1/2 fermions, described by the Lagrangian

L = ψ̄[i∂/−m]ψ (129)

is

iGαβ(x, y) = 〈0|T [ψα(x)ψ̄β(y)]|0〉

= i

∫
dp

(2π)4
e−ip·(x−y)

p/−m+ iǫ

= i

∫
dp

(2π)4
e−ip·(x−y)

p/+m

p2 −m2 + iǫ
. (130)

C. Weak form of Wick theorem

We have seen the explicit construction of the two-point function. The higher order Green functions can be obtained
by means of the Wick theorem.
Let us consider the vacuum expectation value

A = 〈0|a(q1)a(q2)a†(p1)a
†(p2)|0〉 (131)
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for the sake of a simple example. The canonical commutation relations yield

A = 〈0|a(q1)[a†(p1)a(q2) + (2π)32ωp1δ(p1 − q2)]a
†(p2)|0〉

= (2π)32ωp1δ(p1 − q2)(2π)
32ωp1δ(q1 − p2) + (2π)32ωp1δ(p1 − q1)(2π)

32ωp2δ(q1 − p2). (132)

This quantity is non-vanishing only when each particle, created by the an operators a†, is removed by an operator
a. There are two possible pairing possible between the creation and destruction operators, corresponding to the two
contributions in the last line. The two particles are noninteracting therefore their contribution to the matrix element
factorizes.
This simple example shows that the factorization of the Green-function into the products of propagators is achieved,

as for any other identity for expectation values in the vacuum, by means of the canonical commutation relations. In

order to deal with time-dependent fields one introduces the pairing or contraction,
︷︸︸︷

AB , of two operators, A and B
which satisfy the commutation relation

[A,B]ξ = c(A,B)11, (133)

with some c-number function, c(A,B). We seek the pairing with the following two properties:

1. 〈0|
︷︸︸︷

AB |0〉 = 〈0|T [AB]|0〉,

2.
︷︸︸︷

AB = f(A,B)11, f(A,B) being a c-number.

The choice
︷︸︸︷

AB = T [AB] violates condition 2. for the free particle plane waves as noted after Eq. (119). To recover
point 2 without loosing point 1 we define

︷︸︸︷

AB = T [AB]− : AB : . (134)

The property 1 is obviously satisfied. If the order of the operators A and B is the same after the time and the normal
ordering the we have point 2, as well, with f(A,B) = 0. If the order is different then there is a relative sign, ξ,
between the two contributions and the commutator (133) can be used to prove f(A,B) = ±c(A,B). Note that the
contraction is non-vanishing for canonically conjugated pairs only.
The complete field operator in the space-time φ(x), usually consists of the sum of annihilation and creation operators,

corresponding to the positive and negative energy parts, φ(x) = A(x) + B†(x), as in Eq. (69) in the case of a scalar
field. The pairing is additive and non-vanishing between creation and annihilation operators of the same particle only,
e.g.

︷ ︸︸ ︷

φ(x)φ†(y) =
︷ ︸︸ ︷

[A(x) +B†(x)][A†(y) +B(y)]

=
︷ ︸︸ ︷

A(x)A†(y) +
︷ ︸︸ ︷

B†(x)B(y), (135)

Let us consider the Green function

i2G(x1, x2, y1, y2) = 〈0|T [φ(x1)φ(x2)φ†(y1)φ†(y2)]|0〉 (136)

as an example. The first application of the definition (134) yields the result

i2(x1, x2, y1, y2) = 〈0|T [φ(x1)[
︷ ︸︸ ︷

φ(x2)φ
†(y1)+ : φ(x2)φ

†(y1) :]φ
†(y2)]|0〉

= 〈0|
︷ ︸︸ ︷

φ(x1)φ
†(y2) |0〉〈0|

︷ ︸︸ ︷

φ(x2)φ
†(y1) |0〉+ 〈0|T [φ(x1) : φ(x2)φ†(y1) : φ†(y2)]|0〉. (137)

Note that the time ordering remains valid between the operators inside and outside of the normal ordering in the last
term, which can be written as

〈0|T [φ(x1)(ξA†(y1)A(x2) +A(x2)B(y1) +B†(x2)A
†(y1) +B†(x2)B(y1))φ

†(y2)]|0〉. (138)

Since canonically conjugate pairs contribute only this expectation value assumes the form

ξ〈0|
︷ ︸︸ ︷

A(x1)A
†(y1) |0〉〈0|

︷ ︸︸ ︷

A(x2)A
†(y2) |0〉+ ξ〈0|

︷ ︸︸ ︷

B†(x1)B(y1) |0〉〈0|
︷ ︸︸ ︷

A(x2)A
†(y2) |0〉

+ξ〈0|
︷ ︸︸ ︷

A(x1)A
†(y1) |0〉〈0|

︷ ︸︸ ︷

B†(x2)B(y2) |0〉+ ξ〈0|
︷ ︸︸ ︷

B†(x1)B(y1) |0〉〈0|
︷ ︸︸ ︷

B†(x2)B(y2) |0〉 (139)
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after using the definition (134) again. We have finally

i2G(x1, x2, y1, y2) = 〈0|
︷ ︸︸ ︷

φ(x1)φ
†(y2) |0〉〈0|

︷ ︸︸ ︷

φ(x2)φ
†(y1) |0〉+ ξ〈0|

︷ ︸︸ ︷

φ(x1)φ
†(y1) |0〉〈0|

︷ ︸︸ ︷

φ(x2)φ
†(y2) |0〉. (140)

The generalization of this argument for n-point functions is straightforward though somehow laborious. One
possibility is to establish a recursive proof. Another way is to rely on the generator functional, as described in
Appendix G. The third, shortest, but most formal way to proceed is to use the path integral representation of
transition amplitude, the direction not followed in this notes.
The key qualitative observation to find the expression for a general free Green function is is that the harmonic

oscillators, corresponding to different momentum sectors are non-interacting. Therefore, the contributions to the
Green functions factorizes into the product of expectation values in different sectors, the pairings. Let us consider
the for instance the Green function

inG0(x1, . . . , xn, y1, . . . , yn) = 〈0|T [φ(x1) · · ·φ(xn)φ†(y1) · · ·φ†(yn)]|0〉0 (141)

and the point among x1,. . . ,xn,y1,. . . ,yn with the earliest time coordinate. A particle or an anti-particle is created
there which must be removed by another operator before reaching the bra 〈0| for t =∞. Such an elementary operation
is repeated at n− 1 other points. The contribution to the Green function will be the sum of different possible choices
of the pairs of space-time events, corresponding to the insertion and extraction of an elementary excitation. Once
the pairs have been chosen the transition amplitude of the elementary excitations are multiplied together. The result
is the weak form of Wick theorem, stating that the 2n-point function is the sum over all possible pairing of the an
operator φ with a φ†,

inG0(x1, . . . , xn, y1, . . . , yn) =
∑

π∈Sn

ξσπ iG0(x1 − yπ(1)) · · · iG0(xn − yπ(n)), (142)

where the summation over Sn, the permutation of n objects and σπ = 0, 1 is the order of the permutation π. For real
scalar field we have

iG(x1, . . . , x2n) =
in

n!2n

∑

π∈S2n

G(xπ(1) − xπ(2)) · · ·G(xπ(2n−1) − xπ(2n)), (143)

where denominator follows from the observation that there are n! possible order of the n pairs of space-time points
yielding identical contributions and the factor 2n arises from the double counting of each pairs.

D. Examples

It is the easiest to demonstrate the higher orders in the framework of a simpler scalar model described by the
Lagrangian

L =
1

2
∂µφ∂

µφ− m2

2
φ2 − g

4!
φ4 (144)

and look into the propagator of a particle in O
(
g2
)
in perturbation expansion,

〈0|T [φ(y)Sφ(x)]|0〉 = 〈0|T [φ(y)e− ig
4!

∫

dzφ4(z)φ(x)]|0〉

=

∞∑

n=0

(−ig
4!

)n
1

n!

∫

dz1 · · · dzn〈0|T [φ(y)φ4(z1) · · ·φ4(zn)φ(x)]|0〉

= 〈0|T [φ(y)φ(x)]|0〉 − ig

4!

∫

dz〈0|T [φ(y)φ4(z)φ(x)]|0〉

+
(−ig)2
2(4!)2

∫

dz1dz2〈0|T [φ(y)φ4(z1)φ4(z2)φ(x)]|0〉 +O
(
g3
)
. (145)

The Feynman graph of O
(
g0
)
, depicted in Fig. 2 consists of a single line connecting the initial and final particles

and its contribution is

〈0|T [φ(y)Sφ(x)]|0〉(0) = 〈0|T [φ(y)φ(x)]|0〉 = iG(x, y). (146)
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xy

FIG. 2: The Feynman graphs O
(

g0
)

contributing to the propagator (145).

xy ●

z
(a)

xy

●

z

(b)

FIG. 3: The Feynman graphs O (g) contributing to the propagator (145).

The O (g) graphs, shown in Fig. 3, give

〈0|T [φ(y)Sφ(x)]|0〉(1) = − ig
4!

∫

dz〈0|T [φ(y)φ4(z)φ(x)]|0〉 (147)

= − ig
2

∫

dziG(y, z)iG(z, z)iG(z, x)

︸ ︷︷ ︸

(a)

− ig
8

∫

dziG(y, x)iG(z, z)iG(z, z)

︸ ︷︷ ︸

(b)

where the factor 4! in the denominator is eliminated in the second line by the number of possible joining of the internal
propagator line to the vertex at z and the other factors in the denominators arise due to the double counting of graphs
by exchanging end points of an internal line or exchanging different internal lines attached to the same vertex. Graph
(a) gives in momentum space

G(1)
a (p) =

∫

dye−ip(y−x)〈0|T [φ(y)Sφ(x)]|0〉(1)a

= −g
2

∫

dye−ip(y−x)
∫

dz
dp1
(2π)4

dp2
(2π)4

dp3
(2π)4

G(p1)G(p2)G(p3)e
ip1(y−z)+ip2(z−z)+ip3(z−x)

= −g
2

∫

dye−ip(y−x)
∫

dp1
(2π)4

dp2
(2π)4

dp3
(2π)4

(2π)4δ(p1 − p3)G(p1)G(p2)G(p3)eip1y−ip3x

= −g
2
G2(p)

∫
dp2
(2π)4

G(p2)

=
g

2

1

(p2 −m2 + iǫ)2

∫
dp2
(2π)4

1

p22 −m2 + iǫ
(148)

Graph (b), being disconnected, is canceled by the normalization of the vacuum-to-vacuum transition amplitude in the
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denominator

iGint(y, x) =
〈0|T [φ(y)Sφ(x)]|0〉

〈0|S|0〉 . (149)

In fact, the normalized propagator is

iG
(1)
int(y, x) =

〈0|T [φ(y)φ(x)]|0〉 − ig
4!

∫
dz〈0|T [φ(y)φ4(z)φ(x)]|0〉

〈0|0〉 − ig
4!

∫
dz〈0|φ4(z)|0〉

+O
(
g2
)

= 〈0|T [φ(y)φ(x)]|0〉 − ig

4!

∫

dz〈0|T [φ(y)φ4(z)φ(x)]|0〉+ ig

4!
〈0|T [φ(y)φ(x)]|0〉

∫

dz〈0|φ4(z)|0〉+O
(
g2
)

= 〈0|T [φ(y)φ(x)]|0〉 − ig

4!

∫

dz〈0|T [φ(y)φ4(z)φ(x)]|0〉a +O
(
g2
)
. (150)

This is a special case of a general theorem, asserting the cancellation of disconnected diagrams in calculating well
normalized Green-functions.

●●
z z1 2

y x

(a)

●y xz1 z2
●

(b)

FIG. 4: The Feynman graphs O
(

g2
)

contributing to the propagator (145).

The connected O
(
g2
)
graphs, shown in Fig. 4, give

〈0|T [φ(y)Sφ(x)]|0〉(2) =
(−ig)2
2(4!)2

∫

dz1dz2〈0|T [φ(y)φ4(z1)φ4(z2)φ(x)]|0〉

=
(−ig)2

4

∫

dz1dz2iG(y − z1)iG(z1 − z1)iG(z1 − z2)iG(z2 − z2)iG(z2 − x)
︸ ︷︷ ︸

(a)

+
(−ig)2

3!

∫

dz1dz2iG(y − z1)[iG(z1 − z1)]3iG(z2 − x)
︸ ︷︷ ︸

(b)

, (151)
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and the momentum space expressions are

iG(2)
a (p) =

∫

dye−ip(y−x)〈0|T [φ(y)Sφ(x)]|0〉(2)a

= − ig
2

4

∫

dye−ip(y−x)
∫

dz1dz2
dp1
(2π)4

· · · dp5
(2π)4

G(p1)G(p2)G(p3)G(p4)G(p5)

×eip1(y−z1)+ip2(z1−z1)+ip3(z1−z2)+ip2(z2−z2)+ip3(z2−x)

= − ig
4
G3(p)

[∫
dp2
(2π)4

G(p2)

]2

(152)

and

iG
(2)
b (p) =

∫

dye−ip(y−x)〈0|T [φ(y)Sφ(x)]|0〉(2)b

= − ig
2

4

∫

dye−ip(y−x)
∫

dz1dz2
dp1
(2π)4

· · · dp5
(2π)4

G(p1)G(p2)G(p3)G(p4)G(p5)

×eip1(y−z1)+ip2(z1−z2)+ip3(z1−z2)+ip2(z1−z2)+ip3(z2−x)

= − ig
4
G2(p)

∫
dp2
(2π)4

dp3
(2π)4

G(p2)G(p3)G(p− p2 − p3) (153)

Let us consider now QED as a more realistic theory. The total Lagrangian is

L = ψ̄[iγµ(∂µ − ieAµ)−m]ψ − 1

4
FµνFµν (154)

with Fµν = ∂µAν − ∂νAµ. The quadratic part of the Lagrangian gives rise to the free, non-interacting time evolution
and the cubic part represent the minimal coupling interaction with

Hi = e

∫

d3xψ̄γµψAµ. (155)

The e−e− → e−e− elastic scattering amplitude can be written as

A = 〈0|ψfβ1(z1)ψfβ2(z2)Sψiα1(y1)ψfα2(y2)|0〉0
= 〈0|ψfβ1(z1)ψfβ2(z2)T [e

−ie
∫

dxψ̄(x)γµψ(x)Aµ(x)]ψiα1(y1)ψfα2(y2)|0〉0

=

∞∑

n=0

(−ie)n
n!

∫

dx1 · · · dxn

×〈0|T [ψβ1(z1)ψβ2(z2)ψ̄(x1)γ
µ1ψ(x1)Aµ1(x1) · · · ψ̄(xn)γµnψ(xn)Aµn

(xn)ψα1(y1)ψα2(y2)]|0〉0. (156)

The vacuum expectation value is taken for non-interacting fields therefore the electron and photon sectors factorizes,

A =

∞∑

n=0

(−ie)n
n!

∫

dx1 · · · dxn〈0|T [Aµ1(x1) · · ·Aµn
(xn)]|0〉0

×〈0|T [ψβ1(z1)ψβ2(z2)ψ̄(x1)γ
µ1ψ(x1) · · · ψ̄(xn)γµnψ(xn)ψ̄α1(y1)ψ̄α2(y2)]|0〉0

= 〈0|T [ψβ1(z1)ψβ2(z2)ψ̄α1(y1)ψ̄α2(y2)]|0〉0

+
(−ie)2

2!

∫

dx1dx2〈0|T [Aµ1(x1)Aµ2(x2)]|0〉0

×〈0|T [ψβ1(z1)ψβ2(z2)ψ̄(x1)γ
µ1ψ(x1)ψ̄(x2)γ

µ2ψ(x2)ψ̄α1(y1)ψ̄α2(y2)]|0〉0 +O
(
e4
)
. (157)

The leading order, O
(
e2
)
connected graph, the one-photon exchange shown in Fig. 5, corresponds to the contributions

A(1) = −e2
∫

dx1dx2iDµ1µ2(x1 − x2)iGβ1κ1(z1 − x1)γµ1
κ1ρ1 iGρ1α1(x1 − y1)iGβ1κ1(z2 − x2)γµ2

κ2ρ2 iGρ2α2(x2 − y2)

+e2
∫

dx1dx2iDµ1µ2(x1 − x2)iGβ1κ1(z1 − x1)γµ1
κ1ρ1 iGρ1α1(x1 − y2)iGβ1κ1(z2 − x2)γµ2

κ2ρ2 iGρ2α2(x2 − y1).(158)

The vertex where a photon line ends at an electron line is shown in an enlarged manner in Fig. 6.
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FIG. 5: One-photon exchange between two electrons.
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FIG. 6: The electron-photon vertex in bubble notation.

E. Feynman rules

We present briefly the general rules of constructing the contributions to the perturbation series. Let us suppose
that we are interested in the transition amplitude between the initial state of ni− electrons created by ψ̄α−i

j
(y−ij ), ni+

positrons created by ψα+i
j
(y+ij ) and ni0 photons created by Aµi0

j
(yi0j ) and the final state consisting of nf− electrons

created by ψ̄α−f
j

(y−fj ), nf+ positrons created by ψα+f
j

(y+fj ) and nf0 photons created by Aµf0
j
(yf0j ). The O

(
eℓ
)

contributions to this amplitudes can be constructed in the following manner.
First we make the list of different graphs by placing the symbols on the paper, representing the space-time in such a

manner that the final electron and positron states are denoted by the exchanged symbols, ψ and ψ̄, respectively. Next
we place ℓ vertices, bubbles of Fig. 6 on the paper. For such a set of symbols we can construct a number a Feynman
graphs, consisting the distribution of oriented links starting at a ψ̄ symbol and ending at a ψ and non-oriented lines
connecting pairs of A’s. Each different distribution of the lines denotes a different graph.
For a given graph we can construct the corresponding mathematical expression by assigning an electron propagator

iGalphaβ(x, y) to each oriented line pointing from a ψ̄β(y) to ψα(x), a photon propagator Dµν(x, y) to each non-
oriented line between the symbols Aµ(x) and Aν(y) and finally a factor ieγµαβ to each vertex where the symbols Aµ,

ψ̄α and ψβ are found. We integrate the product of these expression over the space-time locations of vertices and divide
the whole integral by the order of the symmetry group of the graph. This symmetry group consists of permutations
of the internal lines which leave the graph invariant. The order of the symmetry group is the number of its elements.
The Feynman rules, the assignment of a diagram to each contribution to the scattering amplitude within the

framework of the perturbation expansion, will be demonstrated in the framework of the nuclear field theoretical
model of Eq. (A23). Let us consider the nucleon-nucleon inelastic scattering amplitude,

A = 〈0|ψfβ1(z1)ψfβ2(z2)Sψ̄iα1 (y1)ψ̄fα2(y2)|0〉0
= 〈0|ψfβ1(z1)ψfβ2(z2)T [e

ig
∫

dxψ̄(x)ψ(x)σ(x)]ψ̄iα1 (y1)ψ̄fα2(y2)|0〉0 (159)

= Z−2ψ

∞∑

n=0

(ig)n

n!

∫

dx1 · · · dxn〈0|T [ψβ1(z1)ψβ2(z2)ψ̄(x1)ψ(x1)σ(x1) · · · ψ̄(xn)ψ(xn)σ(xn)ψ̄α1(y1)ψ̄α2(y2)]|0〉0.

The Feynman rules are slightly different in momentum space. One starts by making the Fourier-transform of
the external leg dependence, after that introduces a four-momentum variable for each line, replaces the propagators
with their momentum space expression, introduces a momentum conserving factor ((2π)4δ(4)(P ) where P is the total
momentum arriving into the vertex and integrates over all momentum variables.
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V. GAUGE THEORIES

The discussion of gauge theories in this chapter is restricted to classical field theory, no issues of quantization will
be considered.

A. Local symmetries

It has been realized only in the fifties by C. N. Yang and R. L. Mills that the global symmetries of physics are
contradicting to the spirit of special relativity. Let us consider for example a global internal symmetry, represented
by the transformation

ψ(x)→ ψω(x) = ωψ(x) (160)

acting an the multi-component field variable φ(x) with ω being an element of the symmetry group, typically ω ∈ G =
O(n) (real fields) or ω ∈ G = U(n) (complex fields). The symmetry is global because we have to apply the same change
of base in the internal space anywhere and anytime in the Universe in order to keep the dynamics unchanged. Is the
rigid application of the symmetry transformation really necessary in our world where special relativity holds? One
can not exchange information between two locations in the space-time separated by space-like interval, ∆t2−∆x2 < 0
according to special relativity. How can then be a problem in using different bases in describing the physics at space-
like-separated regions? The symmetry transformations which seem to be in harmony with special relativity should
concern change of bases in locations which can exchange physical signals.
The suggestion of Yang and Mills is to give up any correlations among bases used at different space-time locations

and to us local symmetries,

ψ(x)→ ψω(x) = ω(x)ψ(x). (161)

This is another extreme possibility, opposite to the global transformations. It creates obvious problems if applied to
space-time regions with time-like separation, ∆t2 −∆x2 > 0 which can exchange signals. We shall briefly come back
to this problem, the issue of gauge-fixing later.
Let us, for the sake of example, consider a world with up and down quarks and strong interactions only. The

definition of a quark being up or down is a convention used by physicists to construct models and communicate the
results of their work. Physicists at different laboratories may use different definitions, called in general conventions
below. Experimental physicists need no conventions for their work since measurements are performed without making
any reference to internal spaces and bases. But they need conventions, as well, to compare their findings with model
predictions. In this imaginary world the physics is the same whatever type of convention is used. We assume now that
this physics is invariant under local SU(2) isospin transformations, ω(x) ∈ SU(2), and inquire about the consequence
of this postulate. We shall follow gauging, the modification of a Lagrangian from a global symmetry group, called
the gauge group G to the same symmetry group but in realized in a local manner. The resulting complete symmetry
group of the theory, G = ⊗∏xGx is gigantic and has infinite dimensions. We shall see that the price of such an
upgrade of the symmetry is the introduction of a symmetry group valued vector field, the gauge field.
Let us start with a theory defined by the Lagrangian L(φ, ∂φ) with global symmetry, ω ∈ G. The Lagrangian

has ultra-local terms, involving the field variable φ(x) at strictly the same space-time point, such as the mass term
1
2m

2φa(x)φa(x) or a local potential U(φa(x)φa(x)). There is no difference between global and local symmetry trans-
formations as far as these terms are concerned. But pieces of the Lagrangian involving space-time derivative of the
field are actually detecting the variation of the field on the space-time and are not strictly local. What is important
from the point of view of the symmetry is that the transformation rule

∂µφ(x)→ ∂µφ
ω(x) = ∂µωφ(x) = ω∂µφ(x) (162)

of the global symmetry transformation is modified for local symmetry briefly gauge transformations,

∂µφ(x)→ ∂µφ
ω(x) = ∂µω(x)φ(x) = ω(x)∂µφ(x) + (∂µω(x))φ(x), (163)

the trouble maker being the last term. It arises because the derivative compares the field values at neighboring points,

∂µφ(x) = lim
ǫ→0

φ(x + ǫnµ)− φ(x)
ǫ

(164)

and this term represents the contribution due to the different conventions in different points. This contribution
should not be there if by difference of the field variables we mean ”physical” difference. We should transform the
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field variables into the same convention before subtraction. The expressing of the field at y into the convention of x,
φ(y)→ ω(x← y)φ(y), is a change of basis again. We are interested in this transformation for space-time points within
each others vicinity when, the continuous dependence on the space-time coordinate assumed, this transformation is
close to the identity. The possible moves of y into a neighboring x are characterized by an infinitesimal vector
∆xµ = xµ − yµ and the corresponding change of base

W (y ← x) = 11−∆xµAµ(x) +O
(
∆2x

)
(165)

is given in terms of four generators of the gauge group, Aµ(x) corresponding to the possible linearly independent
moves of the point x. The use of a basis τa, a = 1, . . . , N for the Lie-algebra (generators) of an N -dimensional gauge
group allows us to write

Aµ(x) = Aaµ(x)τ
a (166)

for real gauge groups and

Aµ(x) = Aaµ(x)iτ
a (167)

for complex gauge groups. The generators are antisymmetric or hermitian matrices for real or complex gauge groups,
respectively. In the case of the gauge group SU(N) a natural choice of basis is which satisfies the normalization
condition

tr τaτb =
1

2
δab. (168)

and the commutation relations

[
τa, τb

]
= ifabcτc (169)

where the structure constants fabc is symmetric with respect to cyclic permutations.
The measurable quantities are obviously independent of the choice of basis for the field variable therefore they must

be gauge invariant.

B. Geometry and dynamics

The space-time points are called events because they express that something happened ”here and now”. We need
an internal space for the more complete characterization of the events, for the specification of what kind of particles
has been seen ”here and now”. Thus the manifold carrying these information is M = R4 ⊗ I where the first factor
denotes the external space and the second one stands for the internal space, eg. I = R for a real scalar field and
i = R

n for an n-component real field, etc. This manifold remains unchanged when a global symmetry is implemented.
But local, gauge symmetries requires the further extension of the manifold because the internal space points are
given in terms of a locally freely changeable basis. In order to preserve the possibility of comparing internal space
points, particle types, residing at different space-time locations we have to keep track how conventions change in the
space-time. Thus our manifold isM = R

4⊗G⊗ I, G being the symmetry group acting locally helping to identify the
symmetry transformation ω(x) ∈ G for each space-time point which brings the convention at x into the same ’reference
convention’, defined for any observation. The matter, represented as particles or points, p, in the third factor p ∈ I
ofM is distributed in the space-time, R4, and the second factor G is needed to find the physical interpretation of the
point p in terms of generally accepted and used names. We shall see that the interactions influence the geometry of
the first two factors in M, namely general relativity, gravitation, and interactions described by Yang-Mills theories
are equivalent with the appearance of curvature in the external space R4 and R4 ⊗G, respectively.
The similarity between differential geometry and gauge theory will be demonstrated below by the introduction of

few common key constituents, covariant derivatives, parallel transport and the curvature tensor.

C. Covariant derivative

Once we have an expression for the compensation needed to bring the field around a space-time point into the
convention at the same point we can define the covariant derivative

Dµ = ∂µ +Aµ (170)
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as the derivative of the field φ(x) computed always in the convention at x by

Dµφ(x) = lim
ǫ→0

[1 + ǫn · A(x+ ǫn)]φ(x + ǫnµ)− φ(x)
ǫ

= (∂µ +Aµ)φ(x). (171)

The gauge field which appears in the definition of the covariant derivative is sometime called compensating field since
its role is to compensate out the contributions of the inhomogeneous conventions from the derivative of a physical
field.
Let us now find out the transformation rule for the gauge field Aµ(x) during the gauge transformation

ψ(x)→ ψω(x) = ω(x)ψ(x). (172)

The covariant derivative is the derivative of the field computed in fixed convention therefore Dµφ(x) transforms in
the same way,

Dµψ(x) = (∂µ +Aµ(x))ψ(x) → Dω
µψ

ω(x) = (∂µ +Aωµ(x))ψ
ω(x) = ω(x)Dµψ(x) = ω(x)(∂µ +Aµ(x))ψ(x), (173)

yielding

ω(∂µ +Aµ)ψ = (∂µ +Aωµ)ψ
ω = (∂µω)ψ + ω∂µψ +Aωµωψ (174)

and

ωAµ = ∂µω +Aωµω. (175)

Let us use the space-time derivative of the identity ω(x)ω†(x) = 1,

0 = (∂µω)ω
† + ω∂µω

†, (176)

to write

Aµ → Aωµ = ω(∂µ +Aµ)ω
†. (177)

The transformation rule (173) gives the rule of replacing the partial derivative with covariant derivative in the
Lagrangian,

L(φ, ∂φ)→ L(φ,Dφ) = L(φ, (∂ + iA)φ), (178)

as the rule of gauging. The interaction induced in this manner between the particle described by the field φ and the
gauge field is called minimal coupling.
Notice that relation between gauging and the construction of the Noether current. The new coordinates intro-

duced in Chapter A 2, related to the global symmetries transformations, are actually local, gauge transformations.
Furthermore, the term O (A) of the Lagrangian

L(φ, (∂ + iA)φ) = L(φ, ∂φ) +
∂L(φ, ∂φ)

∂∂µφ
iAaµτ

a
Pφ+O

(
A2
)

= L(φ, ∂φ)− JµaAµ +O
(
A2
)
, (179)

is the scalar product of the Noether current given by Eq. (A40) and the gauge field of the symmetry in question.

D. Parallel transport

Since two internal space vectors residing at two different space-time locations can not be compared in their natural
bases we need a definition what physically equivalent internal space vectors mean at different space-time points. This
is achieved by the parallel transport,a generalization of the construction of the covariant derivative.
Let us consider a continuously derivable path γµ : [0, 1]→ R4 in the space-time with γµ(0) = xµi and γµ(1) = xµf as

initial and final points, respectively and a field φ(x) defined on this path. We would like to characterize the situation
that the values of this field long our path, φ(γ(s)) are physically equivalent, despite the possible dependence of the
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components of φ(γ(s)) on s when expressed in terms of local bases. Suppose that we have a physical method to check
the equivalence of the field along the path. The resulting field φ(γ(s)) satisfies the equation

φ(y) =Wγ(y, x)φ(x) (180)

where Wγ(y, x) is a symmetry (basis) transformation which naturally depends on the choice of the points x and y
and a somehow surprising manner will also depend on the path γ, too.
We have just assumed that the function Wγ(y, x) is well defined say by experimental physicists. Since this function

compensate the change of conventions along the path it should closely be related to the compensating field Aµ(x)
introduced in defining the covariant derivative. In fact, the compensation introduced in Eqs. (165) and (171) are
parallel transports for infinitesimal distances. The covariant derivative gives the change of a numerical components of
a field after the elimination of the contributions due to the changing conventions. The condition of parallel transport
is thus

dγµ

ds
Dµφ(γ(s)) = 0. (181)

It shows that the space-time dependence is just canceling the convention dependence and can be written as an equation
for the parallel transport transformation

dγµ

dτ
DyµWγ(y, x) = 0 (182)

according to Eq. (180). This equation looks like the Schrödinger equation, Eq. (E10), with time dependent Hamilto-

nian, S(s) = dγµ

dτ Dyµ and its solution will be obtained, accordingly, by the generalization of the time ordered product
(E11). The path ordered product of non-commuting objects defined along the path γ is defined as

T [A(sA)B(sB)] = Θ(sA − sB)A(sA)B(sB) + Θ(sB − sA)B(sB)A(sA) (183)

and the desired parallel transport,

Wγ(y, x) = P
[

e−
∫

y
x
dγµAµ(γ)

]

= P
[

e−
∫ 1
0
ds

dγµ(s)
ds

Aµ(γ(s))
]

, (184)

satisfies Eq. (182) what can be seen by repeating the steps (E16)-(E16). A more illuminating argument is the
following: Let us write first the integral in the exponent in Eq. (184) as

∫ 1

0

ds
dγµ(s)

ds
Aµ(γ(s)) = lim

N→∞

1

N

N∑

j=1

dγµ(sj)

ds
Aµ(γ(sj)) (185)

where sj = j/N . The exponential function of an operator is defined by its Taylor-series,

e−
1
N

∑N
j=1

dγµ(sj)

ds
Aµ(γ(sj)) = 1− 1

N

N∑

j=1

dγµ(sj)

ds
Aµ(γ(sj)) +

1

N2

N∑

j1,j2=1

dγµ(sj1)

ds

dγµ(sj2 )

ds
Aµ(γ(sj1))Aµ(γ(sj2)) + · · ·

(186)
and the path ordering applies term-by-term,

Wγ(y, x) = lim
N→∞



1− 1

N

N∑

j=1

dγµ(sj)

ds
Aµ(γ(sj)) +

1

N2

N∑

j1,j2=1

dγµ(sj1)

ds

dγµ(sj2 )

ds
P [Aµ(γ(sj1))Aµ(γ(sj2))] + · · ·





(187)
We would have

Wγ(y, x) = lim
N→∞

N∏

j=1

e−
1
N

dγµ(sj)

ds
Aµ(γ(sj)) (188)

according to the well known rule eaeb = ea+b, valid for numbers, without paying attention to the non-commutativity
of the objects occurring in the product. But the path ordering places the contributions corresponding to higher j
more to the left in the products and we find

Wγ(y, x) = lim
N→∞

e−
1
N

dγµ(sN )

ds
Aµ(γ(sN )) · · · e− 1

N

dγµ(s1)
dτ

Aµ(γ(s1)) (189)
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by repeating the same resummation as in Eq. (188). The path ordering succeeded in factorizing the dependence on
the N -th division point to the integral at the very left of the product. The final step is the calculation of the partial
derivative of W along the path,

1

N

dγµ

ds
∂yµWγ(y, x) = Wγ(y, x)−Wγ

(

y − 1

N

dγµ(sN )

ds
, x

)

=
[

e−
1
N

dγµ(sN )

ds
Aµ(γ(sN )) − 11

]

e−
1
N

dγµ(sN−1)

ds
Aµ(γ(sN−1)) · · · e− 1

N

dγµ(s1)

dτ
Aµ(γ(s1))

≈ − 1

N

dγµ(sN )

ds
Aµ(γ(sN ))Wγ

(

y − 1

N

dγµ(sN )

ds
, x

)

≈ − 1

N

dγµ(1)

ds
Aµ(γ(1))Wγ(y, x), (190)

which yields Eq. (182).
The parallel transport transformation, Wγ(y, x), satisfies a simple multiplication rule. Let us consider two joined

paths, γ1 and γ2, with γ1(1) = γ2(0). Their sum, γ1 + γ2, is the path obtained by following first γ1 and after γ2,

γ1 + γ2(s) =

{

γ1(2s) 0 ≤ s ≤ 1
2

γ2(2s− 1) 1
2 ≤ s ≤ 1

. (191)

The path ordering gives

Wγ1+γ2(γ2(1), γ1(0)) =Wγ2(γ2(1), γ2(0))Wγ1(γ1(1), γ1(0)). (192)

E. Wilson-loop

The use of the parallel transport in gauge theory is the construction of the Wilson loops, a complete set of gauge
invariant observables. They are called complete because their knowledge allows us to reconstruct the gauge field up
to a gauge transformation.
We start by the gauge transformation properties of the parallel transport,

ω(y)φ(y) = Wω
γ (y, x)ω(x)φ(x)

Wω
γ (y, x) = ω(y)Wγ(y, x)ω

†(x), (193)

indicating that the parallel transformation corresponding to a closed loop changes by a similarity transformation,

Wω
γ (x, x) = ω(x)Wγ(x, x)ω

†(x) (194)

and its trace,

w[γ] = trWγ(x, x) (195)

called Wilson-loop, is gauge invariant.
The physical interpretation of a Wilson-loop is that its vacuum expectation value gives the amplitude of the creation

and annihilation of a particle-anti particle pair in the vacuum. Let us construct the initial state by placing a fermion
corresponding to the fundamental representation of the group SU(n) at the location B = (ti,xp) in the space time
and its anti-particle at A = (ti,xap). We consider a rectangular Wilson for simplicity where the charges are at rest.
This can be achieved by assuming that their mass is very large and their dynamics in space can be ignored. Therefore
the final state contains a particle at C = (tf ,xp) and an anti-particle at D = (ff ,xap), cf. Fig. 7. The Lagrangian

L =
i

2
[ψ̄γµ(∂µ + iAµ)ψ − (∂µψ̄ − ψ̄iAµ)γµψ]−mψ̄ψ

=
i

2
[ψ̄γµ∂µψ − ∂µψ̄γµψ −mψ̄ψ]− ψ̄γµAµψ (196)

yields the Hamiltonian

H(t) =

∫

d3x[mψ̄(x)ψ(x) +Aaµ(t,x)ψ̄(x)γ
µτaPψ(x)] (197)
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FIG. 7: Wilson-loop corresponding to the creation and annihilation of a pair of particle-anti particle.

in the limit m→∞ and the time evolution operator

U = T [e−
∫ ∞
−∞

dtH(t)] (198)

in the Schrödinger representation.
The canonical anti-commutation relation

{ψ(t,x), ψ†(t,y)} = δ(x− y) (199)

shows that the fermion field operator can be used to create or destruct a particle or anti-particle at a given space
location. Let us introduce the states |j〉p = ψj†α (xp)χα|0〉 and |j〉ap = χ†αψ

j
α(xap)|0〉 corresponding to the j-th basis

vector of the fundamental representation where the internal index j and Dirac index α are shown explicitly on the
field operator ψjα(x) and χα is a Dirac bi-spinor corresponding to a positive energy solution of the free Dirac-equation.
The pair must be in a neutral, ie. singlet state which is

|ψ〉i =

n∑

j=1

|j〉p ⊗ |j〉ap

=

n∑

j,k=1

(Wγ1(B,A))j,k|j〉p ⊗ |k〉ap

|ψ〉f =

n∑

j,k=1

(Wγ3(C,D))j,k |j〉p ⊗ |k〉ap

(200)

where the horizontal paths of the Wilson-loop are used to construct the state by means of conventions defined at the
same space-time points, in other words, the structure, showed in the first line is given in the conventions of the point
B of the particle.
The time evolution operator for an infinitesimal time ∆t is

〈j|e−i∆tH(t)|k〉p = 〈j|[1− i∆t
∫

d3x[mψ̄(t,x)ψ(t,x) +Aaµ(t,x)ψ̄(t,x)γ
µτaPψ(t,x)]|k〉p

= δj,k − i∆t〈j|mψ̄(t,xp)ψ(t,xp) + Aaµ(t,xp)ψ̄(t,xp)γ
µτaPψ(t,xp)]|k〉p

= δj,k(1 − i∆tm)− i∆tAa0(t,xp)(τaP )j,k (201)

up to terms O
(
∆t2

)
. The multiplication of expressions like this in the chronological product yields the time evolution

operator for the internal space dynamics of the particle and the antiparticle

Up = T [e−i
∫ tf
ti

dt[m+A0(t,xp)]],

Uap = T [e−i
∫ tf
ti

dt[m−A∗
0(t,xap)]]

= (T [e−i
∫ tf
ti

dt[−m+A0(t,xap)]])∗, (202)
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respectively. Finally we can put everything together for the transition amplitude,

Ap = 〈ψf |U |ψi〉

=

n∑

jj′kk′=1

(Wγ3(C,D))∗j′ ,k′〈j′|T [e−i
∫ tf
ti

dt[m+A0(t,xp)]|j〉p(Wγ1(B,A))j,k〈k′|(T [e−i
∫ tf
ti

dt[−m+A0(t,xap)])∗|k〉ap

=
n∑

jj′kk′=1

W †γ3(C,D))k′ ,j′〈j′|T [e−i
∫ tf
ti

dt[m+A0(t,xp)]|j〉p(Wγ1(B,A))j,k〈k|(T [e−i
∫ tf
ti

dt[−m+A0(t,xap)])†|k′〉ap

= e−2mTitrW †γ3(C,D))Wγ2 (C,B))Wγ1 (B,A)W
†
γ4 (D,A)

= e−2mTiw[γ4 + γ3 + γ2 + γ1] (203)

which is indeed the Wilson-loop up to a trivial self energy factor.
The Wilson-loop can be used to read off the potential between static charges. The creation and annihilation of

the charges induce transient phenomena for the dynamics of the gauge field, to be specified below, which are in a
good approximation independent of the time-span of the propagation of the charges. If these phenomena could be
neglected then we could identify the amplitude with e−2mTi−−iTV (x−y) where V (x) is the interaction energy of a
static particle-anti particle singlet pair inserted in the vacuum. By letting the tf − ti →∞ the transient effects, being
O
(
(tf − ti)0

)
, become negligible compared to the contribution of the particle-anti particle pair energy, an O (tf − ti)

contribution, and we have

2m+ V (xp − xap) = lim
T→∞

i

T
ln〈0|w[γ4 + γ3 + γ2 + γ1]|0〉 (204)

where the expectation value is taken for the gauge field vacuum.

F. Curvature or field strength tensor

The Wilson-loop plays important role in geometry, it defines the curvature tensor. Let us consider the parallel
transport of a field (or vector in the language of differential geometry) along a rectangle defined by the edges x, x+u,
x + u + v and x + v in space-time, u and v being infinitesimal, non-parallel vectors. The change of the field during
the parallel transport is infinitesimal, as well, φ → φ + δφ and should be linear in u, v and φ itself. Therefore one
expects the relation

δφa = Raµνbu
µvνφb. (205)

We use here covariant and contravariant internal indices in discussing the curvature tensor because the internal space
is identical with the external one in differential geometry and general relativity. For non-gravitational gauge theory
on should simply disregard the position of the internal indices. The coefficients Raµνb form a tensor, called curvature
tensor in differential geometry because they appear in a covariant equation. According to the definition of the parallel
transport, Eq. (184),

Raµνbu
µvν ≈ (ev·G(x)eu·G(x+v)e−v·G(x+u)e−u·G(x))ab

≈
[(

11 + v ·G(x) + 1

2
[v ·G(x)]2

)(

11 + u ·G(x + v) +
1

2
[u ·G(x+ v)]2

)

×
(

11− v ·G(x + u) +
1

2
[v ·G(x+ u)]2

)(

11− u ·G(x) + 1

2
[u ·G(x)]2

)]a

b

≈ (11− iuµvνFµν)ab (206)

The field strength tensor, alias curvature tensor, is

Fµν = [Dµ, Dν ] = ∂µAν − ∂νAµ + [Aµ, Aν ]. (207)

It is a generator valued field,

Fµν = F aµντ
a
P , (208)
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with

F aµν = ∂µA
a
ν − ∂νAaµ + fabcAbµA

c
ν . (209)

The curvature measures the non-triviality of the parallel transport along an infinitesimal closed loop. In a similar
manner, the gauge field strength is the measure of the non-triviality of the parallel transport of a state along a closed
path. Another way saying this is that curvature or field strength is non-vanishing in a region if the parallel transport
is path dependent there. In fact, let us break a closed loop γ into two parts, γ = γ1+γ2, like in Fig. 7 and notice that
the conditions Wγ1+γ2(A,A) =Wγ1(B,A)Wγ2 (A,B) = 1 and Wγ1(B,A) =W−1γ2 (A,B) =Wγ−1

2
(B,A) are equivalent.

The transformation rule for the parallel transport on a closed path,

11− uµvνFµν(x)→ ω(x)[11− uµvνFµν(x)]ω†(x) (210)

gives the rule of transformation

Fµν(x)→ ω(x)Fµν (x)ω
†(x). (211)

G. Gauge field dynamics

The gauging, the upgrade of a global symmetry to a local one brings in a generator valued vector field. We are
accustomed to the fact that fields corresponds to particles. Therefore the gauging of a symmetry suggests the presence
of spin 1 bosons in the system. The dynamics of these particle can not come from the Lagrangian (178) because of
the lack of the velocities ∂0Aµ in it. The simplest solution is the add a new term to the Lagrangian L → L + LA
where LA satisfies the following conditions:

1. It should be quadratic in the velocities, LA = O
(
D2
)
.

2. It should be Lorentz invariant.

3. It should be gauge invariant.

The unique solution of these constraint on a space-time with trivial topology is the Yang-Mills Lagrangian,

LYM = − 1

2g2
tr(Fµν)

2 = − 1

4g2
(F aµν )

2, (212)

which is fixed up to the coupling constant g. It is advantageous to use the notation Aµ → gAµ in perturbation
expansion, giving

LYM = −1

4
F aµνF

µνa, (213)

with

F aµν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν . (214)

The non-vanishing field-strength is always the indication of the non-triviality of the parallel transport in that region.
Notice that the conditions evoked above restricts the free parameters of the Lagrangian for a single coupling constant

for such set of the generators which have non-vanishing commutation relations among each others. When the gauge
group is a direct product of two subgroups then the generators taken form different subgroups commute and each
subgroup has independent coupling constant.

H. Fundamental interactions

It is a remarkable feature of Nature that all known interactions belong to the class of gauge theories.

Electrodynamics: The electromagnetic interaction is defined as the interaction realized by the gauge field which
enters in physics by the gauging of the GQED = U(1) global phase symmetry of Quantum Mechanics. This latter
stands for the invariance of the observables under the transformation ψ(x) → e−iΦψ(x) of the wave function. The
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upgrading of this symmetry to gauge symmetry leads to the introduction of a single vector field (the group U(1) is
one dimensional) iAµ(x) (the only generator of U(1) is τ = i) and the gauging rule ∂µ → ∂µ + i ecAµ, p̂→ p̂+ ~e

c A

L = ψ̄(iDµγ
µ +m)ψ − 1

4e2
F 2
µν . (215)

The traditional notation is Aµ → eAµ:

L→ ψ̄(i∂µγ
µ +m− eAµγµ)ψ −

1

4
F 2
µν . (216)

The parametrization ω = e−iΦ leads to the gauge transformation rules

ψ(x)→ e−iΦ(x)ψ(x), Aµ → Aµ + ∂µΦ (217)

Weak interaction: Let us start with the the chiral left spinors (uL(x), dL(x)) for the up and down quarks. The
strong interaction has a global isospin SU(2) symmetry which mixes the left and right chiral spinors in the same
manner. The weak interaction is not parity invariant therefore it influences the left and right fermions differently. Let
us take isospin transformations acting on the left chiral quark spinors only,

ψL(x) =

(
uL(x)
dL(x)

)

→ ωψL(x) = eiΦ
aσa

(
uL(x)
dL(x)

)

, uR(x)→ uR(x), dR(x)→ dR(x), (218)

σs denoting the Pauli matrices, the generators of the SU(2) group. The gauge theory, based on this global symmetry

contains three gauge fields, Aµ(x) = Aaµ(x)
σa

2i , corresponding to the generators of the group SU(2)L, the Pauli
matrices. To complete the transformations on the quark isospin doublet we introduce an U(1)Y phase transformation
operating on both spinors,

uR(x)→ e−iyuΦuR(x), dR(x)→ e−iydΦdR(x), uL(x)→ e−iyuΦuL(x), dL(x)→ e−iydΦdL(x). (219)

The gauging of this UY (1) global symmetry leads to an additional gauge field. These four gauge fields, arising from the
local symmetry GEW = SU(2)L ⊗U(1)Y describe the unified electro-weak interactions in the Georgi-Glashow-Salam
model.

Strong interaction: The hadron states constructed in the quark model show a three-fold degeneracy in color space.
This implies an GS = SU(3) symmetry group,

ψ(x) =





ψ1(x)
ψ2(x)
ψ3(x)



→ ω





ψ1(x)
ψ2(x)
ψ3(x)



 , (220)

ω ∈ SUS(3) which generates 8(=dimSU(3)) gauge fields. These, coupled to the Noether currents

jaµ(x) = ψ̄(x)γµτaψ(x) (221)

by minimal coupling represent the strong interactions. The Lagrangian is

L =
∑

f

ψ̄f (iDµγ
µ +mf )ψf −

1

2g2
tr(Fµν)

2

=
∑

f

ψ̄f

(

i∂µγ
µ +mf + igAaµ

τa

2i
γµ
)

ψf −
1

4
(∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
ν)

2 (222)

where f is the flavor index and τa are the Gell-Mann matrices.

Gravity: The equivalence principle states that the gravitational forces can locally be eliminated by a suitable chosen
coordinate system. Thus we can introduce a local coordinate system around a given point of space-time where flat
space and Lorentz symmetry is recovered at the point in question. This principle leaves a Lorentz transformation
free since this preserves the flat Minkowski space-time structure at the given point. One is thus lead to a gauge
transformation

φ(x)→ S(Λ)φ(Λ−1 · x) (223)



35

with the Lorentz group as gauge group. By imposing continuity in space-time we restrict the gauge group to the
proper Lorentz group.
This gauge symmetry is introduced by the equivalence principle, the distinguished feature of the gravitational

interaction therefor one suspects that the dynamics arising in a gauge theory based on this symmetry is General
Relativity. One can actually reproduce Einstein equation of General Relativity as the Euler-Lagrange equation of
such a gauge theory.

VI. SPONTANEOUS SYMMETRY BREAKING

The usual meaning of symmetry in physics is the existence of transformations of the degrees of freedom which
can be carried out at any time. Namely, the performance of a symmetry transformation on the old initial conditions
generates new initial conditions and the time evolution starting from these is identical with the time evolution obtained
by applying the symmetry transformation for the state of the system (as a point in phase space in classical mechanics
and a state vector in quantum mechanics) at any time. This statement refers to the dynamics, the Hamiltonian should
be invariant under the symmetry transformations.
There is another, frequently used context for symmetry when on talks about the symmetry of a given trajectory

in classical mechanics or state in quantum mechanics. For example the circular motion around a point-like mass is
spherically symmetric. But this is a specially simple motion, the spherically symmetric dynamics naturally allows more
complicated, non-symmetrical orbitals. In a similar manner, some of the eigenstates of a symmetrical Hamiltonian
may be symmetrical, others not. For example the electron eigenstates of the non-relativistic hydrogen atom with
non-vanishing angular momentum are not symmetric despite the spherical symmetry of the Coulomb field of the
proton.
The symmetry of the dynamics is not obvious at a glance of the motion of the system, what we see first is

the symmetry of the trajectory or the state. Not all states are equally important, the lowest lying state is more
characteristic of the typical behavior of the system than an excited state. A symmetry is called to be realized in the
Wigner mode or is unbroken if not only the Hamiltonian but the gourd state is symmetric. The symmetry is broken
dynamically or spontaneously if the ground state of a symmetrical Hamiltonian is asymmetric.
Let us write the operator realizing a symmetry transformation as U = eiQ in the quantum case. The symmetry of

the Hamiltonian is expressed by the condition [Q,H ] = [U,H ] = 0, the symmetry of the ground state |0〉 is reflected
in the equation Q|0〉 = 0 or U |0〉 = |0〉. We have therefore

1. Symmetry in the Wigner mode: [Q,H ] = [U,H ] = 0, Q|0〉 = 0 and U |0〉 = |0〉 or
2. Symmetry spontaneously broken mode: [Q,H ] = [U,H ] = 0 and Q|0〉 6= 0, U |0〉 6= |0〉.

A. Discrete symmetries

A simple example for the spontaneously broken space inversion symmetry is the following though experiment.
Let us take a flexible plastic ruler which is approximately straight. Both the dynamics and the shape are reflection
invariant. Push the two end of the ruler towards each other by our hands in a symmetrical manner, ie. with open palm,
perpendicular to the ruler. The ruler develops a curved shape, bent by the pressure exerted by our palm at the end.
The ground state is not symmetrical anymore thought the Hamiltonian rests reflection symmetric. What happened
is that the symmetrical state becomes an unstable equilibrium when the pressure is applied and a weak quantum
or thermal fluctuation makes the system to choose a stable but asymmetric position. In other words, originally the
ground state is non-degenerate (straight ruler) but the pressure makes it degenerate and the system has to choose on
of the several degenerate states, neither of them being singlet alone.
A more elaborate example is offered by the ferromagnet. The order parameter, the local magnetization in a

given direction, is a scalar field φ(x) and the free energy is supposed to stay invariant under the change of sign,
φ(x)→ −φ(x). The simplest non-trivial local free energy functional displaying this symmetry is

F [φ] =

∫

d3x

[
1

2
(∇φ(x))2 + U(φ(x))

]

, U(φ) =
r

2
φ2 +

g

4
φ4, g > 0 (224)

in the spirit of the Landau-Ginzburg double expansion, mentioned at Eq. (A70). The inhomogeneities cost free
energy, therefore the lowest free energy configuration must be homogeneous, φ(x) = Φ. The value of Φ = Φ0 = 〈φ(x)〉
is chosen by minimizing the potential U(φ). For r > 0 Φ0 = 0 and for r < 0

Φ0 =

√
−r
g
. (225)
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One may therefore write T − Tc ≈ r in the vicinity of the phase transition.
The previous example can be generalized for particles where the symmetry G = Z2, realized as φ(x) → −φ(x), is

broken spontaneously. The Lagrangian is

L =
1

2
∂µφ∂

µφ− m2

2
φ2 − g

4
φ4, (226)

and the corresponding Hamiltonian reads as

H =

∫

d3x

[
1

2
π2 +

1

2
(∇φ)2 + m2

2
φ2 +

g

4
φ4
]

(227)

with m2 < 0 where the canonical momentum,

π(x) =
∂L

∂∂0φ(x)
= ∂0φ(x) (228)

is represented by the operator

π(x) =
1

i

δ

δφ(x)
. (229)

It is plausible that the field expectation value is space-time independent in the ground state due to the positive
definite nature of the second term in the Hamiltonian. Let us split the field into the sum of its expectation value and
fluctuations,

φ(x) = φ0 + χ(x) (230)

with

φ0 = 〈0|φ(x)|0〉. (231)

The value of φ0 can be obtained approximately by ignoring the dynamics of the inhomogeneous modes. In this case
on has simply to minimize the local potential to find

φ0 ≈
√

−m2

g
. (232)

The dynamics of the fluctuations around this homogeneous expectation value is characterized by the Lagrangian

L =
1

2
(∂χ)2 − m2

2
(φ0 + χ)2 − g

4
(φ0 + χ)4

=
1

2
(∂χ)2 − φ0(m2 + gφ20

︸ ︷︷ ︸

=0

)χ−
(
m2

2
+

3g

2
φ20

)

︸ ︷︷ ︸

=−2m2= 1
2m

2
H

χ2 − g

4
(4φ0χ

3 + χ4)− m2

2
φ0 −

g

4
φ40. (233)

The non-vanishing expectation value for the p = 0, homogeneous mode corresponds coherent states. One can
simplest see this by considering the harmonic oscillator of the particles with vanishing momentum. The harmonic
oscillator potential which leads to non-vanishing coordinate expectation value is a shifted one therefore the Hamiltonian
is

H0 =
P 2
0

2M0
+
M0ω

2
0

2
(X0 − φ0)2. (234)

Its ground state is

|0〉′ = e−iφ0P0 |0〉 (235)

where |0〉 is the ground state of the Hamiltonian with unshifted potential because the shift is made by the operator
e−φ0P0 ,

eiφ0P0f(X0)e
−iφ0P0 = f(X0 + φ0). (236)
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A special case of the Baker-Cambell-Hausdorff formula,

eA+B = eAaBe−
1
2 [A,B], (237)

valid for operators A, B whose commutator, [A,B] commutes with them, shows that the shifted ground state,

|0〉′ = e−
√

M0ω0
2 φ0(a0−a†0)|0〉 = e

√

M0ω0
2 φ0a

†
0e−

√

M0ω0
2 φ0a0e−

M0ω0
2 φ20|0〉 = e

√

M0ω0
2 φ0a

†
0e−

M0ω0
2 φ20|0〉, (238)

is indeed a coherent state with ill defined particle number.
Another, more systematical approach is based on variation method where the ground state wave functional is sought

in the Gaussian form,

Ψ0[Φ, φ] = e−
1
2

∫

d3xd3y[φ(x)−Φ]K(x,y)[φ(x)−Φ]. (239)

by generalizing the wave function (I1) for 〈0|φ(x)|0〉 6= 0. The previous argument corresponds to ignoring the
interaction for the particle modes with non-vanishing momentum. The spontaneous symmetry breaking occurs for
m2 < 0 and the fluctuations around this vacuum consist of particles with mass mH = 2

√
−m2 and

K =
√

−∆− 4m2 (240)

according to Eq. (I4).
The particle number density,

n =

∫
d3p

(2π)3
〈0|a†(p)a(p)|0〉 (241)

has finite contribution coming from the homogeneous mode, p = 0. One can see this by writing the wave functional
in momentum space,

Ψ0[Φ, φ] = e
−V

2

∫

d3p

(2π)3
[φ̃(−p)−Φ]

√
m2

H
+p2[φ̃(p)−Φ]

, (242)

with

φ̃(p) =

∫

d3xφ(x)e−ipx (243)

and noting that this is a ground state of the appropriate harmonic oscillator for each momentum sector except for
p = 0 where the ground state is shifted, φ̃(0)→ φ̃(0)+Φ. The lesson is that the vacuum with spontaneous symmetry
breaking contains a homogeneous (Bose-Einstein) condensate.
As an application of spontaneously symmetry breaking let us consider the Yukawa-model for a massless fermion

and scalar particle,

L = ψ̄i∂/ψ +
1

2
∂µφ∂

µφ− U(φ)− gφψ̄ψ, (244)

where the potential is symmetric with respect to the change of sign, U(−φ) = U(φ) and its minimum at φ = ±φ0 6= 0
is non-degenerate. As a result, there is a condensate of the scalar particle in the vacuum with say 〈0|φ(x)|0〉 = φ0
(we have to choose one of the degenerate vacua) and the quantum fluctuations are described by the field χ(x) where
φ(x) = φ0 + χ(x). The vacuum expectation value of the scalar field is close to the minimum of the potential for
weakly coupled particles, when g ≪ 1 and the higher than second order derivatives of the potential are small. The
Lagrangian for the fluctuating fields is

L = ψ̄[i∂/− gφ0]ψ +
1

2
∂µχ∂

µχ− 1

2
U ′′(φ0)χ

2 − gχψ̄ψ − U(φ0) +O
(
χ3
)
, (245)

where the contributions O
(
χ3
)
stand for the self interactions of the the scalar particles above the condensate. We

have a scalar particle in this vacuum with mass mH =
√

U ′′(φ0) and a massive fermion with mass M = gφ0. The
condensate, generated by the spontaneous breakdown of the formal symmetry φ→ −φ of the theory induces a mass
for particles which are massless in the naive, unstable vacuum without condensate.
The importance of the mass generation outlined above is that it is a soft process. A phenomenon might be called

hard or soft if it is present at arbitrary high energy or at low energies only, respectively. The spontaneous symmetry
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breaking is a soft phenomenon because it characterizes the vacuum and the excitations at low energies. In fact, at high
energy the potential energy is negligible compared with the kinetic energy and any effect of the potential energy is
weak. Such difference become important because quantum field theoretical models are in contradiction with continuous
space-time and we have to introduce a minimal distance for the proper treatment. The renormalization of a model is
the limit where this minimal distance tends to zero. Models which give converging observables in this limit are called
renormalizable. There are models, namely gauge theories, where renormalizability excludes certain particles from
having non-vanishing mass. But it might happen, as in the case of weak interactions, where phenomenology strongly
suggests that there are in fact massive particles which should be massless to render their model renormalizable. How
could we have the best from both worlds: on the on hand, keeping the renormalizability in order to be able to ignore
the minimal distance in the theory and the other, having mass for certain particles to reproduce observed phenomena?
Soft processes come to our rescue in such problems. When the mass is generated by a soft process then the massive
behavior of the particle is obvious at low energy but the high energy behavior remains massless.

B. Adiabatic approximation

The symmetry of the vacuum state can not depend on the parameters of the Lagrangian in a continuous manner,
thus the spontaneous symmetry breaking signals a singular point in the observables computed as functions of the
parameters of the theory. It must keep in mind that such a critical points, phase transitions in the physical jargon,
are mathematically possible for infinite systems only, which contains infinitely many degrees of freedom. The fact
that even our Universe has a finite size, suggesting that no phase transition could be observed, raises some problems
to settle before spontaneous symmetry breaking is to be used in model building.
Let us start with a little theorem, that the ground state of the one-dimensional Hamiltonian,

H =
p2

2m
+ U(x) (246)

where U(x) is a bounded function, acting on the space of single-component wave functions, is non-degenerate. This
can be shown by variational method, the lowering of the expectation value of the energy for any test function which
is vanishing at some values of the coordinate. As a result, the ground state wave function which can be chosen to
be real for this Hamiltonian, represented by a real operator, must be non-vanishing for any x. Due to the continuity
of the wave-function (U(x) is bounded) the ground state wave function has a definite sign. Therefore it must be
non-degenerate (degenerate eigenvectors of a hermitian operator are either degenerate or orthogonal and there are
no orthogonal functions with fixed sign). Therefore there is no spontaneous symmetry breaking in this system. A
rather trivial generalization of this theorem shows the absence of spontaneous symmetry breaking in non-relativistic
Quantum Mechanics for finite number of spinless particles. In case of non-vanishing spin the wave function has
several components and the theorem fails, cf. atoms or nuclei with spin S > 0, where the ground state has 2S + 1-
fold degeneracy. One of von Neumann’s theorems, the unitary equivalence of the realizations of the Heisenberg
commutation relations for finite number of spinless non-relativistic particles, supports the same conclusion.
Let us increase the number of particles and consider the typical time scales of the dynamics. The time scale of the

microscopical, elementary processes is in a good approximation independent of the size of the system. But certain
collective modes might slow down and become classical as the number of degrees of freedom becomes large. The
translation and rotation of rigid bodies will serve as an example in the following order of magnitude estimate to
understand the dynamical origin of the breakdown of translation and rotation symmetries in macroscopic bodies. The
symmetry of the dynamics with respect to translations and rotations assures that the total momentum P and angular
momentum L are preserved and their dynamics can be described by a simple model Hamiltonian

Hcoll =
1

2
Pj(M

−1)jkPk +
1

2
Lj(Θ

−1)jkLk (247)

where the elements of the matrices M and Θ are 3× 3 matrices whose matrix elements have the order of magnitude
M−1jk ≈ M−1 and Θjk ≈ Θ = MR2 for a rigid body of size R. We place the macroscopic body into a heat bath of
temperature T , expressed in Kelvin. Let us see first the when can we consider these collective motions classical. For
this end we estimate the average level splitting compared to the excitation energy,

∆Etransl
Etransl

≈ ∆P 2

M

kBT
≈ ∆P

P

MkBT
≈ ~

R

P

MkBT
(248)

and we find approximately the same ration for rotations,

∆Erot
Erot

≈ ∆L2

Θ

kBT
≈ ∆L

L

ΘkBT
≈ ~

PR

MR2kBT
=

~

R

P

MkBT
≈ 10−27

R

P

M10−16T
= 10−11

P

RMT
(249)
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where the finite constants were ignored in these order of magnitude estimates. The final expression is given in CGS
units.
Thus the motion is semiclassical for macroscopic bodies even at as low temperature as the cosmic background

radiation. The characteristic time scale of these collective motions are

ttransl =
R

vtransl
=
RM

P

trot =
1

Ω
=

Θ

L
≈ MR2

PR
=
RM

P
≈ RM√

kBTM
= R

√

M

kBT
≈ 108R

√

M

T
. (250)

This characteristic time scale is extremely large compared to the time scales of microscopic motion therefore the
collective coordinates, such as the position and the orientation of the body can be in a very good approximation
be considered as constants in studying the internal dynamics of the system. The applicability of such an adiabatic
approximation is the dynamical origin of the symmetry broken solution of quantum field theoretical models even if
they are applied for macroscopically large but finite systems despite the general theorem about the absence of such
phenomenon in finite systems.

C. Continuous symmetries

The dynamics of the symmetry breaking becomes considerable more involved if the symmetry broken by a condensate
is continuous. Let us consider the breakdown of the symmetry G = U(1) in a scalar model with complex field, defined
by the Lagrangian

L = ∂φ∗∂φ−m2φ∗φ− g

2
(φ∗φ)2. (251)

The existence of the conserved Noether-current indicates that the particle number is conserved in this model. The
canonical momenta,

π =
∂L

∂∂0φ
= ∂0φ

∗, π∗ =
∂L

∂∂0φ∗
= ∂0φ (252)

lead to the Hamiltonian

H =

∫

d3x [π∂0φ+ π∗∂0φ
∗ − L]

=

∫

d3x
[

π∗π +∇φ∗∇φ+m2φ∗φ+
g

2
(φ∗φ)2

]

. (253)

The repetition of the free quantum-fluctuation approximation of the real scalar field case above yields the vacuum
expectation value

〈φ(x)〉 = φ0 = eiθ

√

−m2

g
(254)

and the dynamics of the quantum fluctuations is determined by writing the field variable as

φ(x) = ρ(x)eiΘ(x), ρ(x) ≥ 0 (255)

which gives the Lagrangian

L = (∂ρ)2 + ρ2(∂Θ)2 −m2ρ2 − g

2
ρ4. (256)

A further shift, ρ(x) = ρ0 + χ(x), with ρ0 =
√
−m2

g introduces the fluctuations χ(x) governed by the Lagrangian

L = (∂χ)2 + 2m2χ2 − g

2
(4ρ0χ

3 + χ4) + ρ20(∂Θ)2 −m2ρ20 −
g

2
ρ40 (257)

We have a massless particle described by θ = ρ0Θ, called the Goldstone particle and a massive particle with m2
H =

−4m2.
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What happened here is a special case of a general theorem: The breakdown of each direction of a continuous
symmetry group generates a massless particle mode. To demonstrate this theorem in a less obvious case let us consider
a model for an n-components scalar field φa(x) with a continuous symmetry group corresponding to the infinitesimal
transformations φ(x) → φ(x) + δφ(x) with δφ(x) = ǫαταφ(x) involving the generators {τα, α = 1 . . . , N}. The
Lagrangian is assumed to be

L =
1

2
∂µφ∂

µφ− U(φ) (258)

and the vacuum should contain a condensate,

〈0|φa(x)|0〉 = φa0 (259)

which satisfies the equation

∂U

∂φa |φ=φ0

= 0 (260)

in the approximation employed above. A direction in the symmetry group is called unbroken if its generators reserve
the vacuum,

ǫαs τ
αφ0 = 0. (261)

The symmetry is called broken in directions where the generators change the vacuum,

ǫαb τ
αφ0 6= 0. (262)

The mass square for the different particles in the model are the eigenvalues of the mass matrix

M2
ab =

∂2U(φ)

∂φa∂φb |φ=φ0

(263)

because the particles correspond to the normal modes of the quadratic part of the action. The original, formal
symmetry of the model implies

δU = ∂aU(φ)ǫα(τα)abφb = 0 (264)

for arbitrary φ. The derivative of this equation with respect to φb is

0 = ∂d∂aU(φ)ǫα(τα)abφb + ∂aU(φ)ǫα(τα)ad (265)

let us now set φ = φ0 when the second term is vanishing and we find that either a generator belongs to an unbroken
symmetry direction or there is a vanishing eigenvalue of the mass matrix M2.
What happens is that the quantum fluctuations of the field experiences no restoring force to the equilibrium position

in the directions of broken symmetries coming from the local potential in the action due to its the degeneracy in these
directions, cf. Eq. (264). The energy of these modes comes from the kinetic energy only, from the space-time
derivatives in the action. This contribution is arbitrarily small for symmetry broken fluctuations which are slowly
varying in the space-time. The relativistic invariance assures that all excitations of the theory are organized into
particle modes. The particle whose energy starts with arbitrary small values is massless. This is the Goldstone boson.

D. Higgs mechanism

The lesson of the spontaneous breakdown of continuous symmetries is that the restoring force for the fluctuations
in the symmetry broken direction comes from the kinetic energy only. What happens when the symmetry in question
becomes a local symmetry? First of all, local symmetries controlling finite number of degrees of freedom (in a theory
with a large but finite UV cutoff) can never be broken dynamically. All what one can expect is that the global part of
the gauge invariance is broken. Such a spontaneous breakdown of continuous gauge symmetry produces a surprising
phenomenon because this weak restoring force acting an the Goldstone-modes disappears. In fact, the local symmetry
is just the statement that fluctuations in the symmetry directions do not change the action, ie. the restoring force of
the equilibrium position is exactly vanishing. One can go further and realize that these modes simply decouple form
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the rest of the system because the gauge transformations, change of conventions, do not influence the gauge invariant,
physical sector of the theory. Thus we expect that in gauge theories the Goldstone-modes decouple from the physical
sector. We note that the condensate arising from the spontaneous symmetry breaking may generate mass to particles,
coupled to the condensed ones. One finds that when the particles are coupled to the gauge field by minimal coupling
then the condensate of the particles participating in the spontaneous symmetry breaking generates mass for the gauge
boson corresponding to the broken directions. The final count is that massless Goldstone-modes disappear from the
physical sector but the gauge field components corresponding to these internal symmetry directions acquire mass.
The massless spin 1 particle has two helicity states, the massive particle has three. Therefore the degree of freedom
represented by the Goldstone-bosons get eaten up by the gauge boson. This is the Higgs-mechanism.
Instead of a general proof let us consider first the simplest case, scalar QED, an Abelian gauge theory with a scalar

particle. The Lagrangian is chosen to be

L = −1

4
F 2 + [(∂µ − ieAµ)φ]∗(∂µ − ieAµ)φ−m2φ∗φ− g

2
(φ∗φ)2

= −1

4
F 2 + ∂µφ

∗∂µφ+ ieφ∗
↔
∂ µφ

︸ ︷︷ ︸

Jµ

Aµ + (e2A2 −m2)φ∗φ− g

2
(φ∗φ)2 (266)

with m2 < 0 which leads to the spontaneous breakdown of the global phase symmetry and the appearance of the
condensate

φ(x) = ρ(x)eiΘ(x) = ρ(x). (267)

Notice that the Goldstone-modes correspond to the field Θ(x) and gauge invariance allows us to set Θ(x) = 0. This is
the gauge choice which removes the Goldstone-modes from the physical sector in a manifest manner. The Lagrangian
becomes

L = −1

4
F 2 + (∂ρ)2 + (e2A2 −m2)ρ2 − g

2
ρ4 (268)

in this gauge. We now separate off the vacuum expectation value from the scalar field by writing ρ = ρ0 + χ where

ρ0 =

√

−m2

g
. (269)

The dynamics of the fluctuations around the condensate is given by the new Lagrangian

L = −1

4
F 2 + (∂χ)2 + 2m2χ2 − g

2
(4ρ0χ

3 + χ4) + e2A2(ρ0 + χ)2 −m2ρ20 −
g

2
ρ40 (270)

which contains a massive gauge boson,

m2
A = e2ρ20 = −e

2m2

g2
(271)

and a massive scalar particle,

m2
H = −4m2 (272)

which is real, ie. its particle number is not conserved and is coupled to the gauge field in a non-minimal manner. Both
masses introduced in this manner are relevant at low energies and the high energy processes of the model involves
massless gauge bosons and a massive, charged scalar particle.
The case of non-Abelian gauge theories is a bit more complicated. Let us consider the Lagrangian

L = −1

4
F 2 + [(∂µ − igAµ)φ]†(∂µ − igAµ)φ− U(φ)

= −1

4
F 2 + ∂µφ

†∂µφ+ igφ†
↔
∂ µτ

αφ
︸ ︷︷ ︸

Jα
µ

Aαµ + g2AαµA
βµφ†τατβφ− U(φ) (273)

for the field φa(x) where the minimum of the potential U(φ) is degenerate. The mass matrix for the gauge bosons in
the vacuum with spontaneously broken symmetry,

M2
αβ = φ†0τ

ατβφ0 =

(
0 0
0 M2

)

(274)

has rank RankM2 = nb where nb is the number of broken directions in the symmetry group, ||τbφ0|| > 0. Therefore
we have a massive gauge boson corresponding to each broken continuous symmetry.



42

E. Dual superconductor model for quark confinement

The Higgs-phase of a gauge theory has massive gauge bosons and their field strength becomes short ranged as in
the superconducting phase of solids. We shall first outline a simple effective theory, a model containing the relevant
degrees of freedom and applicable in a window of scales only, for the Bardeen-Cooper-Schrieffer superconducting
phase.

BCS superconductivity: The phonon-mediated attractive interaction between electrons is weak in solids but it is
not screened. As a result, it dominates the screened Coulomb-repulsion of electrons at long distances. The low energy
physics of an electron gas with finite density is two-dimensional because the typical particle-hole excitations are close
the the Fermi surface, a two-dimensional manifold. An arbitrarily weak interaction is sufficient in two-dimensions to
create bound states. Thus one expects the appearance of e−e− bound states in solids at sufficient low temperature,
with kBT being smaller than the binding energy of the pair. The formation of these bound states, Cooper-pairs,
is one ingredient of the BCS ground state of conventional superconductors. The other important point is that the
binding energy is strong enough to overcome the kinetic energy arising from the localization of the electrons in the
loosely-bound Cooper-pairs. As a result the Cooper-pairs form a condensate. This is the BCS vacuum.
The Cooper-pairs are spinless bosons with charge 2e and they will be described by a non-hermitian scalar field φ(x).

The Lagrangian for the system of interacting Cooper-pairs, (266), is valid up to binding energies of the Cooper-pairs.
This model is considered in the Higgs-phase where the photons are massive and the electromagnetic interaction is
strongly suppressed beyond the distance scale m−1A .
Such a screening is the dynamical origin of the Meissner effects, the concentration of magnetic field in the supercon-

ductor into narrow flux tubes. Imagine a superconductor of size L ≫ m−1A placed into homogeneous magnetic field.
The magnetic force lines try to dilute themselves within the BCS vacuum where the magnetic field decays rapidly. But
there are no magnetic charges to remove the magnetic flux. What can the magnetic field do in order to decrease its
magnitude preserving the relation ∂ ·B = 0? It piles up the magnetic flux which entered into the superconductor into
a narrow flux tube and drives it through the system. Within this flux tube the magnetic field is long-ranged because
the flux must leave the large superconductor. Therefore the magnetic field pays the price in energy for the restoration
of the normal, non-superconducting vacuum of QED within the flux tube. The energy density in the normal vacuum
with 〈0|φ†(x)φ(x)|0〉 = 0 is higher than that in the symmetry broken vacuum by |m2|2/2g thus the increase of the
energy density of the false vacuum within the flux tube of radius R is ∆E = r2π|m2|2/2g per unit length. But there
is another price, as well, the magnetic flux should be independent of r due to the absence of magnetic charges and
this requires B ≈ ΦM/r

2π within the superconductor to forward magnetic flux ΦM , yielding the additional magnetic
energy EM = r2πΦ2

M/4π
3r4 per unit length. The minimization of the energy

E(r) =
r2π|m2|2

2g
+

Φ2
M

4r2π2
(275)

in r gives rtube = (gΦ2
M/2π

3|m2|2)1/4 and

Etube =
ΦM |m2|√

2gπ
. (276)

This is naturally a rough estimate what happens, the interactions among magnetic flux tubes, induced by the charges
of the solid might make energetically favorable to split the flux tube into smaller units. We ignore this possibility for
simplicity.

Magnetic monopoles: It was Dirac’s observation that classical electrodynamics can be extended in a natural manner
to include magnetic charges. Let us consider the Maxwell-equations in our units,

ρe = ∇ ·E, je = ∇×B − ∂0E
0 = ∇ ·B, 0 = ∇×E − ∂0B (277)

which can be written in relativistic notation as

∂µF
µν = jνe , ∂µF̃

µν = 0, (278)

where Fµν = ∂µAν − ∂νAµ, Aµ = (A0,−A), E = −∂0A−∇A0, B = ∇×A and the second equation is the Bianchi
identity for the dual field strength tensor

F̃µν =
1

2
ǫµνρσFρσ. (279)
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The generalization of the Maxwell-equations for magnetic current jµm is

ρe = ∇ ·E, je = ∇×B − ∂0E
ρm = ∇ ·B, jm = ∇×E − ∂0B (280)

or
(
∂ · F
∂ · F̃

)

=

(
je
jm

)

. (281)

The price of having magnetic charge (pole) in the system is the singular space-time dependence of the vector potential
Aµ but this singularity does no show up in the electric and magnetic field for Dirac’s magnetic monopole, ie. magnetic
charge q = 2πn/e with integer n.
Let us consider two static magnetic monopoles, one with magnetic charge q and another with magnetic charge
−q at distance R. The magnetic flux emanating from one charge goes into the other one and one recover Coulomb
force law in the normal vacuum. But the interaction of magnetic charges placed into a superconductor changes in
a fundamental manner due to the Meissner-effect which concentrates the magnetic field into a straight flux tube
between the charges. The result is the static interaction potential between these two magnetic charges is linear in the
separation,

U(R) = σR, (282)

for large enough R. The coefficient σ, the energy of the flux tube per unit length is called string tension. The lesson
is that the Meissner-effect can be summed up by saying that magnetic charges experience confining interaction if the
vacuum contains a condensate of the electric charges.

Dual symmetry: The generalized Maxwell-equations (281) display an O(2) dual symmetry,
(
F

F̃

)

→ ω

(
F

F̃

)

,

(
je
jm

)

→ ω

(
je
jm

)

, ω ∈ O(2). (283)

The usual field strength tensor identifies the electric and magnetic fields,

Fµν =






0 Ex Ey Ez
−Ex 0 −Hz Hy

−Ey Hz 0 −Hx

−Ez −Hy Hx 0




 (284)

and its dual is given by

F̃µν =






0 Hx Hy Hz

−Hx 0 Ez −Ey
−Hy −Ez 0 Ex
−Hz Ey −Ex 0




 . (285)

Thus the duality transformation (283) implies
(
E
H

)

→ ω

(
E
H

)

. (286)

Dual superconductor: Let us apply the duality transformation

ω =

(
0 1
−1 0

)

(287)

on a normal superconductor. In the resulting system we shall have a condensate of magnetic charges and the dual
Meissner-effect consists of the formation of flux-tubes between static electric charges. The electric charges are confined
in a dual superconductor which serves as a simple, relativistic model for confinement of charges.
There has been a long series of unsuccessful attempts to find Dirac’s magnetic monopoles in Nature despite the

simple possibility of including it into the framework of the time honored Maxwell-equations. The possible reason,
suggested by the numerical simulation of QED on a space-time lattice is that the magnetic charge, even if they exist,
are confined in extremely small, magnetically neutral bound states.
The dual superconductor model for quark confinement is based on the Abelian gauge theory defined by the diagonal

subgroup U(1)⊗ U(1) ⊂ SU(3) in QCD.
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VII. RENORMALIZATION GROUP AND ASYMPTOTIC FREEDOM

The renormalization group was first conceived in High Energy Physics to remove the UV divergences of Quantum
Field theory.

A. Regularization

The first appearance of UV divergence, Eq. (65), is not serious because the divergence can be eliminated by the
normal ordering prescription. The perturbation expansion usually generates divergent contributions in each order and
their elimination is far from being obvious. The divergences arise in perturbation expansion due to the summation
over intermediate states, like in the last line of Eq. (148). For along while it was an open question if these divergences
reflect the true properties of Quantum Field Theories or are the artifacts of the perturbation expansion. This latter
alternative is not so surprising in the light of the asymptotic nature of the perturbation expansion. In fact, the point
g = 0 is usually not a regular one on the plane of complex coupling constant because the infinitesimally small but
negative coupling strength already produces Hamiltonians which are unbounded from below and no ground state
exists. But the numerical simulations of field theoretical models suggests that the divergences are genuine.
The divergences appear because we insist on using the same equations of motion down to zero distances in space

or up to arbitrary high energies. They indicate that the continuous structure of space-time and the rules of Quantum
Mechanics, extended for multi-particle systems are incompatible. Which one to preserve? There is no experimental
evidence for the continuous structure of space-time and it is difficult to imagine to have any observation in the future
which could support a limiting procedure of mathematics. Thus what is left is to be pragmatic and use Lagrangian,
equations of motion etc. only in for scales where they can be tested experimentally. We have to introduce a minimal
distance r0 or a maximal energy Λ = 2π/r0 and ignore or cut off any state beyond these limits in our Fock-space.
These limits reflect our ignorance of physics and keep the mathematics corresponding to verifiable and observed
phenomena well defined. In the case of a scalar particle all momentum integral as in Eq. (148) must be restrained to
the region |p| < Λ.

B. Renormalization

The price of eliminating the divergences by the introduction of a cutoff is that our predictions depend on an
additional parameter, the cutoff. To make things worst this new parameter reminds us our ignorance only. What
to do with it, how to set its value? Whenever an observation is made and it is compared with the results of the
corresponding calculations we should put the cutoff safely away form the scales of observations where we know what
we are doing. To find a general purpose theory, applicable for any scales we seek the limit Λ → ∞. This limit will
be made by relying on another complication, namely that the parameters of the Lagrangian with interaction have
no clear physical meaning. The Lagrangian for free fields contain the physical mass of the particles but interactions
’dress up’ the physical particles and change their mass. In a similar manner, the coupling constants parametrize
the strength of interactions but have no unambiguous, observable importance in the dynamics of the real, ’dressed’
particles.
Let us consider QED where two experimental results Oa with a = 1, 2, say the slow electron-electron elastic

Thomson-cross section and an atomic energy level, are used to fix the free parameters, e andm of the QED Lagrangian.
As a result we need the solution of the set of non-linear equations

O1 = F1(e,m,Λ)

O2 = F2(e,m,Λ) (288)

where Fa(e,m,Λ) denotes expressions obtained in some calculation, for e and m. The solution, m = m(O1, O2,Λ)
and e = e(O1, O2,Λ) is called the renormalized trajectory of QED in the space of free parameters, on the (m, e) plane.
Different trajectories are characterized by different experimental inputs, Oa, and a given trajectory whose points are
characterized by the parameter Λ should represent the same theory. Is this really the case? let us consider a third
observable O3(p), corresponding to the momentum scale p, and its theoretical expression F3(p, e,m,Λ). Now the
question is whether the quantity

Otheor.
3 (p) = F3(p, e(O1, O2,Λ),m(O1, O2,Λ),Λ) (289)

independent of Λ? What happens in perturbative QED is that the cutoff-dependence of the right hand side appears
through factors O (m/Λ) and O (p/Λ) and the expression converges for Λ→∞. In this case this equation represents a
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theoretical prediction of the theory for observation far enough form the cutoff scale, p≪ Λ. For p ≈ Λ our ignorance is
too close to make any predictions. This results holds in general and any observable, calculated along the renormalized
trajectory converges when the cutoff is removed.
The evaluation of observables along the renormalized trajectory, by means of parameters which are functions of the

experimental input and the cutoff, is called renormalization. the theory where every observable converges in this limit
is called renormalizable. Non-renormalizable theories contain interactions which can not be reproduced at arbitrarily
short distance within the framework of Quantum Field Theory. These theories are supposed to be effective, applicable
in a certain scale interval only.
The perturbative condition of renormalizability is given by power counting. Let us imagine a theory with a single

coupling constant g for simplicity and an observable O calculated in the framework of the perturbation expansion,

O =

∞∑

n=0

gnIn. (290)

We denote the mass dimension of quantities, such as this observable by [O]. No other dimension occurs in our units
where ~ = c = 1. The coefficients, In, are given in terms of momentum integrals of the form

In =

∫

m0<|p1|,...,|pk|<Λ

d4p1 · · · d4pk
N(p1, . . . , pk)

D(p1, . . . , pk)
, (291)

where N(p1, . . . , pk) and D(p1, . . . , pk) are polynomials and both IR and UV cutoffs, m0 and Λ, respectively, are
imposed. We introduce the primitive degree of divergence,

ω(In) = 4k + [N(p1, . . . , pk)]− [D(p1, . . . , pk)], (292)

as the mass dimension of the integral. The contribution to the integral of the regime where all components of the
momentum variables p1, . . . , pk diverge in such a manner that the ratio of the components is constant is

∫ Λ

m0

dpp4k−1+[N ]−[D] =







(
Λ
m0

)4k+[N ]−[D]

4k − 1 + [N ]− [D] 6= 0

ln Λ
m0

4k − 1 + [N ]− [D] = 0
. (293)

The integrals In with negative primitive degrees of divergence are UV finite. The power of the UV divergence in Λ is
ω(In) for ω(In) > 0. Finally, integrals with ω(In) = 0 are logarithmically divergent.
Let us forget for a moment that divergences may arise from other regions of the integration domain as well and see

how different orders of the perturbation expansion diverge when the UV cutoff is removed. The relation

[O] = n[g] + [In], (294)

giving

ω(In) = [O]− n[g] (295)

shows that there are stronger and stronger power divergences as we increase the order of the perturbation expansion
for [g] < 0. This theory is called perturbatively non-renormalizable. The theory with [g] = 0 is called perturbatively
renormalizable. It has UV divergent contributions at each order of the perturbation expansion but they belong to
the same divergence structure. Finally, there are finite number of UV divergent orders when [g] > 0. This is a
perturbatively super-renormalizable theory.
When the divergences coming from other regions of the integration domains are taken into account one can show

by induction in the order of the perturbation expansion that the appropriate adjustment of the free parameter of
the Lagrangian, g → g(Λ), m → m(Λ), etc. is enough to remove the divergent contributions to observables for
perturbatively renormalizable or super-renormalizable theories. The UV divergences can not be balanced order-by-
order in perturbatively non-renormalizable theories by means of the adjustment of the free parameters of the theory.
For theories with massless particles IR divergences might appear due to the form G(p) = −1/(p2 + iǫ) of the

propagator. Notice that power of the IR and UV divergences is the same only their sign is the contrary according to Eq.
(293). Thus perturbatively non-renormalizable massless theories are IR stable and perturbatively super-renormalizable
theories have IR unstable, non-perturbative vacuum. The renormalizable theories represent a compromise between
the divergence structure of the IR and UV domain.
Thus theories whose Lagrangian contains parameters with non-negative mass dimensions only are perturbatively

renormalizable. For theories with bosons with non-vanishing spin, such as gauge theories, additional care is needed.
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For example, the massive spin one propagator, shown in Eq. (128), isO
(
p0
)
in momentum space for large p because the

dimensionless combination pµpν/m2 which is not seen by power counting but leads to divergences in the longitudinal,
ie. gauge dependent sector of the theory and renders massive gauge theories non-renormalizable. The Lagrangian of
massless gauge fields contains dimensionless coupling constants and massless gauge bosons. One can show that the
formal gauge invariance of the Lagrangian is sufficient to guarantee the absence of radiative corrections to the gauge
boson mass in each order of the perturbation expansion. Thus gauge theories are perturbatively renormalizable.

C. Renormalization group

The renormalization group was first constructed in Quantum Field Theory where the adjustment
Observations always involve scales, the time of measurement, the size or mass of the object measured, etc. The

change of these scales results in the change of the observed numbers. In other words, the observed quantities depends
on the scale of observations. The consequence of this rather general remark is the absence of constants in physics.
What was believed to be constant is actually a functions which may vary rather slowly in a certain window of scales.

V

FIG. 8: A rigid ball moving with velocity V , immersed into a fluid.

Let us consider a rigid ball immersed into a viscous fluid. What is its mass? There is now problem in the absence of
fluid. Mass is a parameter relating force and acceleration, both unambiguously defined and measured for an isolated
ball. But part of the viscous fluid moves along the ball and contribute to its mass. How could one find its value? Let
us suppose that we can measure the total energy, E(V ), of the fluid and ball when the latter moves with a velocity
V . A possible definition of the mass M , based on the usual kinetic energy expression is

M(V ) =
2[E(V )− E(0)]

V 2
, (296)

is obviously velocity dependent. Any other attempt to define mass for this interacting system brings in functions
instead of a single constant.
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FIG. 9: The polarization cloud around a charge in a classical, polarizable medium.

As another example let us consider an electron, e−, first inserted into a polarizable medium. The resulting static
polarization, shown in Fig. 9, is spherically symmetrical. The Coulomb-force F , experienced by an infinitesimal test
charge q, placed at distance R from the electron can be obtained by concentrating all charges around the electron
within a sphere of radius R into the position of the electron and ignoring the rest. The small dipoles, induced by the
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electrons Coulomb field are neutral therefore the only contribution to the charge within the sphere, beyond that of
the electron, come from the dipoles crossing the surface of the sphere. The electron attracts the positive charge of
the dipoles therefore the total charge within the sphere, e(R), is always less than the charge of the electron, e(R) < e.
The charge seen at distance R, e(R), can be defined by the help of the Coulomb law,

e(R) =
F (R)R2

q
, (297)

where F (R) is the force acting on the test charge q. The electron charge, usually assumed to be constant, is actually
is the value of the function e(R) for large, macroscopic distances. Similar screening takes place in the vacuum of
QED, too. The electron polarizes the Dirac-see, for example the charges in the vacuum at a given instant consist of
the original charge plus the e+e− virtual vacuum-polarization dipoles created by virtual photons as shown in Fig.
10. A screening phenomenon, similar to the classical polarizable medium, occurs resulting in a distance dependent
elementary charge.

time

FIG. 10: Virtual charges in the Dirac-see.

The scale-dependence of the charge appears in the simplest manner when the corrections to Coulomb-law is sought
in the vacuum. The perturbative series of the Wilson-loop of Fig. 7 is

〈0|w[γ]|0〉 = 〈0|T [e−ie
∫

dzψ̄(z)γµψ(z)Aµ(z)e−ie
∫

y
x
dγµAµ(γ)]|0〉

=
∞∑

m,n=0

(−ie)n+m
m!n!

∫

dz1 · · · dzm
∫

dγµ1

1 · · · dγµn
n

×〈0|T [ψ̄(z1)γν1ψ(z1)Aν1(z1) · · · ψ̄(zm)γνmψ(zm)Aνm (zm)Aν1(γ1) · · ·Aνn(γn)]|0〉, (298)

and Fig. 11 shows some of its graphs. It is clear that the effective charge,

e2(R) = −U(R)R, (299)

defined in terms of the static potential,

U(R) = lim
T→∞

1

T
ln〈0|w[γ]|0〉, (300)

is distance dependent.
The renormalization group method is a systematic way of finding the scale dependence in physical quantities by

taking into account the ”dressing” phenomena generated by interactions around the ”bare”, naive degrees of freedom.
One defines ”running” coupling constants, g(µ), parameters of the system which characterize the dynamics at a given
momentum scale µ. For example, the mass of a scalar particle m(µ) could be defined at the momentum scale µ by
the expression

G(p2 = µ2) =
1

µ2 −m2(µ)
(301)

for the propagator in the momentum space. This mass is not a constant and the interaction induces a non-trivial
scale dependence. One can construct such a physically motivated, so called renormalized versions for all parameters
occurring in the Lagrangian. They have physical meaning in contrary to the original parameters of the Lagrangian,
called bare parameters. Since the scale dependence is generated by interactions an infinitesimal change of the ob-
servational scale, µ → µ + δµ, implies infinitesimal amount of interactions and could be computed in leading order
in the perturbation expansion, using δµ/µ as small parameters, if we could allow all possible interactions occurring
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FIG. 11: Few graphs contributing to the radiative corrections to the Wilson-loop.
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FIG. 12: Leading order graphs contributing to the running coupling constants in QCD.

explicitly in our Lagrangian. But instead we usually have few coupling constants only and they have to regenerate
all. This is the reason that in this case the beta-function, defined by

β = µ
dg(µ)

dµ
, (302)

receive contributions to every order in the perturbation expansion. The multiplicative factor µ on the right hand side
is inserted to make the beta-function dimensionless. The beta-functions depends on the running coupling constants
(running masses treated as running coupling constants), the cutoff drops out during renormalization if the theory is
renormalizable.
The leading order contribution to the beta function of QED comes from the lowest, O

(
e4
)
graph in Fig. 11,

β(e) =
e3

12π2
+O

(
e5
)
. (303)

The leading order graph, contributing to the running of the coupling constants in QCD, are shown in Fig. 12. Their
contributions give

β(g) = −11− 2
3nf

(4π)2
g3 +O

(
g5
)

(304)

for nf quark flavor.
The integration of the renormalization group equation

µ
dg(µ)

dµ
= β(g) = β0g

3 +O
(
g5
)

(305)
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gives

g2(µ) =
g2(µ0)

1− 2g2(µ0)β0 ln
µ2

µ2
0

. (306)

This result represents a resummation of infinite higher order contributions of the perturbation series. What is implied
in the integration of the renormalization group equation is that the running coupling constant rather then the initial
value characterizes the strength of interactions. What is complicated is the ”dressing up” of the physical particles by
the elementary excitations, vacuum-polarizations, using the bare parameters of the Lagrangian defined with the help
of the cutoff. But once we have obtained a running coupling constant at a given scale µ, we can use make low order
perturbative calculation at that scale by using the running coupling constant as small parameter because this latter
characterizes the strength of interaction just at that scale. In other words, the running coupling constant comprises
lot of the perturbative corrections of the original perturbation expansion of the bare theory.
The resummation carried out by solving the renormalization group equation can easily be understood by the

following analogy. Let us consider the differential equation

dx(t)

dt
= f(x(t), t). (307)

The straightforward perturbation expansion of Quantum Field Theory is analogous to the strategy when the solution
of this equation is sought by expanding the right hand side around x = 0,

dx(t)

dt
=
∞∑

n=0

1

n!

∂nf(0, t)

∂xn
xn(t). (308)

This is the good strategy for x(t) ≈ but not otherwise. What we can do for large values of the x(t) is to expand
around a closed enough point, x0(t),

dx(t)

dt
=
∞∑

n=0

1

n!

∂nf(x0(t), t)

∂xn
[x(t) − x0(t)]n. (309)

What is the best choice? It is clearly x0(t) = x(t). But a simple numerical quadrature for the integration, such as

x(t +∆t) = x(t) + ∆tf(x(t), t)

= x(t) + ∆t

∞∑

n=0

1

n!

∂nf(x0(t), t)

∂xn
[x(t)− x0(t)]n (310)

shows that the base of the expansion should be somewhere in between x(t−∆t) and x(t), say at

x0(t) = x(t+ c∆t) ≈ x(t) + c∆tf(x(t), t), (311)

c being a fixed number. What we have achieved is not really shocking but is still a new small parameter for the
expansion of the right hand side of the differential equation,

x(t+∆t) = x(t) + ∆tf(x(t), t) +O
(
∆t2

)
. (312)

This expansion now has more chance to converge than in Eq. (308) and the simple algorithm, based on the leading
order contribution, becomes exact in the differential equation limit, ∆ → 0 because we carry our base point for the
expansion along the solution. This explains the remark made above Eq. (302) because the taking into account all
coupling constants is the analogy of keeping all term in the series (308), an procedure which is equivalent with the
leading order expansion results with well chosen, close enough base point, ie. x0(t) is the analogy of the running
coupling constant.
What kind of radiative corrections are resummed by the integration of the renormalization group equation? Once the

bare, dimensionless coupling constant is mall enough the only problem with perturbation expansion may arise from the
not fast enough decrease of the coefficient In in Eq. (290). This may happen only if the integration over intermediate
states receive unexpectedly large contribution which can happen either from too many high energy modes or too
many low energy modes. Thus the UV or IR divergences are the only danger for the perturbation expansion. These
divergences can be power-like or logarithmic in the cutoffs or the observational scale µ. Let us suppose that the theory
considered has no mass parameter in the Lagrangian and all coupling constants are dimensionless. Then logarithmic
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divergences are left only. One can see that the integration of the renormalization group equation corresponds to the
resummation of the logarithmically diverging, dangerous terms of the perturbation expansion.
Theories, such a QCD with nf ≤ 16, having negative beta-functions in the perturbative domain become weakly

interacting at short distances and are called asymptotically free. But notice that unless the beta function has a zero
and changes sign towards larger values of the coupling constant asymptotic freedom implies strong coupling at large
distances. In particular, the coupling constant (306) diverges at

µ2
L = µ2

0e
1

2β0g2(µ2
0) , (313)

called Landau scale. Such an anti-screening, the increase of the charge with the distance, opens the way for quark
confinement in QCD, a genuine non-perturbative effect.
The beta-function of QED is positive, meaning that the charge increases at short distances and becomes infinite

at the Landau-scale, obtained in Eq. (313) by the replacement e → g. The electromagnetic interactions can not be
maintained beyond this energy scale. Due to the smallness of the electric charge on the mass shell of a free-electron,
e2(m2

el) ≈ 1/137, the Landau-scale is well beyond the unification scale of the electromagnetic and weak interactions
and this problem, the non-renormalizability of QED, is an interesting but purely mathematical issue.
The numerical simulation of quantum field theories suggest that only asymptotically free theories are renormalizable,

all non-asymptotically free theory develop Landau-scale and their cutoff can not be removed. Since non-Abelian gauge
theories are the only theory which can be asymptotically free in four dimensions an important lesson for the Standard
Model is that it is non-renormalizable due to its U(1) and Higgs-sectors.

VIII. STANDARD MODEL

The Standard model covers all three interactions which are observed with their quantum effects. The strong
interaction is not really unified with the electromagnetic and weak interactions, QCD and the unified electro-weak
theories are simply placed beside in the Standard Model.

A. Fermi theory of the weak interaction

The unified electro-weak theory was constructed historically from the Fermi contact interaction model for weak
interaction, developed at the beginning by the help of low energy processes.

1. β-decay

The first theory of the weak interaction, constructed by Fermi, is based on the weak current. The angle dependence
of the cross section of the β-decay

n→ p+ e− + ν̄e (314)

suggests that the the interaction Lagrangian, responsible for this process is

Lβ = −
√
2Gβ ē(x)γ

µνe(x)ψ̄p(x)γµψn(x) + c.c., (315)

where e(x) and νe(x) are the electron and neutrino fields and Gβ = (1.1473 ± 0.0006) · 10−5GeV−2. The neutrino
mass, extracted by using the energy-momentum conservation turned out to be zero. The interaction Lagrangian in
terms of the quark field which generates the same transition is

Lβ = −
√
2Gβ ē(x)γ

µνe(x)ū(x)γµd(x) + c.c. (316)

Neutrinos exist in left handed version only therefore we can make the replacement

νe →
1

2
(1− γ5)νe. (317)

in the Lagrangian. The breakdown of the space inversion symmetry, generated by the γ5 matrix is observed in the
hadronic processes, too, and the extended interaction Lagrangian turns out to be of the form

Lβ = −Gβ√
2
ē(x)γµ(1− γ5)νe(x)ū(x)γµ(1− 1.225γ5)d(x) + c.c. (318)
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The coefficient of the γ5 matrix is not unity in the hadronic current due to renormalizations, arising from the strong
interaction.
Similar Lagrangian,

Lµ = −Gµ√
2
ē(x)γµ(1 − γ5)νe(x)µ̄(x)γµ(1− γ5)νµ(x) + c.c., (319)

with Gµ ≈ 1.02Gβ can be extracted from leptonic processes, such as from the µ-decay

µ− → e− + ν̄e + νµ. (320)

2. Cabibbo angle

There is no reason to expect that quark flavors, the eigenstates of the interaction Hamiltonian, agree for the weak
and strong interactions. It was found experimentally that when the quark flavors, defined by the strong interaction
are used then the interaction Lagrangian for weak processes still displays the same u quark field but requires the
replacement

d→ dC = cos θCd+ sin θCs. (321)

Therefore, the weak interaction Lagrange function is

Lβ = −Gβ√
2
ē(x)γµ(1 − γ5)νe(x)ū(x)γµ(1− 1.225γ5)[cos θCd(x) + sin θCs(x)] + c.c. (322)

where the Cabibbo angle θC is defined by

cos θC =
Gβ
Gµ

. (323)

The current numerical value is

sin θC = 0.21. (324)

3. Universality

The similar occurrences of the hadronic and leptonic currents in different, elementary weak interaction processes
suggests the generalization

L = −Gβ√
2
JµJ

µ + c.c. (325)

where the weak current

Jµ = J leptµ + Jhadrµ , (326)

is the sum of the leptonic and hadronic contributions,

J leptµ = ēγµ(1− γ5)νe + µ̄γµ(1− γ5)νµ,
Jhadrµ = ūγµ(1− 1.225γ5)(cos θCd+ sin θCs), (327)

respectively. This universality of the weak interaction has been confirmed in careful experimental studies.

4. Neutral current

The weak currents, introduced above doe not cover all observed weak processes. The flavor and lepton type
conserving weak processes, such as

ν̄µ + e− → ν̄µ + e−,

u+ νe → u+ νe, (328)
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do not involve change of electric charge and can be generated by means of introducing a neutral current in the
interaction Lagrangian

L = −Gn√
2
JnµJ

nµ + c.c. (329)

where the neutral current is build up by means of terms like ūγµ(1− γ5)u.

5. Generalization of the Fermi-model

The contact interaction, introduced above is not satisfactory because it is non-renormalizable. This means that
phenomena generated by it are dominated by high energy processes. One would like to find a theory of weak interaction
which can be localized at a certain energy range and this is possible for normalizable theories only.
The solution of the problem was sought in the direction suggested by QED where the

e− + e− → e− + e− (330)

elastic scattering amplitude is given in the leading order of the perturbation expansion by the effective interaction
action

Seffem = −Ge√
2

∫

dxdyJemµ (x)Dµν (x− y)Jem ν(y) (331)

expressed in terms of the (neutral) electric current Jemµ = ēγµe and the photon propagator Dµν(x − y). Though
such an interaction is non-renormalizable QED is based on a more elementary, local interaction Lagrangian which is
renormalizable. Can we have a similar rescue operation for the weak interaction? The current-current interaction is
short ranged as opposed to the electromagnetic interactions, therefore the interaction of the weak current should be
associated with the exchange of a sufficiently massive vector boson. In the case of a single current one tries the model

L = −1

4
(∂µWν − ∂νWµ)

2 +
1

2
m2
WW

2 − 1

2α
(∂µW

µ)2 + gJµAµ. (332)

The static Yukawa-potential, generated by the exchange of a massive W -particle,

U(r) =
g2

4πr
e−rmW , (333)

suggests the replacement

U(r)→ g2

m2
W

δ(3)(x) (334)

at low energies, at distances longer thanm−1W . Thus the massive vector boson exchange appears as a contact interaction
at low energies with G ≈ g2/m2

W . By choosing g2 = 1/137 we find mW ≈ 80GeV .
The massive vector boson propagator,

Dµν(x) =

∫
dp

(2π)4
e−ipx

[(

gµν − pµpν

m2
W

)
1

p2 −m2
W + iǫ

+
pµpν

m2
W

1

p2 − αm2
W + iǫ

]

. (335)

is a symmetric tensor and as such its Fourier transform contains the multiplicative factor pµpν/m2
W . This makes the

longitudinal part of the propagator O
(
p0
)
which is in contrast with the normalizable, O

(
p−2
)
transverse part. The

mass couples the transverse and the longitudinal helicity states of the W -boson and the unusually slow decay of the
propagator for large momenta renders the theory non-renormalizable. This problem, the construction of a renormal-
izable interaction which reduces to a current-current contact interaction at low energy, blocked the development of
particle physics for several decades.
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B. Unified electro-weak theory

The solution of the aforementioned problem, the mass generation for vector bosons in a renormalizable manner, is
provided by spontaneous symmetry breaking. In fact, it has been mentioned that the spontaneous symmetry breaking
is a low energy phenomenon. It may produce mass for certain particles at high energy but the particle mass, generated
in this manner disappears at high energy where the issue of renormalizability is settled.
It is important that the original Lagrangian, before spontaneous symmetry breaking be gauge invariant. This

property assures the decoupling of the longitudinal modes of the gauge boson which is the trouble maker at high
energy.
We outline now the construction of the Lagrangian for the unified electro-weak theory.

1. Vector bosons

There are four currents, participating in the electro-weak interactions, two charged and a neutral weak current and
a neutral electromagnetic one. The vector bosons, coupled to these currents will be denoted by W−, W+, Z0 and A.
The electromagnetic interactions suggests the presence of a U(1) gauge group and it is natural to extend this gauge
symmetry to SU(2)⊗ U(1) because the group SU(2) has just three generators. We shall see that the weak currents
couple to the left handed version of the fermions therefore the gauge group is SU(2)L⊗U(1). These two independent
gauge groups imply two independent coupling constants, g and g′, appearing in the Lagrangian

Lvb = −
1

2
trWµνW

µν − 1

4
BµνB

µν , (336)

where

Wµν = ∂µWν − ∂νWµ + ig[Wµ,Wν ], Wµ =W a
µT

a, T a =
σa

2
,

Bµν = ∂µBν − ∂νBµ. (337)

2. Higgs sector

We want to break the global subgroup of SU(2) ⊗ U(1) in such a manner that one of the four gauge fields, Aµ,
remain massless. This can be achieved by using SU(2)L doublet scalar Higgs field

φ =

(
φ1
φ2

)

=

(
φ11 + iφ21
φ12 + iφ22

)

. (338)

The eigenvalue yH of the charge Y for the Higgs field, appearing in the covariant derivative

Dµ = ∂µ + igW a
µT

a + ig′BµY (339)

will be set later.
The Lagrangian for the Higgs field is assumed to be

LH =
1

2
(Dµφ)

†Dµφ− 1

2
µ2φ†φ− λ

4
(φ†φ)2 (340)

with µ2 < 0 and the vacuum expectation value of the Higgs field is taken to be

〈0|φ|0〉 =
(

0
φ0

)

, (341)

where

φ0 =

√

−µ2

λ
(342)

in the mean-field approximation.
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The gauge field corresponding to the unbroken symmetry group directions satisfies the equation

(gW aT a + g′BY )〈0|φ|0〉 = 1

2
φ0

(
g(W 1 − iW 2)
−gW 3 + 2g′ByH

)

= 0. (343)

The linear combination of the gauge fields which is orthogonal to the three real vector field appearing in this equation,

g′W 3 +
g

2yH
B, (344)

is identified with the photon field.
The mass term for the gauge bosons,

〈0|φ†|0〉(−igW a
µT

a − ig′BµyH)(igW a
µT

a + ig′BµyH)〈0|φ|0〉, (345)

can be written as

g2φ20
4

W+
µ W

−µ +
φ20
4
(g2 + 4g′2y2H)ZµZ

µ (346)

in terms of the normal modes

W±µ = W 1
µ ∓ iW 2

µ ,

W 3
µ =

1
√

g2 + 4g′2y2H
(gZµ + 2g′yHAµ),

Bµ =
1

√

g2 + 4g′2y2H
(−2g′yHZµ + gAµ). (347)

The value yH = 1/2 is usually set at this stage.

3. Quarks and leptons

The fermions are rearranged in three families,

1 :

(
νe
e

)

L

,

(
u
ds

)

L

, eR, uR, dsR

2 :

(
νµ
µ

)

L

,

(
c
ss

)

L

, µR, cR, ssR

3 :

(
ντ
τ

)

L

,

(
t
bs

)

L

, τR, tR, bsR, (348)

where the quarks flavors are defined by the strong interactions.
It will be shown that one quark flavor direction can be chosen to be identical for the weak and strong interactions.

We use this freedom to introduce unique flavor for the u, c and t quarks and allow Cabbibo-mixing for the d, s and b
quarks whose strong interaction directions are denoted by ds, ss and bs.
The charged SU(2)L gauge fields, W±µ , mediate interaction among the components of the SU(2)L doublets. The

neutral weak and electric currents couple to the gauge fields Z0
µ and Aµ corresponds to two orthogonal linear super-

positions of the W 3
µ and Bµ. The kinetic energy with minimal couplings is of the form

Lquark−lept = (ν̄e, ē)LiD/

(
νe
e

)

L

+ (ū, d̄s)LiD/

(
u
ds

)

L

+ ēRiD̃/eR + ūRiD̃/uR + d̄sRiD̃/dsR

+(ν̄µ, µ̄)LiD/

(
µ
νµ

)

L

+ (c̄, s̄s)LiD/

(
u
ss

)

L

+ µ̄RiD̃/µR + c̄RiD̃/cR + s̄sRiD̃/ssR

+(ν̄τ , τ̄ )LiD/

(
τ
ντ

)

L

+ (t̄, b̄s)LiD/

(
t
bs

)

L

+ τ̄RiD̃/τR + t̄RiD̃/tR + b̄sRiD̃/bsR, (349)

where the U(1) covariant derivative D̃ = ∂µ + ig′BµY has been introduced.
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The mixing of the W 3
µ and Bµ fields in forming the physical normal modes,

W 3
µ = cos θWZµ + sin θWAµ,

Bµ = − sin θWZµ + cos θWAµ, (350)

is parametrized by the weak mixing angle θW ,

sin θW =
g′

√

g2 + g′2
cos θW =

g
√

g2 + g′2
. (351)

The detailed form of the lepton interaction Lagrangian is

Li,lept = −g
2
(W+ν̄eLγ

µeL +W−ēLγ
µνeL)−

√

g2 + g′2
[

(ν̄e, ē)Lγ
µ

(

T 3(cos2 θWZµ + cos θW sin θWAµ)

+Y (sin θW cos θWAµ − sin2 θWZµ)

)(
νe
e

)

L

+ ēRγ
µY (sin θW cos θWAµ − sin2 θWZµ)eR

]

= −g
2
(W+ν̄eLγ

µeL +W−ēLγ
µνeL)

−1

2

√

g2 + g′2
[

Zµν̄eLγ
µνeL +Aµ(2 sin θW cos θW ēLγ

µeL − 2yR sin θW cos θW ēRγ
µeR)

+Zµ

(

(cos2 θW − sin2 θW )ēLγ
µeL + 2yR sin2 θW ēRγ

µeR

)]

, (352)

where the absence of photon-neutrino coupling in the observed processes has been taken into account by the choice

yL,lept = −
1

2
. (353)

The usual electric current,

Jemµ = ēRγ
µeR + ēLγ

µeL (354)

has been achieved by setting

yR,lept = −1. (355)

When the whole interaction Lagrangian, Lquark−lept, is expressed in terms of the gauge field normal modes one
finds

Lquark−lept = −g(W+
µ J

chµ +W−µ J
chµ†)−

√

g2 + g′2ZµJ
nµ − eAµJemµ (356)

where

e = − gg′
√

g2 + g′2
, (357)

and

Jchµ = (ν̄e, ē)Lγ
µ(T 1 + iT 2)

(
νe
e

)

L

= ν̄eLγ
µeL,

Jemµ = −(ν̄e, ē)Lγµ(T 3 + Y )

(
νe
e

)

L

− ēRγµ(T3 + Y )eR = ēRγ
µeR + ēLγ

µeL,

Jnµ = (ν̄e, ē)Lγ
µ
[
T 3 − sin2 θW (T 3 + Y )

]
(
νe
e

)

L

− ēRγµ sin2 ΘWY eR

=
1

2
ν̄eLγ

µνeL −
1

2
ēLγ

µeL − sin2 θWJ
em
µ . (358)

The second equation yields the electric charge

Q = T 3 + Y (359)

which in turn requires yL,quark = 1
6 . Since T

3 = 0 the U(1) charge for right handed quarks,

yR,u quark =
2

3
, yR,ds quark = −1

3
, (360)

is flavor dependent.
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4. Mixing

The mass term, the gradient free quadratic part of the Lagrangian in the quantum fluctuations, is responsible of
two different kinds of mixing. On the one hand, it mixes the left and right hand states of massive fermions. On the
other hand, it defines the quark flavor states of the weak interaction.
The SU(2)L gauge invariance allows the mass term to couple the left and right handed singlets only therefore it

may contain the combinations

φ†
(
ψ1

ψ2

)

L

= φ†1ψ1 + φ†2ψ2, φtrǫ

(
ψ1

ψ2

)

L

= φ1ψ2 − φ2ψ1, (361)

where

ǫ =

(
0 −1
1 0

)

(362)

is the metric tensor for SU(2) spinors. The U(1) gauge invariance requires that the Y charge of the mas term is
vanishing. Since

yH = yL,lept − yR,lept (363)

the only allowed mass term for leptons is

Lm,lept = −(ē, µ̄, τ̄)RClept











φ†
(
νe
e

)

L

φ†
(
νµ
µ

)

L

φ†
(
ντ
τ

)

L











1

φ0
, (364)

where the family mixing is parametrized by the 3 × 3 complex matrix Clept. The flavor dependent Y -charge of the
right handed quarks allows both kinds of mass term for quarks,

Lm,q = −(d̄s, s̄s, b̄s)RCquark1











φ†
(
u
ds

)

L

φ†
(
c
ss

)

L

φ†
(
t
bs

)

L











1

φ0
− (ū, c̄, t̄)RCquark2











φtrǫ

(
u
ds

)

L

φtrǫ

(
c
ss

)

L

φtrǫ

(
t
bs

)

L











1

φ0
. (365)

After having identified the mixing of the left and right handed fermions we parametrize the allowed family mixing
by bringing the most general mass term, Lm,lept + Lm,q, into a canonical form by means of basis transformations.
The key observation is that the family independence of the Y -charge allows the arbitrary U(3) transformations





e
µ
τ





R

→ Ulept





e
µ
τ





R

,





ds
ss
bs





R

→ Uquark1





ds
ss
bs





R

,





u
c
t





R

→ Uquark2





u
c
t





R

,





e
µ
τ





L

→ V†lept





e
µ
τ





L

,





ds
ss
bs





L

→ V†quark





ds
ss
bs





L

,





u
c
t





L

→ V†quark





u
c
t





L

, (366)

on the families. Furthermore, other arbitrary U(3) transformations

Clept → U†leptCleptVlept,
Cquark1 → U†quark1Cquark1Vquark,
Cquark2 → U†quark2Cquark2Vquark (367)

are allowed on the family mixing matrices introduced so far.
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The matrix CleptC†lept s hermitian and its eigenvalues, m2
e, m

2
µ and m2

τ are non-negative. In the basis for leptons

where CleptC†lept is diagonal one has

Clept =





me 0 0
0 mµ 0
0 0 mτ



W (368)

with W being an U(3) matrix. We carry out a further basis transformations Vlept =W † and arrive at the lepton mass
matrix

Clept =





me 0 0
0 mµ 0
0 0 mτ



 . (369)

We proceed in a similar manner in the case of the quark families in determining the canonical basis. The only
difference is that we have the same left handed doublets in both mass terms. The usual choice is to diagonalize the
mass matrix involving the right handed states of the upper components of the doublets. The result is the mass matrix

Cquark2 =





mu 0 0
0 mc 0
0 0 mt



 , (370)

for the u, c and t flavor states. But the matrix Cquark1, corresponding to the right handed states of the lower compo-
nents of the doublets can now only be multiplied from the left by an arbitrary U(3) matrix and the parametrization

Cquark1 =





md 0 0
0 ms 0
0 0 mb



V† (371)

is the most general. The transformation Uquark1 = V† on the right handed states (ds, ss, bs)R brings us to the form

Cquark1 = V





md 0 0
0 ms 0
0 0 mb



V† (372)

where V is the Kobayashi-Maskawa-Cabbibo (KMC) matrix, the generalization of the Cabbibo-mixing for three
families.
The form of the KMC matrix can be simplified by performing U(1)3 phase transformations on the quark families,

V →





e−iφ1 0 0
0 e−iφ2 0
0 0 e−iφ3



V





eiχ1 0 0
0 eiχ2 0
0 0 eiχ3



 . (373)

Such a transformation with φi = χj leave the KMC matrix invariant thus we can eliminate five parameters in this
manner. The remaining four parameter (the group U(3) is nine dimensional) of the KCM matrix are denoted by
0 ≤ θi ≤ π/2, i = 1, 2, 3 and 0 ≤ δ ≤ 2π, yielding

V =





c1 s1c3 s1s3
−s1c2 c1c2c3 − s2s3eiδ c1c2c3 + s2s3e

iδ

−s1c2 c1c2c3 + s2s3e
iδ c1c2c3 − s2s3eiδ



 (374)

with ci = cos θi and si = sin θi.

C. Lagrange function of the Standard Model

The strong interaction is included in the Standard Model by extending the gauge symmetry to SU(3)c⊗SU(2)L⊗
U(1). The corresponding Lagrangian is written in the form

L = −1

2
trGµνG

µν − 1

2
trWµνW

µν − 1

4
BµνB

µν +
1

2
(Dµφ)

†Dµφ− V (φ) + ψ̄iD/ψ + Lm (375)
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where the field strength tensors

Gµν = (∂µG
a
ν − ∂νGaµ + gsf

abcGbµG
c
ν)
λa

2
,

Wµν = (∂µW
a
ν − ∂νW a

µ + gfabcW b
µW

c
ν )
σa

2
,

Bµν = ∂µBν − ∂νBµ (376)

correspond to the gauge fields,

V (φ) =
1

2
µ2φ†φ+

λ

4
(φ†φ)2, (377)

is the Higgs-potential and the covariant derivative

Dµ = ∂µ + igsG
a
µ

λa

2
+ igW a

µ

σa

2
+ ig′BµY (378)

contains the generators λa, σa and Y which are taken in the appropriate representations. The mass term for the
fermions is

Lm = −(ē, µ̄, τ̄)R





me 0 0
0 mµ 0
0 0 mτ















φ†
(
νe
e

)

L

φ†
(
νµ
µ

)

L

φ†
(
ντ
τ

)

L











1

φ0

−(d̄s, s̄s, b̄s)RV





md 0 0
0 ms 0
0 0 mb



V†











φ†
(
u
ds

)

L

φ†
(
c
ss

)

L

φ†
(
t
bs

)

L











1

φ0
− (ū, c̄, t̄)R





mu 0 0
0 mc 0
0 0 mt















φ†
(
u
ds

)

L

φ†
(
c
ss

)

L

φ†
(
t
bs

)

L











1

φ0
. (379)

After the spontaneous breaking of three out of the four dimensions of the symmetry SU(2)L⊗U(1) the Higgs-field
expectation value is written as

φ(x) =

(
0

φ0 + φ1

)

, (380)

where

φ0 =

√

−µ2

λ
. (381)

This leads finally to the Lagrangian

L = −1

2
trGµνG

µν − 1

2
trWµνW

µν − 1

4
BµνB

µν +W+
µ W

−µm2
W (1 + ρ)2 +

1

2
ZµZµm

2
Z(1 + ρ)2

+
1

2
∂µφ1∂

µφ1 −
m2
H

2
φ21 −

m2
H

2φ0
φ31 −

m2
H

4φ20
φ41 +

∑

ℓ

{ν̄ℓLi∂/νℓL + ℓ̄L[i∂/−mℓ(1 + ρ)]ℓL}

+
∑

q

{q̄[i∂/−mq(1 + ρ)]q} − gsJsaµGaµ − g(W+
µ J

chµ +W−µ J
chµ†)−

√

g2 + g′2ZµJ
nµ − eAµJemµ (382)

with

ρ(x) =
φ1(x)

φ0
, (383)

and

m2
H = −2µ2. (384)



59

The lower component of the weak SU(2)L hadronic doublets are




d
s
b



 = V†




ds
ss
bs



 (385)

which give the currents

Jsaµ = (ū, c̄, t̄)
λa

2
γµ





u
c
t



+ (d̄, s̄, b̄)
λa

2
γµ





d
s
b



 ,

Jchµ = (ν̄e, ν̄µ, ν̄τ )Lγµ





e
µ
τ





L

+ (ū, c̄, t̄)Lγ
µV





d
s
b





L

,

Jemµ = −(ν̄e, ē)Lγµ(T 3 + Y )

(
νe
e

)

L

− ēRγµ(T3 + Y )eR + quarks

= ēγµe+
2

3
ūγµu− 1

3
d̄γµd,

Jnµ = (ν̄e, ν̄µ, ν̄τ )γ
µ 1

2
L





νe
νµ
ντ



+ (ē, µ̄, τ̄ )γµ
(

−1

2
L+ sin2 θW

)




e
µ
τ





+(ū, c̄, t̄)γµ
(
1

2
L− 2

3
sin2 θW

)




u
c
t



+ (d̄, s̄, b̄)γµ
(

−1

2
L+

1

3
sin2 θW

)




d
s
b



 (386)

with

L =
1− γ5

2
. (387)

Note that the KMC matrix drops from the neutral current, there is no weak-flavor changing neutral current.
There are 18 free parameters in the model, the three coupling constants, gs, g, g

′, corresponding to the three
semisimple subgroup of the gauge group, the boson masses, m2

W , m2
H , the fermion masses, me, mµ, mτ , mu, md, mc,

ms, mt, mb, and the four parameters of the KMC matrix, θ1, θ2, θ3, δ.

D. Epilogue

What part of physics is covered by the Standard Model? If the model is renormalizable then it covers interactions
up to some finite energy. The upper energy scale is about hundred GeV and this is where the model becomes ”empty”.
But alias, the Standared Model is not perturbative at high energy and the perturbative proof of renormalizability,
honored by a Nobel price, is not much help at high energy. The problem comes from the non asymptotically free
sectors of the model, the U(1) gauge field and the self interactions of the Higgs-particles. Above 500 GeV perturbation
expansion breaks down and numerical simulations are left to guide us. According to them the Standard Model can
not function beyond this order of magnitude of energy and necessarily new physics is to be found.

Appendix A: Classical Field theory

Our goal in Section is to obtain equations of motion which are local in space-time and are compatible with certain
symmetries in a systematic manner. The basic principle is to construct equations which remain invariant under
nonlinear transformations of the coordinates and the time. We shall see that this property renders the resulting
equations more useful.

1. Variational principle

Field theory is a dynamical system containing degrees of freedom, denoted by φ(x), at each space point x. The
coordinate φ(x) can be a single real number (real scalar field) or consist n-components (n-component field). Our
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goal is to provide an equation satisfied by the trajectory φcl(t,x). The index cl is supposed to remind us that this
trajectory is the solution of a classical (as opposed to a quantum) equation of motion.
This problem will be simplified in two steps. First we restrict x to a single value, x = x0. The n-component field

φ(x0) can be thought as the coordinate of a single point particle moving in n-dimensions. We need the equation
satisfied by the trajectory of this particle. The second step of simplification is to reduce the n-dimensional function
φ(x0) to a single point on the real axis.

a. Single point on the real axis

Problem: identification of a point on the real axis, xcl ∈ R, in a manner which is independent of the reparametrization
of the real axis.

Solution: Find a function with vanishing derivative at xcl only:

df(x)

dx |x=xcl

= 0 (A1)

To check the reparametrization invariance of this equation we introduce new coordinate y by the function x = x(y)
and find

df(x(y))

dy |y=ycl
=
df(x)

dx |x=xcl
︸ ︷︷ ︸

0

dx(y)

dy |y=ycl
= 0 (A2)

Variational principle: There is simple way of rewriting Eq. (A1). Let us perform an infinitesimal variation of the
coordinate x→ x+ δx, and write

f(xcl + δx) = f(xcl) + δf(xcl)

= f(xcl) + δx f ′(xcl)
︸ ︷︷ ︸

0

+
δx2

2
f ′′(xcl) +O

(
δx3
)

(A3)

The variation principle, equivalent of Eq. (A1) is

δf(xcl) = O
(
δx2
)
, (A4)

stating that xcl is characterized by the property that an infinitesimal variation around it, xcl → xcl + δx, induces an
O
(
δx2
)
change in the value of f(xcl).

b. Non-relativistic point particle

Problem: identification of a trajectory in a coordinate choice independent manner.

Variational principle: Let us identify a trajectory xcl(t) by specifying the coordinate at the initial and final time,
xcl(ti) = xi, xcl(tf ) = xf (by assuming that the equation of motion is of second order in time derivatives) and consider
a variation of the trajectory x(t): x(t)→ x(t) + δx(t) which leaves the initial and final conditions invariant (ie. does
not modify the solution). Our function f(x) of the previous section becomes a functional, called action

S[x(·)] =
∫ tf

ti

dtL(x(t), ẋ(t)) (A5)

involving the Lagrangian L(x(t), ẋ(t)). (The symbol x(·) in the argument of the action functional is supposed to
remind us that the variable of the functional is a function. It is better to put a dot in the place of the independent
variable of the function x(t) otherwise the notation S[x(t)] can be mistaken with an embedded function S(x(t)).) The
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variation of the action is

δS[x(·)] =

∫ tf

ti

dtL

(

x(t) + δx(t), ẋ(t) +
d

dt
δx(t)

)

−
∫ tf

ti

dtL(x(t), ẋ(t))

=

∫ tf

ti

dt

[

L(x(t), ẋ(t)) + δx(t)
∂L(x(t), ẋ(t))

∂x
+
d

dt
δx(t)

∂L(x(t), ẋ(t))

∂ẋ
+O

(
δx(t)2

)

−
∫ tf

ti

dtL(x(t), ẋ(t))

]

=

∫ tf

ti

dtδx(t)

[
∂L(x(t), ẋ(t))

∂x
− d

dt

∂L(x(t), ẋ(t))

∂ẋ

]

+ δx(t)
︸ ︷︷ ︸

0

∂L(x(t), ẋ(t))

∂ẋ

∣
∣
∣
∣

ti

tf

+O
(
δx(t)2

)
(A6)

The variational principle amounts to the suppression of the integral in the last line for an arbitrary variation, yielding
the Euler-Lagrange equation:

∂L(x, ẋ)

∂x
− d

dt

∂L(x, ẋ)

∂ẋ
= 0 (A7)

The generalization of the previous steps for a n-dimensional particle gives

∂L(x, ẋ)

∂x
− d

dt

∂L(x, ẋ)

∂ẋ
= 0. (A8)

It is easy to check that the Lagrangian

L = T − U =
m

2
ẋ2 − U(x) (A9)

leads to the usual Newton equation

mẍ = −∇U(x). (A10)

It is advantageous to introduce the generalized momentum:

p =
∂L(x, ẋ)

∂ẋ
(A11)

which allows to write the Euler-Lagrange equation as

ṗ =
∂L(x, ẋ)

∂x
(A12)

The coordinate not appearing in the Lagrangian in an explicit manner is called cyclic coordinate,

∂L(x, ẋ)

∂xcycl
= 0. (A13)

For each cyclic coordinate there is a conserved quantity because the generalized momentum of a cyclic coordinate,
pcycl is conserved according to Eqs. (A11) and (A13).

c. Scalar field

Problem: identification of the equation of motion for an n-component field, φa(x), a = 1, . . . , n. (Notation: x =
(t,x).)

Variational principle: let us consider a variation of the trajectory φ(x):

φ(x)→ φ(x) + δφ(x), δφ(ti,x) = δφ(tf ,x) = 0. (A14)

The variation of the action

S[φ(·)] =
∫

V

dtd3x
︸ ︷︷ ︸

dx

L(φ, ∂φ) (A15)
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is

δS =

∫

V

dx

(
∂L(φ, ∂φ)

∂φa
δφa +

∂L(φ, ∂φ)

∂∂µφa
δ∂µφa

)

+O
(
δ2φ
)

=

∫

V

dx

(
∂L(φ, ∂φ)

∂φa
δφa +

∂L(φ, ∂φ)

∂∂µφa
∂µδφa

)

+O
(
δ2φ
)

=

∫

∂V

dsµδφa
∂L(φ, ∂φ)

∂∂µφa
+

∫

V

dxδφa

(
∂L(φ, ∂φ)

∂φa
− ∂µ

∂L(φ, ∂φ)

∂∂µφa

)

+O
(
δ2φ
)

(A16)

The first term for µ = 0,

∫

∂V

ds0δφa
∂L(φ, ∂φ)

∂∂0φa
=

∫

t=tf

d3x δφa
︸︷︷︸

0

∂L(φ, ∂φ)

∂∂0φa
−
∫

t=ti

d3x δφa
︸︷︷︸

0

∂L(φ, ∂φ)

∂∂0φa
= 0 (A17)

is vanishing because there is no variation at the initial and final time. When µ = j then

∫

∂V

dsjδφa
∂L(φ, ∂φ)

∂∂jφa
=

∫

xj=∞
dsjδφa

∂L(φ, ∂φ)

∂∂jφa
︸ ︷︷ ︸

0

−
∫

xj=−∞
dsjδφa

∂L(φ, ∂φ)

∂∂jφa
︸ ︷︷ ︸

0

= 0 (A18)

and it is still vanishing because we are interested in the dynamics of localized systems and the interactions are supposed
to be short ranged. Therefore, φ = 0 at the spatial infinities and the Lagrangian is vanishing. The suppression of the
second term gives the Euler-Lagrange equation

∂L(φ, ∂φ)

∂φa
− ∂µ

∂L(φ, ∂φ)

∂∂µφa
= 0. (A19)

Examples:

1. Free scalar particle:

L =
1

2
∂µφ∂

µφ− m2

2
φ2 =⇒ (�+m2)φ(x) = 0 (A20)

2. Self interacting scalar particle:

L =
1

2
(∂φ)2 − m2

2
φ2 − U(φ) =⇒ (∂µ∂

µ +m2) = −U ′(φ) (A21)

3. Free fermions:

L = ψ̄[i∂µγ
µ −m]ψ → i

2
[ψ̄γµ(∂µψ)− (∂µψ̄)γ

µψ]−mψ̄ψ =⇒ (i∂µγ
µ −m)ψ(x) = 0

γ0 =

(
11 0
0 −11

)

, γℓ =

(
0 σℓ

−σℓ 0

)

(A22)

4. Yukawa model (proton + σ meson):

L =
1

2
∂µσ∂

µσ − M2

2
σ2 + ψ̄[i∂µγ

µ −m− gσ]ψ (A23)

2. Noether theorem

The reparametrization invariance of the Euler-Lagrange equation shows that there is a conserved current for each
continuous symmetry.

Symmetry: A transformation of the space-time coordinates xµ → x′µ, and the field φa(x) → φ′a(x) preserves the
equation of motion. Since the equation of motion is obtained by varying the action, the action should be preserved
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by the symmetry transformations. A slight generalization is that the action can in fact be changed by a surface term
which does not influence its variation, the equation of motion at finite space-time points. Therefore, the symmetry
transformations satisfy the condition

L(φ, ∂φ)→ L(φ′, ∂′φ′) + ∂′µΛ
µ (A24)

with a certain vector function Λµ(x′).

Continuous symmetry: There are infinitesimal symmetry transformations, in an arbitrary small neighborhood of
the identity, xµ → xµ + δxµ, φa(x) → φa(x) + δφa(x). Examples: Rotations, translations in the space-time, and
φ(x)→ eiαφ(x) for a complex field.

Conserved current: ∂µj
µ = 0, conserved charge: Q(t):

∂0Q(t) = ∂0

∫

V

d3xj0 = −
∫

V

d3x∂vj = −
∫

∂V

ds · j (A25)

It is useful to distinguish external and internal spaces, corresponding to the space-time and the values of the field
variable. Eg.

φa(x) : R
4

︸︷︷︸

external space

→ R
m

︸︷︷︸

internal space

. (A26)

Internal and external symmetry transformations act on the internal or external space, respectively.

a. Point particle

The main points of the construction of the Noether current for internal symmetries can be best understood in the
framework of a particle.
To find the analogy of the internal symmetries let us consider a point particle with the continuous symmetry

x→ x+ ǫf(x) for infinitesimal ǫ,

L(x, ẋ) = L(x+ ǫf(x), ẋ+ ǫ(ẋ · ∂)f(x)) +O
(
ǫ2
)
. (A27)

Let us introduce a new, time dependent coordinates, y(t) = y(x(t)), based on the solution of the equation of motion,
xcl(t), in such a manner that one of them will be y1(t) = ǫ(t), where x(t) = xcl(t)+ ǫ(t)f(xcl(t)). There will be n− 1
other new coordinates, yℓ, ℓ = 2, . . . , n whose actual form is not interesting for us. The Lagrangian in terms of the
new coordinates is defined by L(y, ẏ) = L(y(x), ẏ(x)). The ǫ-dependent part assumes the form

L(ǫ, ǫ̇) = L(xcl + ǫf(xcl), ẋcl + ǫ(ẋcl · ∂)f(xcl) + ǫ̇f(xcl)) +O
(
ǫ2
)
. (A28)

What is the equation of motion of this Lagrangian? Since the solution is ǫ(t) = 0 it is sufficient to retain the O (ǫ)
contributions in the Lagrangian only,

L(ǫ, ǫ̇)→ L(1)(ǫ, ǫ̇) = ǫ
∂L(xcl, ẋcl)

∂x
· f(xcl) +

∂L(xcl, ẋcl)

∂ẋ
[ǫ(ẋcl · ∂)f(xcl) + ǫ̇f(xcl)] (A29)

up to an ǫ-independent constant. The corresponding Euler-Lagrange equation is

∂L(1)(ǫ, ǫ̇)

∂ǫ
− d

dt

∂L(1)(ǫ, ǫ̇)

∂ǫ̇
= 0. (A30)

(this is the point where the formal invariance of the equation of motion under nonlinear, time dependent transforma-
tions of the coordinates is used). According to Eq. (A27) ǫ is a cyclic coordinate,

∂L(ǫ, ǫ̇)

∂ǫ
= 0 (A31)

and its generalized momentum,

pǫ =
∂L(ǫ, ǫ̇)

∂ǫ̇
(A32)
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is conserved.
The external space transformation corresponds to the shift of the time, t→ t+ ǫ which induces x(t)→ x(t− ǫ) =

x(t)− ǫẋ(t) for infinitesimal ǫ. This is a symmetry as long as the Hamiltonian (and the Lagrangian) does not contain
explicitly the time. In fact, the action changes by a boundary contribution only which can be seen by expanding the
Lagrangian in time around t− ǫ,

∫ tf

ti

dtL(x(t), ẋ(t)) =

∫ tf

ti

dt

[

L(x(t− ǫ), ẋ(t− ǫ)) + ǫ
dL(x(t), ẋ(t))

dt

]

+O
(
ǫ2
)

(A33)

and as a result the variational equation of motion remains unchanged. But the continuation of the argument is
slightly different from the case of internal symmetry. We consider ǫ as a time dependent function which generates
a transformation of the coordinate, x(t) → x(t − ǫ(t)) = x(t) − ǫ(t)ẋ(t) + O

(
ǫ2
)
. The Lagrangian of ǫ(t) as new

coordinate for x(t) = xcl(t) is

L(1)(ǫ, ǫ̇) = L(xcl(t− ǫ), ẋcl(t− ǫ))− L(xcl(t), ẋcl(t))

= −ǫẋcl
∂L(xcl, ẋcl)

∂x
− dǫẋcl

dt

∂L(xcl, ẋcl)

∂ẋ
+O

(
ǫ2
)

= −ǫẋcl
∂L(xcl, ẋcl)

∂x
− ǫẍcl

∂L(xcl, ẋcl)

∂ẋ
︸ ︷︷ ︸

−ǫ dL(xcl,ẋcl)

dt

−ǫ̇ẋcl
∂L(xcl, ẋcl)

∂ẋ
+O

(
ǫ2
)

= −ǫ
[
dL(xcl, ẋcl)

dt
− d

dt

(
∂L(xcl, ẋcl)

∂ẋ
ẋcl

)]

− d

dt

(
∂L(xcl, ẋcl)

∂ẋcl
ǫẋcl

)

+O
(
ǫ2
)

(A34)

up to an ǫ-independent constant. Its Euler-Lagrange equation (A30) assures the conservation of the energy,

H =
∂L(x, ẋ)

∂ẋ
ẋ− L(x, ẋ). (A35)

b. Internal symmetries

An internal symmetry transformation of field theory acts on the internal space only. We shall consider linearly
realized internal symmetries for simplicity where

δxµ = 0, δφa(x) = ǫ τab
︸︷︷︸

generator

φb(x). (A36)

This transformation is a symmetry,

L(φ, ∂φ) = L(φ+ ǫτφ, ∂φ+ ǫτ∂φ) +O
(
ǫ2
)
. (A37)

Let us introduce new ”coordinates”, ie. new field variable, Φ(φ), in such a manner that Φ1(x) = ǫ(x) where φ(x) =
φcl(x) + ǫ(x)τφcl(x), φcl(x) being the solution of the equations of movement. The linearized Lagrangian for ǫ(x) is

L̃(ǫ, ∂ǫ) = L(φcl + ǫτφ(x), ∂φcl + ∂ǫτφ(x) + ǫτ∂φ(x))

→ ǫτ
∂L(φcl, ∂φcl)

∂φ
+ [∂ǫτφ(x) + ǫτ∂φ(x)]

∂L(φcl, ∂φcl)

∂∂φ
. (A38)

The symmetry, Eq. (A37), indicates that ǫ is a cyclic coordinate and the equation of motion

∂L̃(ǫ, ∂ǫ)

∂ǫ
− ∂µ

∂L̃(ǫ, ∂ǫ)

∂∂µǫ
= 0. (A39)

shows that the current,

Jµ = −∂L̃(ǫ, ∂ǫ)
∂∂µǫ

= −∂L(φ, ∂φ)
∂∂µφ

τφ (A40)

defined up to a multiplicative constant as the generalized momentum of ǫ, is conserved. Notice that (i) we have an
independent conserved current corresponding to each independent direction in the internal symmetry group and (ii)
the conserved current is well defined up to a multiplicative constant only.

Examples:
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1. n-component real scalar field: φa, a = 1, · · · , n, the symmetry group is G = O(n),

L =
1

2
(∂φ)2 − V (φ2)

δφ = ǫaτaφ, τa ∈ o(n)
Jaµ = −∂µφτaφ (A41)

2. Single complex scalar field: φ = 1√
2
(φ1 + iφ2), symmetry: G = U(1), φ(x)→ eiαφ(x)

L =
1

2
∂µφ1∂

µφ1 +
1

2
∂µφ1∂

µφ1 −
m2

2
(φ21 + φ22)− V

(
1

2
(φ21 + φ22)

)

= ∂µφ
∗∂µφ+ ∂µφ

∗∂µφ−m2φ†φ− V (φ†φ) (A42)

Two ways of treating a complex variable in complex calculus: z → (zz∗) or z = z1 + iz2 → (z1z2)

(a) (φφ∗):

(
φ
φ∗

)

:

(
φ
φ∗

)

→
(
eiαφ
e−iαφ∗

)

, δ

(
φ
φ∗

)

= iα

(
φ
−φ∗

)

= ατ

(
φ
φ∗

)

, τ = i

(
1 0
0 −1

)

J = − ∂L

∂∂µφ
τφ = −i

(
∂L

∂∂µφ
φ− ∂L

∂∂µφ∗
φ∗
)

= −i(∂µφ∗φ− φ∗∂µφ) = iφ∗
↔
∂ µφ (A43)

(b) (φ1

φ2
):

(
φ1
φ2

)

:

(
φ1
φ2

)

→ eiαφ =
1√
2
[cosαφ1 − sinαφ2 + i(cosαφ2 + sinαφ1)]

δ

(
φ1
φ2

)

= α

(
−φ2
φ1

)

= ατ

(
φ1
φ2

)

, τ =

(
0 −1
1 0

)

J = −∂L(φ, ∂φ1)
∂∂µφ

τφ = −
(

− ∂L

∂∂µφ1
φ2 +

∂L

∂∂µφ2
φ1

)

= ∂µφ1φ2 − ∂µφ2φ1

=
i

2
[∂µ(φ1 + iφ2)

∗(φ1 + iφ2)− (φ1 + iφ2)
∗∂µ(φ1 + iφ2)] = −i(∂µφ∗φ− φ∗∂µφ) (A44)

3. n-component complex scalar field: φa, a = 1, · · · , n, G = U(n)

L = ∂φ†∂φ− V (φ†φ)

δφ = ǫaτaφ, δφ† = ǫa(φτa)† = −ǫaφ†τa

Jaµ = −∂µφ†τaφ+ ∂µφ(τ
a)trφ† = −∂µφ†τaφ+ φ†τa∂µφ = φ†τa

↔
∂ µφ (A45)

4. Electron: ψ, G = U(1), ψ → eiαψ, ψ̄ → e−iαψ̄, τ = i

(
1 0
0 −1

)

L =
i

2
[ψ̄γµ(∂µψ)− (∂µψ̄)γ

µψ]−mψ̄ψ

Jµ =
1

2
ψ̄γµψ +

1

2
ψ̄γµψ = ψ̄γµψ (A46)

c. External symmetries

When external and internal space transformation are performed simultaneously we have to follow the variation of
the domain of integration in the space-time. The resulting equations are useful because they cover all previous cases
considered, too.
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The most general transformations leaving the action invariant may act in the external space, too. Therefore, let us
consider the translation xµ → x′µ = xµ + δxµ and φ(x) → φ′(x) = φ(x) + δφ(x) where δφ(x) = −δxµ∂µφ(x). The
variation of the action is

δS =

∫

V

dxδL+

∫

V ′−V
dxL

=

∫

V

dxδL+

∫

∂V

dSµδx
µL (A47)

according to Fig. 13 and it can be written as

δS =

∫

V

dx

(
∂L

∂φ
− ∂µ

∂L

∂∂µφ

)

δφ+

∫

∂V

dSµ

(
∂L

∂∂µφ
δφ+ δxµL

)

(A48)

due to the relation

∂µδφ(x) = ∂µ[φ(x − δxµ(x)) − φ(x)] = ∂µφ(x− δxµ(x)) − ∂µφ(x) = δ∂µφ(x) (A49)

which holds as before, in case of a field independent variation. The variation principle, imposed in the inner points of
the region V cancels the first integral on the right hand side, leading to

δS =

∫

∂V

dSµδx
ν

(

Lgµν −
∂L

∂∂µφ
∂νφ

)

. (A50)

This integral is vanishing for arbitrary volume V and shift δxµ if the current

Jµ = ǫν
(

Lgµν −
∂L

∂∂µφ
∂νφ

)

(A51)

is conserved. Therefore, the canonical energy-momentum tensor,

T µνc =
∂L

∂∂µφ
∂νφ− Lgµν (A52)

containing the four Noether currents obeys the conservation law

∂µT
µν
c = 0. (A53)

Accordingly,

P ν =

∫

d3xT 0ν
c (A54)

can be identified by the energy-momentum vector and we have the parametrization

T µνc =

(
ǫ cp

1
cS σ

)

(A55)

where ǫ is the energy density, p is the momentum density, S is the density of the energy flux and σjk is the flux of
pk in the direction j.
When Lorentz transformations and translations are performed simultaneously then we have δxµ = aµ + ωµνx

ν and
δφ = Λνµωµνφ 6= 0 for field with non-vanishing spin and the conserved current is

Jµ =
∂L

∂∂µφ
(Λνκωκνφ− δxν∂νφ) + δxµL. (A56)

Let us simplify the expressions by introducing the tensor

fµνκ =
∂L

∂∂µφ
Λνκφ (A57)
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xδ

V

V’

FIG. 13: Deformation of the volume in the external space.

and write

Jµ = fµνκωκν −
∂L

∂∂µφ
δxν∂νφ+ δxµL. (A58)

By the cyclic permutation of the indices µνκ we can define another tensor

f̃µνκ =

(
∂L

∂∂µφ
Λνκ +

∂L

∂∂νφ
Λκµ − ∂L

∂∂κφ
Λµν

)

φ (A59)

which is antisymmetric in the first two indices,

f̃νµκ =

(
∂L

∂∂νφ
Λµκ +

∂L

∂∂µφ
Λκν − ∂L

∂∂κφ
Λνµ

)

φ

=

(

− ∂L

∂∂νφ
Λκµ − ∂L

∂∂µφ
Λνκ +

∂L

∂∂κφ
Λµν

)

φ

= −f̃µνκ (A60)

and verifies the equation

f̃µνκωνκ =

(
∂L

∂∂µφ
Λνκ +

∂L

∂∂νφ
Λκµ − ∂L

∂∂κφ
Λµν

)

φωνκ

= fµνκωνκ −
(

∂L

∂∂νφ
Λµκ +

∂L

∂∂κφ
Λµν

)

φωνκ

= fµνκωνκ. (A61)

As a result we can replace fµνκ by it in Eq. (A58),

Jµ = f̃µνκωκν −
∂L

∂∂µφ
δxν∂νφ+ δxµL

= f̃µνκ∂ν(δxκ)−
∂L

∂∂µφ
δxν∂νφ+ δxµL

= δxκ

(

gµκL− ∂L

∂∂µφ
∂κφ− ∂ν f̃µνκ

)

+ ∂ν(f̃
µνκδxκφ). (A62)

The last term J ′µ = ∂ν(f̃
µνκδxκφ) gives a conserved current thus can be dropped and the conserved Noether current

simplifies as

Jµ = T µν(aν + ωνκx
κ) = T µνaν +

1

2
(T µνxκ − T µκxν)ωνκ (A63)

where we can introduced the symmetric energy momentum tensor

T µν = T µνc + ∂κf̃
µκν (A64)

Due to
∫

∂V

dSµ∂κf̃
µκν =

∫

V

∂µ∂κf̃
µκν = 0 (A65)
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the energy momentum extracted from T µν and T µνc agree and and the tensor

Mµνσ = T µνxσ − T µσxν . (A66)

is conserved,

∂µM
µνσ = 0, (A67)

yielding the relativistic angular momentum

Jνσ =

∫

d3x(T 0νxσ − T 0σxν). (A68)

with the usual non-relativistic spatial structure. The energy-momentum tensor T µν is symmetric because the conser-
vation of the relativistic angular momentum, Eq. (A67) gives

0 = ∂ρM
ρµν = ∂ρ(T

ρµxν − T ρνxµ) = T νµ − T µν . (A69)

3. Construction of the Lagrangian

The construction of a Lagrangian for a given dynamics is usually governed by three principles.

1. The fundamental laws of physics are expected to be local in space-time.

2. Most of the observed conservation laws arise from the presence of a continuous symmetry.

3. If the theory is assumed to be valid until arbitrary short distance scales, ie. the physics observed is supposed to
be extrapolated down to zero distance, then the theory must be renormalizable.

The importance of locality is often overlooked. There are no doubt correlations among observations performed
at large distances in space-time, their explanation is just the goal of physics. But we believe that the structure of
differential equations and Quantum Mechanics allows us to develop a formalism (Lagrangian, variational principle,
quantization laws, ...) where all equations are local in space-time.
On the level of the action this is usually expressed as the applicability of the gradient expansion where the field

variables are supposed to have non-singular, slow enough dependence on the space-time coordinates. In other words,
any singularity arising form a theory of a given resolution in the space-time should originate from microscopic mech-
anism which is captured by equations and non-singular quantities accessible by observations with better space-time
resolution. According the the gradient expansion the action functional for a relativistic scalar field can be written as

S[φ] =

∫

dx[Z0(φ(x)) + Z2(φ(x))�φ(x) + Z
(1)
4 (φ(x))�2φ(x) + Z

(2)
4 (φ(x))(�φ(x))2 +O

(
∂4
)
]. (A70)

Note that Lorentz invariance suppresses the odd powers of the derivatives. The choice

Z0(φ) = −
m2

2
φ2 − U(φ), Z2(φ) = −

φ

2
, Vn = 0 (n ≥ 4) (A71)

corresponds to the Lagrangian (A21).
The Landau-Ginzburg double expansion in the amplitude of the field and the gradient is the assumption of the

polynomial ansatz like

Z0(φ) =

∞∑

n=1

gn
n!
φn (A72)

for the coefficient functions. The renormalization group is used to assess the effects of higher order terms in this
double expansion. The general rule with notable exceptions is that higher dimension of a coupling constant is in
expressed in energy units (~ = c = 1) means less important effects at large distances.
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Appendix B: Internal symmetry groups and their representations

1. Representation of groups

Definition: The representation of a group G in a linear space H is the set of operators U(g) : H → H, g ∈ G which
preserves the group structure, U(g1g2) = U(g1)U(g1).

Example: Translations and rotations in Quantum Mechanics: x→ x+a, U(a)ψ(x) = ψ(x−a), x→ Rx, RtrR = 11,
U(R)ψ(x) = ψ(R−1x).

Definition: Two representations, U(g) and U ′(g) are equivalent if they are related by a change of basis, U(g) =
A†U ′(g)A.

Definition: The subspace H′ ⊂ H is called invariant if U(g)H′ ⊂ H′ for each g ∈ G.
Definition: A representation is irreducible if there is no non-trivial invariant subspace (H′ = 0/ or H).
Example: Translations: The set of functions ψy(x) = δ(x − y) can formally be considered as a base for the wave
functions due to the identity

ψ(x) =

∫

d3yψy(x)ψ(y). (B1)

Starting with an arbitrary basis function we can arrive at another arbitrary basis element by applying well chosen
translations. Therefore there is no non-trivial invariant subspace. The representation is unitary,

〈φ|11|ψ〉 = 〈φ|ψ〉 =
∫

d3xφ∗(x)ψ(x) =

∫

d3xφ∗(x− a)ψ(x− a) = 〈φ|U †(a)U(a)|ψ〉 (B2)

Rotations: The basis functions concentrated on a sphere are mixed only under rotations thus the representation has
non-trivial invariant subspaces. These are given by the multiplets Hℓ = {

∑

m cm|ℓ,m〉}.
Definition: A representation is reducible if it is not irreducible, ie. there is non-trivial invariant subspace. If its
orthogonal complement is is also invariant then the representation is called decomposable.

Definition: A representation is unitary if H is equipped with a scalar product and U †(g)U(g) = 11 for all g ∈ G.
Theorem: If a unitary representation is reducible then it is decomposable.

Definition: A representation is a direct sum if H = H1 ⊕ H2 where Ha are two orthogonal invariant spaces for
a = 1, 2 and U(g) = U1(g)⊕ U2(g) with Ua(g) being a representation on Ha.
Theorem: A decomposable representation is the direct sum of irreducible representations.
The importance of irreducible representations of the symmetry is that their vectors can be called elementary

particles.

2. Continuous groups

The discrete symmetry groups are rather simple in High Energy Physics, they are inversions in different spaces.
The time and space inversions are discrete external symmetries, the charge inversion (particle-anti particle exchange)
is a discrete subgroup of the internal symmetries. Their representations can easily be constructed.
The question of continuous or Lie groups is far more involved. These groups are equipped with continuous topology

and are characterized by their multiplication law,

ω(x) · ω(y) = ω(F (x, y)) (B3)

where x and y are n-dimensional vectors for an n-dimensional group and the function F (x, y) describes the multipli-
cation law.
The set of functions Fα(x, y) gives rise to a rather complicated structure and offers not too much help in identifying

the possible continuous groups. The first step of progress in this direction comes from the construction of the Lie-
algebra, consisting of the generators of the group. The infinitesimal transformation in the vicinity of the identity of
an n-dimensional continuous group can formally be written as

ω = 11 + ǫατα +O
(
ǫ2
)

(B4)
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TABLE I: Real classical matrix groups.

Symbol Name Definition Dimension Generators
GL(N) general linear group detA 6= 0a N2 {τ : real N ×N matrices}
SL(N) special linear group detA = 1 N2 − 1 trτ = 0b

O(N) orthogonal group AtrA = 11c 1

2
N(N − 1) τ tr = −τ

SO(N) special orthogonal group AtrA = 11, detA = 1 1

2
N(N − 1) τ tr = −τ , trτ = 0

aThe matrix A is supposed to be an element of the group in question.
bdet(11+ ǫτ) = 1 + ǫtrτ +O

(

ǫ2
)

cdetAtrA = (detA)2 = 1 and detA = ±1.

with ǫa as free, continuous, real parameters. (Einstein convention is always assumed except explicitly stated otherwise.)
The identity

ψ(x− a) = e−a·∂ψ(x) = e−
i
~
a·pψ(x)

ψ(R−1z (α)x) = e−α
∂
∂φψ(x) = e−

i
~
αLzψ(x) (B5)

where Rz(α) is the rotation matrix by angle α around the axis z indicate that the generators (defined in Quantum
Mechanics as the coefficient of −i/~ times the continuous parameter in the infinitesimal transformation) of translations
and rotations are the momentum and the angular momentum operators. The appearance of the generators in the
exponent is not limited to these examples. The equation

lim
n→∞

(

1 +
a

n

)n

= lim
n→∞

en ln(1+ a
n
) = lim

n→∞
en(

a
n
+O(n−2)) = ea (B6)

is valid for the the generators,

lim
n→∞

(

1 +
aτ

n

)n

= eaτ , (B7)

showing that the repeating of an appropriately chosen infinitesimal transformation many times generates any finite
group element.
The linear superpositions of the objects τα by using real coefficients are the generators of the continuous group.

The group multiplication assures that the commutator of the generators is always a generator,

[τα, τβ ] = fαβγτγ . (B8)

In other words, the set of generators are closed for multiplication given by the commutator. The algebraic structure
obtained in this manner is called Lie-algebra of the group. The real numbers fabc are called structure constants of the
Lie-algebra. The group structure has another important consequence, namely that the Lie-algebra is unique in the
sense that the same set of generators and structure constants can be found by considering the vicinity of any other
group elements. The importance of the Lie-algebra is that it fixes the Lie-group locally, ie. the structure of the group
in the vicinity of any element.
The classification of the possible continuous symmetry groups is made simple by Ado’s theorem asserting that any

finite dimensional Lie-algebra is identical with a subspace of the generators of the matrix group GL(N) (GL=General
Linear group), consisting of non-singular N ×N real matrices, for sufficiently large N . Thus any continuous group is
locally identical with a subgroup of GL(N) for certain N . In order to cover all continuous groups it is sufficient to
study the matrix groups. The important matrix groups are called classical matrix groups and are shown in Tables I
and II. The rest, the exceptional groups have not yet found application in physics.
The typical symmetry group in quantum physics is U(N). Let us suppose that we have N equivalent states for a

system. The symmetry group is then U(N), being the largest set of matrices which mix these states with complex
coefficients and preserve the scalar product, a natural requirement for a symmetry transformation. The gauge theory
structure for the fundamental interactions shows that the overall U(1) phase symmetry of Quantum Mechanics gives
rise to electrodynamics after gauging. Thus what is left to discuss as the non-trivial consequence of the degeneracy is
the symmetry group SU(N) because U(N) = U(1)⊗ SU(N).

3. Irreducible representations of classical matrix groups

The finite dimensional irreducible representations of classical matrix groups will be constructed in terms of tensors.
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TABLE II: Complex classical matrix groups.

Symbol Name Definition Dimension Generators
GL(N,C) complex general linear group detA 6= 0 2N2 {τ : complex N ×N matrices}
SL(N,C) complex special linear group detA = 1 2N2 − 2 trτ = 0
U(N) unitary group A†A = 11a N2 τ † = −τ

SU(N) special unitary group A†A = 11, detA = 1 N2 − 1 τ † = −τ , trτ = 0

adetA†A = (detA)∗ detA = |detA|2 = 1

Fundamental representations: Let us start with the fundamental, N -dimensional representations of GL(N,C).
The fundamental representation for contravariant vectors in CN is

xj → ωjj′x
j′ j, j′ = 1, . . . , N. (B9)

The fundamental representation for covariant vectors is

xj → xj′ (ω
−1)j

′

j . (B10)

These representations are defined in such a manner that the scalar product xiy
i is an invariant. One can introduce

the complex conjugate fundamental representations,

xj̇ → (ωj̇
j̇′
)∗xj̇

′

xj̇ → xj̇′ ((ω
−1)j̇

′

j̇
)∗ (B11)

and we shall use dotted index for the conjugate representation vectors. The fundamental representations are obviously
irreducible.

Tensor representations: Higher representations are obtained by generalizing these formulae for tensors. A tensor

of type (m,n, ṁ, ṅ) is represented by the set of Nm+n+ṁ+ṅ numbers T j1,...,jm,j̇1,...,j̇ṁ
k1,...,kn,k̇1,...,k̇ṅ

following the transformation

rules

T j1,...,jm,j̇1,...,j̇ṁ
k1,...,knk̇1,...,k̇ṅ

→ ωj1j′1
· · ·ωjmj′m(ωj̇1

j̇′1
)∗ · · · (ωj̇ṁ

j̇′ṁ
)∗T

j′1,...,j
′
m,j̇

′
1,...,j̇

′
ṁ

k′1,...,k
′
nk̇

′
1,...,k̇

′
ṅ

(ω−1)
k′1
k1
. . . (ω−1)

k′n
kn
((ω−1)

k̇′1
k̇1
)∗ · · · ((ω−1)k̇

′
ṅ

k̇ṅ
)∗

(B12)
The representations (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0) and (0, 0, 0, 1) are clearly equivalent with the fundamental repre-
sentations mentioned above.
The tensor representation representations are reducible. In fact, the contraction of a contravariant and a covariant

index is an invariant operation, the remaining lower order tensor corresponds to an invariant subspace. To eliminate
these subspaces we introduce traceless tensors, defined by requiring vanishing contraction for an arbitrary pair of
covariant and contravariant indices. Note that no contraction allowed between normal and dotted indices because it
creates no GL(N,C) invariant.
The traceless tensors still give reducible representations. The way to see it is to notice that the symmetry-type of

a tensor with respect to the permutation of the indices of the same type does not change during the transformation
(B12) where the same rule applies to every index, independently of each others. One realizes here that the tensors
of the representation (m,n, ṁ, ṅ) actually provide a representation of the group of permutations of m, n, ṁ and ṅ
objects, Sm ⊗ Sn ⊗ Sṁ ⊗ Sṅ,

T j1,...,jm,j̇1,...,j̇ṁ
k1,...,knk̇1,...,k̇ṅ

→ T
jπt(1)

,...,jπt(m),j̇π̇t(1)
,...,j̇π̇t(ṁ)

kπc(1),...,kπc(1),k̇π̇c(1),...,k̇π̇c(ṅ)
, πt ⊗ πc ⊗ π̇t ⊗ π̇c⊗ ∈ Sm ⊗ Sn ⊗ Sṁ ⊗ Sṅ. (B13)

The GL(N,C) transformation rule, (B12), does not mix different representations of the symmetric group thus traceless
tensors of the type (m,n, ṁ, ṅ) corresponding to a given irreducible representations of the group Sm ⊗ Sn ⊗ Sṁ ⊗ Sṅ
form an invariant subspace. Weyl’s theorem asserts that these invariant subspaces can not be reduced anymore, they
are irreducible with respect to GL(N,C), as well. What is left to work out is the identification of the irreducible
representations of the symmetric group Sn.

Irreducible representations of the symmetric group: The operators projecting tensors of the type (m, 0, 0, 0)
into the irreducible representations of Sm are called Young-tableau projectors. A Young-tableau, σ, of order m is
the distribution of m objects, usually the numbers 1, . . . ,m, into different vertical columns, such as for example with
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m = 13,

1 2 3 4 5 6

7 8 9 10

11 12

13 (B14)

The sum of the length of the columns is m. We put the columns beside each other in such a manner that highest
lying object of each column appear in the same row and their length is changing in a monotonous manner. The
resulting rearrangement of the indices of the tensor is a Young-tableau. The projection operator πσ of a Young-
tableau σ consists of first the symmetrization over the permutations of objects in the same rows, followed by the
antisymmetrization of objects in columns. One can prove that there is a unique correspondence between irreducible
representations of Sm and Young-tableaux with m objects. The dimension of an irreducible representation labeled
by a given Young-tableau σ is the number of different fillings, the different distributions of the numbers 1, . . . ,m into
the positions in the tableau by taking into account the given symmetry patterns with respect to permutation. The
list of irreducible representations for m = 2, 3 and 4 is

S2 : 1 2 (1dim.),

1

2 (1dim.)

S3 : 1 2 3 (1dim.),

1 2

3 and

1 3

2
︸ ︷︷ ︸

(2dim.),

1

2

3 (1dim.)

S4 : 1 2 3 4 (1dim.),

1 2 3

4 ,

1 2 4

3 and

1 3 4

2
︸ ︷︷ ︸

(3dim.),

1 2

3 4 and

1 3

2 4
︸ ︷︷ ︸

(2dim.),

1 2

3

4 ,

1 3

2

4 and

1 4

2

3
︸ ︷︷ ︸

(3dim.),

1

2

3

4 (1dim.)

(B15)

Irreducible representations of GL(N,C) and SL(N,C): The tensor of the type (m,n, ṁ, ṅ) is said to belong to
Young-tableaux (σ, τ, σ̇, τ̇) if

T j1,...,jm,j̇1,...,j̇ṁ
k1,...,knk̇1,...,k̇ṅ

= T
jπσ(1)

,...,jπσ(m)
,j̇πσ̇(1)

,...,j̇πσ(ṁ)

kπτ(1)
,...,kπτ(n)

k̇πτ̇(1)
,...,k̇π̇τ(ṅ)

. (B16)

The relation between the irreducible representations of the group GL(N,C) and the traceless tensors with certain
Young-tableaux (σ, τ, σ̇, τ̇) is one-to-one according to Weyl’s theorem. The irreducible representations of the group
GL(N,C) remain irreducible when the group is restricted to GL(N,C)→ SL(N,C).

Irreducible representations of U(N) and SU(N): The unitarity condition

(ωω†)j
k̇
= ωjℓδ

ℓ
ℓ̇
(ω†)ℓ̇

k̇
= δj

k̇
(B17)
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shows the emergence of a new mixed invariant obtained by contracting a normal index with a dotted one as far as
unitary transformations are concerned. In other words, two types of indices show independent transformation laws
out of four. One usually retains tensors with a normal and a dotted indices, both are covariant or contravariant.
The irreducible representations of the unitary group have a one-to-one correspondence with the tensors of the type
(m, 0, ṁ, 0) with Young-tableaux (σ, σ̇). The irreducible representations of U(N) remain irreducible when the group
is restricted to U(N)→ SU(N).

Irreducible representations of GL(N) and SL(N): The are only two fundamental representations for real matrix
groups and the irreducible representations of the group GL(N) belong to traceless tensors of the type (m,n) with
m contravariant and n covariant indices with given Young-tableau permutation symmetries, (σ, τ). The irreducible
representations of GL(N) remain irreducible when the group is restricted to GL(N)→ SL(N).

Irreducible representations of O(N) and SO(N): The orthogonality condition

(ωωtr)jk = ωjℓδ
ℓ
ℓ′(ω

tr)ℓ
′

k = δjk (B18)

shows that only one fundamental representation is independent. Thus the irreducible representations of the orthogonal
group have a one-to-one correspondence with the tensors of the type (m, 0) with Young-tableaux σ. The irreducible
representations of O(N) remain irreducible when the group is restricted to O(N)→ SO(N).

4. Definition of elementary particles

Let us consider a relativistic many-particle quantum system with N equivalent particle states. The underlying
internal symmetry group is SU(N) cf. the remark at the end of Section B 2 above. The multi-particle state with n
particles and ṅ anti-particles transform as a tensor with exclusively contravariant (or only covariant) indices of the
type (n, ṅ) under the internal symmetry transformations. The simplest family of states displaying all consequences of
the symmetry is an irreducible representation space. Its vectors can be called elementary particles of the symmetry
SU(N).
As a simple example let us see the fundamental representations (1, 0, 0, 0) and (0, 0, 1, 0) of the group SU(n), usually

denoted by the dimension of the multiplet n and n̄, respectively. The two-particle states give the representations

n⊗ n =
n(n+ 1)

2
︸ ︷︷ ︸

1 2

⊕ n(n− 1)

2
︸ ︷︷ ︸

1

2

, (B19)

realized by the symmetrical and antisymmetrical two-index SU(n) tensors. The addition of further particles requires
the use of the generalization of the Clebsh-Gordon coefficients of the rotation group. The particle-anti particle states
belong to the representations n⊗ n̄ = 1⊕n2− 1, where 1 stands for the singlet, the trace of the tensor (1, 0, 1, 0) and
n2 − 1 corresponds to linear space of traceless tensors.
The physical particles show external and internal symmetries. The true elementary particles are defined as the

vectors in the irreducible representations of the direct product of the Poincare group (space-time translations and
Lorentz transformations) and the internal symmetry group. The former factor is well known since long time but a
breakthrough is achieved in High Energy Physics at each enlargement of the second factor. For example:

Isospin symmetry: Protons and neutrons, or in general up and down quarks, participate in an equivalent manner
in strong interactions. The resulting approximate symmetry (by ignoring electromagnetic and weak forces) gives rise
of the SU(2) isospin symmetry group. The fundamental representation 2 with isospin half is the (u, d) doublet. The
quark-anti quark pair gives rise to the representations

2⊗ 2̄ = 1⊕ 3, (B20)

where 1 is an isospin 0 singlet meson and 3 stands for isospin 1 triplet mesons. The comparison of the electric charge
Q and the projection of the isospin, defined by the eigenvalues I3 of σ3 (the Pauli-matrices σ being the generators of
the SU(2) group) yields the relation

Q =
B

2
+ I3 (B21)
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where B is the baryon charge (number of quarks minus anti-quarks divided by three). The exact isospin symmetry
implies the vanishing commutator of the Hamiltonian with the generators of the isospin transformations. The symme-
try breaking part of the Hamiltonian can be written as a sum over tensor-operators of the isospin group. It is assumed
that this sum involves the simplest tensor operators, the generators Gα only, H = H0 + gαGα. The coefficients gα,
α = 1, 2 and 3 can be determined by perturbation expansion.

Eightfold way: The isospin symmetry can be extended by including states with non-vanishing strangeness. The
resulting SU(3) flavor symmetry group is broken in a stronger manner than the isospin symmetry but is still a useful
phenomenological tool. The fundamental representations are the 3 = (u, d, s) quark and 3̄ = (ū, d̄, s̄) anti-quark
triplets. Among the irreducible representations those are found among the observed, ie. isolated hadronic states only
which have vanishing triality, the number of quarks minus anti-quarks, taken modulo 3. The mechanism, responsible
for the removal of multi-quark states from the asymptotic states of scattering experiments with non-vanishing triality
is called quark confinement. The allowed, non-confined irreducible representations are given in terms of tensors of
type (m, 0, ṁ, 0) with T = m − ṁ(mod3) = 0. Baryons, made of three valence quarks belong to the representation
provided by flavor tensors of the type (3, 0, 0, 0). This 27 dimensional representation is reducible,

1 ⊗ 2 ⊗ 3 (33dim.) = 1 2 3 (10dim.) ⊕
1 2

3 and

1 3

2
︸ ︷︷ ︸

(8 + 8dim.) ⊕

1

2

3 (1dim.). (B22)

The mesons are found in the representation (1, 0, 1, 0). Since three particle antisymmetric state is an SU(3) singlet,
the anti-particle is similar to an antisymmetrical two-particle state and the meson multiplets are

1

2 ⊗ 3 (32dim.) =

1 3

2 (8dim.) ⊕

1

2

3 (1dim.). (B23)

Appendix C: Lorentz group

The Lorentz transformations

xµ → x′µ = Λµνx
ν (C1)

are defined by requiring the invariance of the scalar product

x · y = xµgµνy
ν = xµyν . (C2)

Therefore, we have the condition

x · y = xµ
′

Λµµ′gµνΛ
ν
ν′yν

′

(C3)

or

g = Λtr · g · Λ. (C4)

for the transformation matrix Λ.
The Lorentz group is 6 dimensional, 3 dimensions correspond to three-dimensional rotations and three other direc-

tions belong to Lorentz-boosts, parametrized by the three-velocity v relating the inertial systems. Let us denote the
the parallel and perpendicular projection of the three-coordinate on the velocity v by x‖ and x⊥, respectively,

x = x‖ + x⊥, x‖ · x⊥ = v · x⊥ = 0. (C5)

We can then write a general Lorentz transformation in a three-dimensional notation as

x′ = α(x‖ − vt) + γx⊥, t′ = β
(

t− x · v
c̃2

)

(C6)
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The invariance of the length,

c2t2 − x2 = c2β2
(

t− x · v
c̃2

)2

− α2(x‖ − vt)2 − γx2
⊥, (C7)

yields the relations

γ = ±1, v = 0 =⇒ γ = 1

c̃ = c

α = β =
1

√

1− v2

c2

, (C8)

and leads to the expression

x′‖ =
x‖ − vt
√

1− v2

c2

, t′ =
t− vx‖

c2
√

1− v2

c2

(C9)

for boosts.
Notice that inversions in space-time are special Lorentz transformations. In fact, the space-inversion P : (t,x) →

(t,−x), and the time-inversion T : (t,x)→ (−t,x), are realized by the Lorentz transformation matrices

P =






1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1




 , T =






−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




 . (C10)

1. Proper Lorentz group

By taking the determinant of both side of Eq. (C4), det g = det g(detΛ)2, we find that detΛ = ±1. The 00

component of the same equation, 1 = g00 = (Λ0
0)

2 −∑j(Λ
j
0)

2 shows that |Λ0
0| > 1. We have, therefore, four

disconnected components in the Lorentz group:

1. detΛ = 1, Λ0
0 > 1. This component is a proper subgroup because it contains the identity and is called proper

Lorentz group and is usually denoted by L↑+.

2. detΛ = 1, Λ0
0 < 1, obtained from L↑+ by time inversion, T : (x0,x)→ (−x0,x).

3. detΛ = −1, Λ0
0 > 1, obtained from L↑+ by spatial inversion, P : (x0,x)→ (x0,−x).

4. detΛ = −1, Λ0
0 < 1, obtained from L↑+ by time and space inversion, TP : (x0,x)→ (−x0,−x).

These are disconnected because a Lorentz transformation matrix can not be brought into another component by
the infinitesimal change of its matrix elements.

2. Spinors

Let us combine the four components of the space-time vector (t,x) into a 2× 2 hermitian matrix,

x→ x̂ = t11 + xσ, (C11)

σ being the Pauli-matrices. This establishes an invertible mapping between the set of four vectors and the 2 × 2
hermitian matrices with the property

det x̂ = t2 − x2. (C12)

The linear transformations

x̂→ gx̂g† (C13)
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where g ∈ SL(2, C) preserve det x̂ because det(gx̂g†) = | det g|2 det x̂ = det x̂ and must correspond to Lorentz
transformations of the corresponding four-vectors. Moreover, it is easy to see that any proper Lorentz transformation
can be written as (C13). In fact, write g = g011 + igσ where gµ are complex numbers and note that the SL(2C)
group is 6 dimensional because this parametrization satisfies the constraint det g = g02+g2 = 1. The transformations
with real gµ we have g ∈ SU(2), (C13) leaves the time unchanged and these transformations realize 3 dimensional
rotations, SO(3). It is easy to see that the 3 dimensional family of imaginary gµ correspond to Lorentz-boosts. We

have thus established the isomorphism L↑+ ≈ SL(2, C).
We can introduce two kinds of Lorentz spinors with the transformation rules,

χa → gabχ
b, φȧ → gȧ ∗

ḃ
φḃ, (C14)

where the dot is a recall that the index corresponds to the complex conjugate representation but both types of indices
take the values 1 or 2. The metric tensor Gab defines the scalar product χaGabξ

b which is invariant for

Gab =

(
0 1
−1 0

)

= iσ2 = −Gab = Gȧḃ = −Gȧḃ (C15)

because

χaGabξ
b → χaξb (g1ag

2
b − g2ag1b)

︸ ︷︷ ︸

Gab det g=Gab

. (C16)

The Lorentz tensors can have four types of indices, T a1,...,ȧ1,...
b1,...,ḃ1,...

. The contraction of a pair of upper and a lower

indices of the same type, T a1,...,ȧ1,...
a1,...,ḃ1,...

or T a1,...,ȧ1,...b1,...,ȧ1,...
produces tensors with less indices, thus all covariant tensors can

be obtained by considering the families T a1,...,ȧ1,... only. These representations are irreducible when these tensors are
symmetric with respect to the permutation of the indices of the same type. The transformation rule of the tensor
T a1,...,am,ȧ1,...,ȧn is denoted by (m,n), ie. χ ∼ (1, 0), φ ∼ (0, 1) and x̂ ∼ (1, 1).
Note that the tensors (m,n) and (n,m) are equivalent from the point of view of three dimensional rotations, SU(2).

This is because the relation

GσG = σ∗ (C17)

establishes an isomorphism between the two representations in Eqs. (C14).

Appendix D: Dirac equation

1. Square root of the Klein-Gordon equation

The Schrödinger equation for a free particle,

i∂0ψ = − 1

2m
∆ψ (D1)

is not covariant, ie. does not transform in a simple manner under Lorentz transformations. In fact, the Lorentz boosts
mix space and time and all space-time derivative should appear in the same order in a covariant equation. We should
either have second order derivative with respect to the time or first order with respect to the spatial coordinates. The
former idea gives the Klein-Gordon equation,

(∂20 −∆+m2)ψ = 0, (D2)

by performing the replacement pµ = (p0,p) → (i∂0,−i∂) in the dispersion relation E2 − p2 = m2. Dirac equation
results from the latter strategy, by taking the ”square root” of the Klein-Gordon equation.
Let us suppose that we can write the first order equation of motion in the form

i∂0ψ = (−iα · ∂ + βm)ψ, (D3)

where α and β are formal symbols whose properties can be read off by considering the square of this equation,

−∂20ψ = (−iα · ∂ + βm)2ψ

= [−αjαk∂j∂k + β2m2 −mi(αjβ + βαj)∂j ]ψ

= [−{αj , αk}∂j∂k + β2m2 −mi[αj, β] + ∂j ]ψ, (D4)
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where the commutator [A,B] = AB − BA and anti-commutator {A,B} = AB + BA has been introduced and the
identity

αjαk∂j∂k =
1

2
({αj , αk}+ [αj , αk])

1

2
({∂j , ∂k}+ [∂j , ∂k])

=
1

2
({αj , αk}+ [αj , αk]){∂j , ∂k}

=
1

4
({αj , αk}+ [αj , αk]){∂j , ∂k}

=
1

2
{αj , αk}∂j∂k (D5)

was used in the last equation. We arrive at the Klein-Gordon equation by requiring

{αj , αk} = 2δj,k, β2 = 11, {vα, β} = 0. (D6)

A covariant notation is established by introducing γµ = (β, βα) and writing the Dirac equation as

(iγµ∂µ −m)ψ(x) = (i∂/−m)ψ(x) = 0 (D7)

where the constraints (D6) read as

{γµ, γν} = 2gµ,ν = 2






1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1




 . (D8)

The simplest realization of the algebraic properties (D6) requires 4× 4 matrices,

β = γ0 =

(
11 0
0 −11

)

, α =

(
0 σ
σ 0

)

, γ =

(
0 σ
−σ 0

)

, (D9)

in the standard representation where

σ =

((
0 1
1 0

)

,

(
0 −i
i 0

)

,

(
1 0
0 −1

)

,

)

(D10)

are the Pauli matrices.
The solution of the Dirac equation is a four component complex field ψa(x), a = 1, . . . , 4 and according the constraint

(D8) is automatically solves the Klein-Gordon equation, too,

(∂/+m)(∂/ −m)ψ(x) = (�−m2)ψ = 0. (D11)

Observe that the hermitian conjugate of the Dirac-matrices satisfy the equation

γµ† = γ0γµγ0 (D12)

in either representation which justifies the introduction of the Dirac-conjugate ψ̄ = ψ†γ0. In fact, the Dirac-conjugate
of Eq. (D7),

(iγµ∗∂µ +m)ψ∗ = 0 =⇒ ψ̄(iγµ∂µ +m) = 0 (D13)

where the derivative act to the left remains covariant. The matrix γ5 = iγ0γ1γ2γ3 with the property

{γ5, γµ} = 0 (D14)

will play an important role. It is hermitian, γ5† = γ5 and the relation (γ5)2 = 11 assures that its eigenvalues are ±1.

2. Relativistic covariance

The transformation properties of the field ψ(x) will be obtained first for proper Lorentz transformations which have
infinitesimal forms. After that space-time inversions will be included.
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a. Proper Lorentz group

The Lorentz transformation acts on the field ψa(x) as

ψ(x)→ ψ′(x) = S(Λ)ψ(Λ−1x) (D15)

or

ψ(x)→ ψ′(x′) = S(Λ)ψ(x). (D16)

For spinless particle (Klein-Gordon equation) ψ(x) is a single component scalar and S(Λ) = 1. The Dirac equation
(D7) transforms into

(

iγµ
∂

∂x′µ
−m

)

ψ′(x′) =

(

iγµ
∂xν

∂x′µ
︸ ︷︷ ︸

(Λ−1)νµ

∂

∂xν
−m

)

S(Λ)ψ(x) = 0 (D17)

To compare it with the original Dirac equation we multiply Eq. (D7) by S(Λ),

S(Λ)(iγµ∂µ −m)ψ(x) = S(Λ)(iγµ∂µ −m)S−1(Λ)S(Λ)ψ(x) = 0. (D18)

This is equivalent with (D17) by imposing the condition

S(Λ)γµS−1(Λ) = (Λ−1)µνγ
ν , (D19)

expressing that the Dirac matrices γµ represent tensor operators, ie. the effect of a proper Lorentz transformation
can be obtained either by acting on the vector index µ or by a basis transformation in the Dirac-spinor space.
The actual form of S(Λ) can easiest be found for an infinitesimal Lorentz transformation

Λµν = gµν + ωµν , (Λ−1)µν = gµν − ωµν , (D20)

with ωµν = −ωνµ (because x · y = (Λx) · (Λy) ≈ (x+ ωx) · (y + ωy) ≈ x · y + x · (ωtr + ω) · y). We write

S(Λ) = 11− i

4
σµνωµν +O

(
ω2
)
, S−1(Λ) = 11 +

i

4
σµνωµν +O

(
ω2
)

(D21)

and the substitution into Eq. (D19) yields

(

11− i

4
σµνωµν

)

γκ
(

11 +
i

4
σµ

′ν′

ωµ′ν′

)

= (gκν − gκµωµν)γν +O
(
ω2
)

(D22)

and

[γκ, σµν ] = 2i(gκµγν − gκνγµ). (D23)

This equation can be satisfied by the matrix

σµν =
i

2
[γµ, γν ]. (D24)

The finite Lorentz transformation

S(Λ) = e−
i
4σ

µνωµν (D25)

can easily be obtained in the chiral representation where σµν is block-diagonal,

σ0i = −i
(
σ 0
0 −σ

)

, σij = ǫijk

(
σk 0
0 σk

)

. (D26)

We shall need below S†(Λ) which can be calculated by means of the property (D12),

σ†µν =
i

2
γ0[γµ, γν ]γ0 = γ0σµνγ0 (D27)
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which yields

S†(Λ) = γ0e
i
4σ

µνωµνγ0. (D28)

The spatial components of the antisymmetric tensor ωµν parameterize spatial rotations therefore the spin operator is
defined by

Σj =
1

2
ǫjkℓσkℓ = γ5γ0γj =

(
σj 0
0 σj

)

(D29)

and the other three components, ω0j correspond to Lorentz boosts.

Chiral fermions The block-diagonality (D26) shows that the ψ(x) appears as the direct sum of two two-component
Pauli-spinors under proper Lorentz transformations (without space-time inversions). This explains the name bi-spinor
for the solution of the Dirac-equation. The bi-spinors form a reducible representation of the proper Lorentz group
because the two Pauli-spinors are irreducible with respect to this group. Space-time inversions, cf. section D2 b map
the two Pauli-spinors into each other and render the bi-spinor an irreducible representation of the full Lorentz group.
The explicit form

γ5 =

(
1 0
0 −1

)

(D30)

in the chiral representation shows that the eigenvalue of γ5, called chirality, distinguishes the two irreducible spinor
representations in the bi-spinor space.
The two irreducible spinors are coupled to each other during the time evolution by the mass term. To understand

this better let us start consider a massless fermion field satisfying the Dirac-equation

i∂0ψ = Hm=1ψ = −iα · ∂ψ. (D31)

Due to the anti-commutator relation (D14) γ5 commutes with the massless Dirac-Hamiltonian, [Hm=0, γ
5] = 0 and

chirality is conserved by the time evolution. The projection operators

PR

L
=

1

2
(11± γ5) (D32)

correspond to the ± chirality subspaces and the bi-spinors PRψ and PLψ are called right or left handed spinors. This
names originate from the opposite helicity (projection of the spin on the direction of momentum) of the right and
left handed spinors. In fact, the chirality is flipped by complex conjugation which preserves the spin but inverts the
momentum.
The mass term does not commute with γ5 therefore it mixes the chirality.
Let us consider N free fermions with degenerate masses described by the Lagrangian

L = ψ(i∂/−m)ψ (D33)

where

ψ(x) =






ψ1(x)
...

ψN (x)




 . (D34)

The symmetry under the transformations

ψ(x)→ e−iα
a
V τ

a

ψ(x), ψ̄(x)→ ψ̄(x)eiα
a
V τ

a

(D35)

where τa are the generators of the group U(N) assures the degeneracy of the mass spectrum. The corresponding
Noether current,

Jaµ(x) = ψ̄(x)γµτaψ(x) (D36)

is a four-vector. The chiral transformations,

ψ(x)→ e−iα
a
Aτγ

5

ψ(x), ψ̄(x)→ ψ̄(x)e−iα
a
Aτγ

5

(D37)
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which represent a symmetry for massless fermions only and the chiral invariant dynamics does not mix fermions states
with different chirality. The Noether-current of chiral symmetry,

J5a
µ (x) = ψ̄(x)γµγ5τaψ(x) (D38)

is axial(pseudo)-vector. One talks therefore the symmetry UV (N)⊗ UA(N) for massless fermions and the symmetry
UV (N) for massive fermions. Another way to express the symmetry UV (N)⊗ UA(N) is to use chiral fermions when
we have the symmetry group UL(N)⊗ UR(N) with the left and right transformations given by

ψ(x)→ e−iα
a
LτPLψ(x), ψ̄(x)→ ψ̄(x)PLe

iαa
Lτ (D39)

and

ψ(x)→ e−iα
a
RτPRψ(x), ψ̄(x)→ ψ̄(x)PRe

iαa
Rτ , (D40)

respectively.

b. Inversions

Space Inversion: The space-inversion, P : (t,x)→ (t,−x), transforms the Dirac-matrices as

S(P )γµS(P )−1 = gµµγν (D41)

(no summation over µ) according to Eq. (D19). The solution of this equation is

S(P ) = eiφP γ0 (D42)

where φP is an arbitrary phase and we find the unitary representation

U(P ) : ψ(t,x)→ ψ′(t,−x) = eiφP γ0ψ(t,x), (D43)

U †(P ) = U(P ) for the wave functions.

Time Inversion: The time inversion is defined in classical physics as the transformation T : (t,x) → (−t,x)
of the space-time coordinates. In Quantum Mechanics the situation becomes more involved because there is no
operator representing the time and the inversion is actually a ”motion reversal”, it produces a time evolution as a
movie played from the back to the beginning. Let us assume that U(T ) the operator representing time inversion in
Quantum Mechanics is chosen in such a manner that U(T )xU−1(T ) = x and U(T )pU−1(T ) = −p and consider the
commutation relation [xj , pk] = iδjk for time reversed operators, [U(T )xjU

−1(T ), U(T )pkU
−1(T )] = U(T )iδjkU

−1(T ).
To recover the usual commutation relation we have to upgrade U(T ) to an anti-linear operator which involves a complex
conjugation, such as U(T ) : φ(t,x)→ φ∗(−t,x) for the wave function of a spinless particle.
We construct here the representation U(T )ψ(t,x) = S(T )ψ̄(−t,x) on the wave functions of spin half particles. The

time-inverted wave function U(T )ψ(t,x) satisfies the free Dirac-equation,

(iγµ∂µ −m)S(T )ψ̄(−t,x) = 0 (D44)

which is compatible with the Dirac-equation

(iγµtr∂µ +m)ψ̄(t,x) = 0 (D45)

for ψ̄(x) if

S(T )γ0tr = γ0S(T ), S(T )γtr = −γS(T ) (D46)

which is satisfied by

S(P ) = ieiφT γ3γ1γ0 (D47)

where φT is an arbitrary phase.

Charge conjugation: Charge conjugation turns the wave function of a particle with charge q into those of a charge
−q. The charge q is defined in Quantum Mechanics as the parameter characterizing the phase transformation of the



81

wave function under gauge transformation, ψ(x)→ eieΦ(x)ψ(x) therefore, the charge conjugation must be anti-linear
and involve a complex conjugation.
To find the representation of the charge conjugation, U(C) : ψ(x) → S(C)ψ̄(x), we have to introduce an external

vector potential by generalizing the minimal coupling procedure p→ p− eA to the relativistic case, ∂µ → ∂µ− ieAµ,
leading to the Dirac-equation

[iγµ∂µ + eγµAµ(x)−m]ψ(x) = [i∂/+A/(x) −m]ψ(x) = 0. (D48)

The wave function S(C)ψ̄(x) satisfies similar equation with e→ −e if

S(C)γµtr = −γµS(T ) (D49)

which is satisfied by

S(C) = ieiφCγ2γ0 (D50)

where φC is an arbitrary phase.
The CPT theorem assures that φC + φP + φT is integer multiple of 2π for any relativistic, local Quantum Field

Theory, ie.

U(CPT )ψ(x) = iγ5ψ(−x). (D51)

c. Bilinears

The transformation property, (D19), allows us to construct useful bilinears of the field ψ(x). By means of the
transformation rule

ψ̄(x)→ ψ̄′(x′) = ψ̄(x)γ0S†(Λ)γ0 = ψ̄(x)S−1(Λ) (D52)

one finds

ψ̄′(x′)Γψ′(x′) = ψ̄(x)S−1(Λ)ΓS(Λ)ψ(x) (D53)

for any 4× four matrix Γ. A complete set of matrices,

ΓS = 11

ΓµV = γµ

ΓµνT = σµν

ΓµA = γ5γµ

ΓP = γ5, (D54)

leads to scalar (ψ̄ΓSψ), vector (ψ̄Γ
µ
V ψ), tensor (ψ̄Γ

µν
T ψ), axial-vector (ψ̄ΓµAψ), pseudo-scalar (ψ̄ΓPψ).

3. Bispinors

There is a more involved but more illuminating way of deriving the Dirac-equation. We start by recalling that the
elementary particles are defined by the irreducible representations of the corresponding symmetries. In case of the
proper Lorentz group the simplest irreducible representations are given in Eqs. (C14). We shall use the spinors ξa

and ηḃ, they correspond to spin half fermions which obeys well defined transformation rules with respect to the proper
Lorentz group but space-time inversions are not recognized, as neutrinos.
When space-time inversions are supposed to be symmetry transformations then we need the representation of the

full Lorentz group. Let us consider the case of space-inversions. The angular momentum, L = x⊗p is a pseudo vector
because is remains invariant under space inversion and we have [P,L] = 0. Therefore the representation of P on the
spinors must be a multiplication by a complex number, ξa → (πξ)a = πξa, according to the Schur-lemma (stating
that a linear transformation which commutes with all symmetry transformation in an irreducible representation must
be c-number times the identity operator). Two consecutive inversions restore the three vectors. According to Eqs.
(C13) and (C14) the most general spatial rotation which preserves the three vectors is g = ±11. Therefore, π2 = ±1
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and π = ±1 or π = ±i. It is usually the convention π = i is assumed. (The choice matters for charged, massless
particles only.)
But there are problems with the Lorentz-boosts. Let us denote the Lorentz-boost transformation which carries out

a change v in the velocity by Λ(v) then we have PΛ(v) = Λ(−v)P indicating that [P,Λ(v)] 6= 0, the space-inversion
can not be represented by a simple multiplication in the presence of Lorenz-boosts. The most economic extension of
the irreducible representation of the proper Lorentz group to the full one is obtained by putting together two spinors
into a bispinors,

ψ =

(
ξa

ηȧ

)

, (D55)

and realizing space inversion by the exchange,

P :

{

ξa → πηȧ=a
ηȧ → πξa=ȧ

. (D56)

The two spinors describe particles with different chirality because the space inversion flips the sing of the three-
momentum but not the spin and they define the chiral representation for the Dirac-equation.

In order to obtain covariant equation of motion for a free particle which is linear in the momentum p̂ = paḃ we can
contract upper and lower indices of the same type,

paḃηḃ = mξa

pḃaξ
a = mηḃ (D57)

where m is a constant of mass dimension. (It is easy to see that a rescaling of the spinors allows us to use the same

constant in both lines.) Let us use the parametrization paḃ = (p0 + pσ)aḃ. The relations

pȧb = (GpGtr)∗ȧb = (p0 +G(pσ)∗Gtr)ȧb = (p0 − pσ)ȧb (D58)

allow us to write the equations of motion as

(p0 + pσ)η = mξ

(p0 − pσ)ξ = mη, (D59)

or as (D7) with

β = γ0 =

(
0 11
11 0

)

, γ =

(
0 −σ
σ 0

)

. (D60)

in the chiral representation. Note then now

γ5 =

(
1 0
0 −1

)

. (D61)

These considerations show that the role of the mass in the dynamics of spin half fermions is to couple the left and
two simplest irreducible representations of the proper Lorentz group, the right and left handed neutrino fields.

4. Plane waves

The physical content of plane wave solution of the free Dirac-equation is discussed now for non-vanishing mass.
The relativistic dispersion relation E2 = m2+p2 allows both positive and negative energy values. Let us introduce

plane waves with positive and negative energies,

ψ
(+)
k (x) = e−ik·xu(k), ψ

(−)
k (x) = eik·xv(k) (D62)

where k0 = ωk ≥ 0 and the bi-spinors u(k) and v(k) satisfy

(k/ −m)u(k) = (k/ +m)v(k) = 0 (D63)
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with k2 = m2 due to Eq. (D11). The construction of the spinors u(k) and v(k) starts in their rest frame (m2 > 0),

(γ0 − 1)u(krf ) = (γ0 + 1)v(krf ) = 0, (D64)

with krf = (m,0). The solution in the standard representation is

u(1)(krf ) =






1
0
0
0




 , u(2)(krf ) =






0
1
0
0




 , v(1)(krf ) =






0
0
1
0




 , v(1)(krf ) =






0
0
0
1




 . (D65)

The bi-spinors corresponding to an arbitrary energy-momentum k on the mass shell, k2 = m2 is given by

u(α)(k) =
k/+m

√

2m(m+ ωk)
u(α)(krf ) =





√
m+ωk

2m φ(α)

σ·k√
2m(m+ωk)

φ(α)





v(α)(k) =
−k/+m

√

2m(m+ ωk)
v(α)(krf ) =





σ·k√
2m(m+ωk)

χ(α)

√
m+ωk

2m χ(α)



 (D66)

according to Eq. (D11) where k0 = ωk =
√
m2 + k2, φ(α) and χ(α) are k-independent, two-component spinors. The

normalization of the bi-spinor is chosen in such a manner that the relations

ū(α)(k)u(β)(k) = −v̄(α)(k)v(β)(k) = δα,β, ū(α)(k)v(β)(k) = v̄(α)(k)u(β)(k) = 0 (D67)

hold.
It is now easy to construct the projection operator corresponding to the positive and negative energy spinors,

P+(k) =

2∑

α=1

u(α)(k)⊗ ū(α)(k) = k/+m
√

2m(m+ ωk)

1 + γ0

2

k/+m
√

2m(m+ ωk)
=
k/+m

2m
(D68)

and

P−(k) = −
2∑

α=1

v(α)(k)⊗ v̄(α)(k) = k/−m
√

2m(m+ ωk)

1− γ0
2

k/−m
√

2m(m+ ωk)
=
−k/+m

2m
, (D69)

respectively by means of the identity (k/ +m)γ0(k/+m) = 2ωk(k/+m).
The four linearly independent plane wave solutions of the free Dirac equation corresponding to a given energy-

momentum k on the mass shell, k2 = m2 can be classified by the projection of the spin on the quantization axis and
the sign of the energy.

Appendix E: Time dependence in Quantum Mechanics

The time has no operator counterpart in usual, so called Schrödinger representation of Quantum Mechanics in
contrary to the coordinates. As a result the field operator, introduced as the analogy of the coordinate operator, should
be time independent in contrary to the spirit of classical field theory. This problem is settled by the introduction of
the Heisenberg representation of the time evolution. The perturbation expansion is simplified by defining a further,
interaction representation.

1. Representations of time dependence

Schrödinger representation: The time evolution of the state of the system is generated by the Schrödinger equation

i∂t|ψ(t)〉S = H |ψ(t)〉S (E1)

and the operators are time independent, A = AS , in this representation. The solution of the Schrödinger equation is

|ψ(t)〉S = e−i(t−ti)H |ψ(ti)〉S . (E2)
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Heisenberg representation: The time evolution is placed in the operators and the state are time independent in
this representation. The former is achieved by the similarity transformation

|Ψ(t)〉H = ei(t−ti)H |Ψ(t)〉H (E3)

which induces the transformation

AH(t) = ei(t−ti)HASe
−i(t−ti)H (E4)

for the operators in order to recover the same matrix elements in both representations. Therefore, the operators
satisfy the Heisenberg equation of motion,

i∂tAH(t) = [AH , H ], (E5)

with the initial conditions AH(ti) = AS . Notice that the two representations are identical at the initial time t = ti.

Interaction representation: Let us suppose that H = H0 + H1 where H0 and H1 represent the free, easily
diagonalizable dominant part and the small, complicated interaction part of the Hamiltonian, respectively. It is rather
complicated to use the perturbation expansion of the Heisenberg equation. It seems as a reasonable compromise
between these two preceding representations to place the time dependence, generated by the simple part of the
Hamiltonian into the operators and leave the complicated but supposedly small part of the time dependence for the
states where the usual Rayleigh-Schrödinger perturbation expansion is relatively simple.
For this end we define

|Ψ(t)〉i = ei(t−ti)H0 |Ψ(t)〉S (E6)

which induces the transformation

Ai(t) = ei(t−ti)H0ASe
−i(t−ti)H0 (E7)

for the operators. The state vector satisfies the equation of motion

i∂t|Ψ(t)〉i = −H0|Ψ(t)〉i + ei(t−ti)H0(H0 +H1)|Ψ(t)〉S
= −H0|Ψ(t)〉i + ei(t−ti)H0(H0 +H1)e

−i(t−ti)H0ei(t−ti)H0 |Ψ(t)〉S
= H1i(t)|Ψ(t)〉i (E8)

is indeed a Schrödinger equation involving the interaction only. The operators follow the Heisenberg equation,

i∂tAi(t) = [Ai, H0]. (E9)

2. Schrödinger equation with time dependent Hamiltonian

The interaction representation requires the solution of the Schrödinger equation with time dependent Hamiltonian,

i∂t|Ψ(t)〉 = H(t)|Ψ(t)〉. (E10)

To obtain it in a closed form one introduces the time-ordered product, a modified multiplication rule for operators
depending on the time. For a chain of operators A1(t1), · · · , An(tn) the time ordered product is defined by acting
with the operators in the order of ascending time values. A sign factor is inserted, too, according to the parity of the
permutation of the operators, needed to arrive to the time ordered form for fermionic operators. For two operators
we have

T [A(tA)B(tB)] = Θ(tA − tB)A(tA)B(tB)±Θ(tB − tA)B(tB)A(tA), (E11)

where

Θ(t) =

{

1 t > 1

0 t < 0
(E12)

(Θ(0) is ill defined) and the sign + or - is used for bosonic and fermion operators, respectively.
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The solution of Eq. (E10) is

|Ψ(t)〉 = U(t, ti)|Ψ(ti)〉 (E13)

where

U(t, ti) = T [e
−i

∫

t
ti
dt′H(t′)

]. (E14)

To prove this result it is sufficient to show that the time evolution operator U(t2, t1) must satisfies the equation of
motion

i∂tU(t, ti) = H(t)U(t, ti). (E15)

This can easily be done by writing

i∂tU(t, ti) = i∂tT [e
−i

∫

t
ti
dt′H(t′)

]

= i∂t

∞∑

n=0

(−i)n
n!

∫ t

ti

dt1 · · ·
∫ t

ti

dtnT [H(t1) · · ·H(tn)]. (E16)

and noting that the derivative ∂t generates n-times the same integrand,

i∂tU(t, ti) =

∞∑

n=0

n(−i)n
n!

∫ t

ti

dt1 · · ·
∫ t

ti

dtn−1T [H(t)H(t1) · · ·H(tn−1)]

= H(t)

∞∑

n=0

(−i)n−1
(n− 1)!

∫ t

ti

dt1 · · ·
∫ t

ti

dtn−1T [H(t1) · · ·H(tn−1)]

= H(t)U(t, ti). (E17)

Appendix F: Energy-momentum tensor of a hermitean scalar field theory

let us consider a free Hermitian scalar theory, defined by the Lagrangian

L =
1

2
∂µφ∂

µφ− m2

2
φ2. (F1)

The field operator is taken to be the general solution of the equation of motion,

φ(x) =

∫

d̃k[a(k)e−ikx + a†(k)eikx]. (F2)

The canonical energy-momentum tensor,

T µν = ∂µφ∂νφ− gµν
(
1

2
∂µφ∂

µφ− m2

2
φ2
)

, (F3)

yields the energy-momentum vector

Pµ =

∫

d3x

[

∂0φ∂
µφ− g0µ

(
1

2
∂µφ∂

µφ− m2

2
φ2
)]

. (F4)
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The insertion of the field operator (F2) into this equation leads to

Pµ =

∫

d3xd̃kd̃ℓ

[

−ωkℓ
µ[−a(k)e−ikx + a†(k)eikx][−a(ℓ)e−iℓx + a†(ℓ)eiℓx]

−g0µ
(

−k
νℓν
2

[−a(k)e−ikx + a†(k)eikx][−a(ℓ)e−iℓx + a†(ℓ)eiℓx]

−m
2

2
[a(k)e−ikx + a†(k)eikx][a(ℓ)e−iℓx + a†(ℓ)eiℓx]

)]

=

∫

d3xd̃kd̃ℓ

[(

−ωkℓ
µ +

g0µ

2
(kνℓν +m2)

)

e−i(k+ℓ)xa(k)a(ℓ)

+

(

−ωkℓ
µ +

g0µ

2
(kνℓν +m2)

)

ei(k+ℓ)xa†(k)a†(ℓ)

+

(

ωkℓ
µ +

g0µ

2
(−kνℓν +m2)

)

ei(−k+ℓ)xa†(k)a(ℓ)

+

(

ωkℓ
µ +

g0µ

2
(−kνℓν +m2)

)

e−i(k−ℓ)xa(k)a†(ℓ)

]

(F5)

The expression for the energy is

P 0 =

∫

d̃k
1

2ωk

[(

−ω2
k +

1

2
(ω2

k + k2 +m2

)

e−2iωkx
0

a(k)a(−k)

+

(

−ω2
k +

1

2
(ω2

k + k2 +m2

)

e2iωkx
0

a†(k)a†(−k)

+

(

ω2
k +

1

2
(−ω2

k + k2 +m2

)

ω2
ka
†(k)a(k) +

(

−ω2
k +

1

2
(−ω2

k + k2 +m2

)

a(k)a†(k)

]

=
1

2

∫

d̃kωk[a
†(k)a(k) + a(k)a†(k)] (F6)

and the tree-momentum,

P =

∫

d̃k
1

2ωk

[ωkke
−2iωkx

0

a(k)a(−k) + ωkke
2iωkx

0

a†(k)a†(−k) + ωkk[a
†(k)a(k) + a(k)a†(k)]], (F7)

reduces to

P =
1

2

∫

d̃kk[a†(k)a(k) + a(k)a†(k)] (F8)

after realizing that the integral
∫
d̃kk is vanishing because its integrand is the product of a space-inversion symmetric

integral measure d̃k and of a space-inversion asymmetric factor k.

Appendix G: Strong Wick theorem

The strong form of Wick theorem, referring to operators rather than their vacuum expectation values is proved in
this Appendix.
Theorem 1: The identity

eλABe−λA = B + λ[A,B] +
λ2

2!
[A, [A,B]] +

λ3

3!
[A, [A, [A,B]]] + · · · (G1)

holds for any pair of operators A and B and λ ∈ R.
Proof: Let us define

f(λ) = eλABe−λA (G2)
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and consider its McLauren series,

df(λ)

dλ
= [A, f(λ)]

d2f(λ)

dλ2
= [A,

df(λ)

dλ
]

= [A, [A, f(λ)]] (G3)

where we recognize the structure of the right hand side of Eq. (G1). The desired identity can easily be recovered by
setting λ = 0.
Theorem 2: (Baker-Haussdorf simplified) If two operators A and B commute with their commutator, [A, [A,B]] =

[B, [A,B]] = 0 then

aAaB = aA+B+ 1
2 [A,B]. (G4)

Proof: Let us consider the operator

f(λ) = eλAeλB (G5)

for λ ∈ R whose derivative is

df(λ)

dλ
= AeλAeλB + eλABeλB

= (A+ eλABe−λA)f(λ). (G6)

By means of the identity (G1) we have

eλABe−λA = B + λ[A,B] (G7)

and

df(λ)

dλ
= (A+B + λ[A,B])f(λ). (G8)

The solution of this differential equation corresponding to the initial condition f(0) = 11 is

f(λ) = aλ(A+B)+λ
2 [A,B] (G9)

because [A,B] can be treated as a c-number in an equation involving A and B. The theorem follows from the choice
λ = 1.
Theorem 3: Let us consider a field operator which is the sum of a positive and negative energy part, φ(x) =

φ(+)(x) + φ(−)(x), and the c-number source j(x). Wick theorem states that the relation

T [e−i
∫

dxj(x)φ(x)] =: e−i
∫

dxj(x)φ(x) : e−
1
2

∫

dxdyj(x)〈0|T [φ(x)φ(y)]|0〉j(y) (G10)

holds.
Proof: The previous theorem will be useful because the commutator of free fields is c-number. We approximate

the left hand side of (G10) by

T [e−i
∫

dxj(x)φ(x)] = e−i∆t
∫

d3xj(tn,x)φ(tn,x) · · · e−i∆t
∫

d3xj(t1,x)φ(t1,x)(1 +O (1/n)) (G11)

where tj = j∆t, ∆t = t/n and write

T [e−i
∫

dxj(x)φ(x)] = e−i∆t
∑n

j=1

∫

d3xj(tj ,x)φ(tj,x)−∆t2

2

∑n
j>k=1[

∫

d3xj(tj ,x)φ(tj ,x),
∫

d3yj(tk,y)φ(tk,y)](1 +O (1/n)) (G12)

according to the previous theorem. The limit n→∞ gives

T [e−i
∫

dxj(x)φ(x)] = e−i
∫

dxj(x)φ(x)− 1
2

∫

dxdyj(x)j(y)Θ(x0−y0)[φ(x)φ(y)]

= e−i
∫

dxj(x)φ(x)e−
1
2

∫

dxdyj(x)j(y)Θ(x0−y0)[φ(x),φ(y)] (G13)
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Since

: e−i
∫

dxj(x)φ(x) : = e−i
∫

dxj(x)φ(−)(x)e−i
∫

dxj(x)φ(+)(x)

= e−i
∫

dxj(x)φ(x)− 1
2

∫

dxdy[φ(−)(x),φ(+)(y)] (G14)

we have

T [e−i
∫

dxj(x)φ(x)] = e−i
∫

dxj(x)φ(x)− 1
2

∫

dxdyj(x)j(y)Θ(x0−y0)[φ(x)φ(y)]

= e−i
∫

dxj(x)φ(x)e−
1
2

∫

dxdyj(x)j(y)Θ(x0−y0)[φ(x),φ(y)], (G15)

yielding

T [e−i
∫

dxj(x)φ(x)] =: e−i
∫

dxj(x)φ(x) : e
1
2

∫

dxdyj(x)j(y)([φ(−)(x),φ(+)(y)]−Θ(x0−y0)[φ(x),φ(y)]). (G16)

The second exponent, made up by the commutator of free fields, is actually a c-number therefore,

[φ(−)(x), φ(+)(y)]−Θ(x0 − y0)[φ(x), φ(y)] = 〈0|[φ(−)(x), φ(+)(y)]− Θ(x0 − y0)[φ(x), φ(y)]|0〉 (G17)

= 〈0|φ(−)(x)φ(+)(y)− φ(+)(y)φ(−)(x)−Θ(x0 − y0)[φ(x), φ(y)]|0〉

The positive frequency part contains the operator a(p) only and annihilates the vacuum, thus

[φ(−)(x), φ(+)(y)]−Θ(x0 − y0)[φ(x), φ(y)] = 〈0| − φ(+)(y)φ(−)(x) −Θ(x0 − y0)[φ(x), φ(y)]|0〉
= 〈0| − φ(y)φ(x) −Θ(x0 − y0)[φ(x), φ(y)]|0〉
= 〈0|(Θ(x0 − y0)− 1)φ(y)φ(x) −Θ(x0 − y0)φ(x)φ(y)|0〉
= −〈0|T [φ(x)φ(y)]|0〉. (G18)

Remark: A more useful way of expressing Wick theorem,

T [φ(x1) · · ·φ(x2n)] = : φ(x1) · · ·φ(xn) : +
∑

j<k

T [φ(xj)φ(xk)] : φ(x1) · · · φ̂(xj) · · · φ̂(xk) · · ·φ(x2n) :

+
∑

j1≤j2,j1≤k1,j2≤k2
T [φ(xj1 )φ(xk1 )]T [φ(xj2 )φ(xk2 )]

× : φ(x1) · · · φ̂(xj1 ) · · · φ̂(xk1 ) · · · φ̂(xj2 ) · · · φ̂(xk2 ) · · ·φ(x2n) : + · · · (G19)

is obtained by expanding both sides of Eq. (G10) in the source j and by identifying the coefficients of the same power
on the two sides.
The weak form of the theorem can be obtained by taking the vacuum expectation value of Eq. (G10) when the

only surviving term is the last one without normal ordering part (〈0| : A : |0〉 = 0) is

〈0|T [φ(x1) · · ·φ(x2n)]|0〉 =
1

n!2n

∑

π∈S2n

T [φ(xπ(1))φ(xπ(2))] · · ·T [φ(xπ(2n−1))φ(xπ(2n))] (G20)

for even n where the symbols marked by a hat are omitted in the product.

Appendix H: Electron-electron scattering

We briefly present the calculation of the electron-electron scattering cross section in leading order of the perturbation
expansion The process considered first is e(p1, α1)+e(p2, α2)→ e(q1, β1)+e(q2, β2) where particles three-momentum
and helicity are indicated. The transition amplitude of the process is

〈f |S|i〉 = 〈0|T [coβ1(q1)coβ2(q2)e
−ie

∫

dzψ̄(z)γµψ(z)Aµ(z)c†iα2
(p2)c

†
iα1

(p1)]|0〉 (H1)

in terms of asymptotic in and out operators for electrons.
It is advantageous to separate off simpler scattering processes from the transition probability by assuming that all

particle changes its four-momentum during the collision. In fact, if a particle preserves its four-momentum it makes
a forward scattering and can be considered as a spectator, it traverses the collision zone without interaction and
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the actual collision process involves less particles. The formal way such a forward scattering contributions can be
eliminated is offered by the reduction formulae and the basic idea is the following. The creation and annihilation
operators are expressed by the help of asymptotic field operator (88),

cα(x
0,k) =

∫

d3xū(α)(k)eikxγ0ψ(x) (H2)

where the time when the annihilation operator is considered is written explicitly and the orthogonality of the spinors,
Eq. (D67) was used. To have a more suitable form we use the identity

f(tf ) = f(ti) +

∫ tf

ti

dt
df(t)

dt
(H3)

to write

coα(k) = ciα(k) +
1√
Z

∫

dxū(α)(k)∂0[e
ikxγ0ψ(x)]

= ciα(k) +
1√
Z

∫

dxū(α)(k)[(∂0e
ikx)γ0ψ(x) + eikxγ0∂0ψ(x)] (H4)

Since the spinor ū(α)(k)eikx satisfies the Dirac equation ū(α)(k)eikx(−i←−∂/−m) = 0 where the arrow shows the direction
the partial derivatives act we find

coα(k) = ciα(k) +
1√
Z

∫

dxū(α)(k){[(−γ∇+ im)eikx]ψ(x) + eikxγ0∂0ψ(x)}

= ciα(k)−
i√
Z

∫

dxū(α)(k)eikx(i∂/−m)ψ(x) (H5)

where the partial integration was carried out in the second equation. The hermitian conjugate of this equation is

c†iα(k) = c†oα(k)−
i√
Z

∫

dxψ̄(x)(−i←−∂/−m)u(α)(k)e−ikx. (H6)

The creation and annihilation operators written in this manner can now be inserted into Eq. (H1). The contribution
of the in operator on the right hand side of Eq. (H5) removes an electron from the initial state. This particle does
not participate in the collision process, being eliminated already at the initial time. This is the contribution of a
collision where the particle in question preserves its state and makes a forward scattering. In a similar manner, the
contribution of the out creation operator in the right hand side of Eq. (H6) stand for the forward scattering of a
particle which is inserted at the final time, after the collision process. We consider genuine scattering process without
forward scattering and omit such terms. We set Z = 1 in leading order and find

〈f |S|i〉 =
(−i4)
Z2

∫

dy1dy2dx1dx2e
−ix1p1−ix2p2+iy1q1+iy2q2 ū(β1)(q1)(i∂/y1 −m)ū(β2)(q2)(i∂/y2 −m)

〈0|T [ψ(y1)ψ(y2)e−ie
∫

dzψ̄(z)γµψ(z)Aµ(z)ψ̄(x2)ψ̄(x1)]|0〉c(−i
←−
∂/x2 −m)u(α2)(p2)(−i

←−
∂/x1 −m)u(α1)(p1)(H7)

where the index c on the vacuum expectation value reminds us to take the connected (non forward scattering part)
of the amplitude. The leading order contributions to the vacuum expectation value are given in Eq. (158).
The Dirac operators on the right hand side of Eq. (H7), the inverses of the free electron propagator remove the

external legs of the graphs and one finds

〈f |S|i〉 = (2π)4δ(4)(p1 + p2 − q1 − q2)(−ie)4
[

−ū(β1)(q1)γ
µu(α1)(p1)

−i
(p1 − q1)2 + iǫ

ū(β2)(q2)γµu
(α2)(p2)

+ū(β2)(q2)γ
µu(α1)(p1)

−i
p1 − q2)2 + iǫ

ū(β1)(q1)γ
µu(α2)(p2)

]

(H8)

where the photon propagator is given by Eq. (128) in Feynman gauge λ = 1. The transition amplitude appearing in
Eqs. (99) is the expression in the square bracket in (H8).
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Let us simplify matters and consider unpolarized collision where one averages over the initial and sums over final
polarization. The transition amplitude square for such a collision process is therefore

|T |2 =
e4

4

∑

α1,α2,β1,β2

[
ū(β1)(q1)γ

µu(α1)(p1)ū
(β2)(q2)γµu

(α2)(p2)

(p1 − q1)2
− ū(β2)(q2)γ

µu(α1)(p1)ū
(β1)(q1)γ

µu(α2)(p2)

(p1 − q2)2
]

×
[
ū(β1)(q1)γ

νu(α1)(p1)ū
(β2)(q2)γνu

(α2)(p2)

(p1 − q1)2
− ū(β2)(q2)γ

νu(α1)(p1)ū
(β1)(q1)γ

νu(α2)(p2)

(p1 − q2)2
]∗

(H9)

where the iǫ was dropped in the photon propagator being irrelevant in the absence of integration over the photon
energy-momentum. The projector operator (D68) with u(α)(k) = u(α)(ωk,k) allows us to write this expression as

|T |2 =
e4

64m4

{
tr[γµ(p/1 +m)γν(q/1 +m)]tr[γµ(p/2 +m)γν(q/2 +m)]

[(p1 − q1)2]2

− tr[γµ(p/1 +m)γν(q/2 +m)]tr[γµ(p/2 +m)γν(q/1 +m)]

(p1 − q1)2(p1 − q2)2
+ (q1 ↔ q2)

}

. (H10)

The Dirac algebra trace can easily be calculated by means of Eq. (D8),

tr(γµγν) = −tr(γνγµ) + 2gµνtr1

tr(γµγν) = gµνtr1→ −δµνtr1
tr(γµγνγργσ) = tr(γνγµ)2gρσ − tr(γµγνγσγρ)

= 2gµνgρσtr1 + tr(γµγσγνγρ)− 2gσνtr(γµγρ)

= 2gµνgρσtr1− tr(γσγµγνγρ) + 2gµσtr(γνγρ)− 2gσνgµρtr1

tr(γµγνγργσ) = (gµνgρσ + gµσgνρ − gσνgµρ)tr1 (H11)

giving

tr[γµ(p+̄m)γν(q+̄m)] = 4m2gµν + pαqβtrγ
µγαγνγβ

= 4(m2 − pq)gµν + 4pµqν + 4pνqµ (H12)

where tr11 = 4 has been used, as well. The transition amplitude square |T |2 thus becomes

1

2m4

{
(p1p2)

2 + (q1q2)
2 + 2m2(p1q2 − p1p2)

[(p1 − q1)2]2
+
(p1p2)

2 + (q1q1)
2 + 2m2(p1q1 − p1p2)

[(p1 − q2)2]2
− (p1p2)

2 − 2m2(p1p2)

(p1 − q1)2(p1 − q2)2
}

. (H13)

The simplest parameterization of the cross section (109)

dσ =
1

4
√

(p1p2)2 −m4

∫

∆

d3q1d
3q2

(2π)64ωq1ωq2
(2π)4δ(p1 + p2 − q1 − q2)|T |2 (H14)

is to use the particle momentum p and the scattering angle θ as kinematical parameters in the center of mass frame
where p = |pj | = |qk|, p0j = q0j = ωp, p

2 = p2, p1p2 = ω2
p + p2, p1q1 = m2 + 2p2 sin2 θ/2, p1q2 = ω2

p + p2 cos θ and the
differential cross section becomes

dσ

dΩ
=
α2(m2 + 2p2)2

4p4(m2 + p2)

[
4

sin4 θ
− 3

sin2 θ
+

(

1 +
4

sin2 θ

)
p4

(m2 + 2p2)2

]

(H15)

with α = e2/4π.

Appendix I: Non-interacting particles in the functional Schrödinger representation

We construct here the wave functional for the vacuum state and the one-particle excitations in the absence of

interactions, U(φ) = 0. To simplify the expressions we shall use the notation f ·g =
∫
dxf(x)g(x) and ωp =

√

m2 + p2.
The vacuum state functional is sought as a Gaussian,

Ψ0[φ] = e−
1
2

∫

dxdyφ(x)K(x,y)φ(x) = e−
1
2φ·K·φ. (I1)
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The derivatives

δΨ0[φ]

δφ
= −K · φe− 1

2φ·K·φ

δ2Ψ0[φ]

δφxδφy
= [−Kxy + (K · φ)x(K · φ)y ]e−

1
2φ·K·φ (I2)

give the Schrödinger equation

HΨ0[φ] =
1

2
[TrK − φ ·K ·K · φ− φ ·∆ · φ+m2φ · φ]e− 1

2φ·K·φ = E0e
− 1

2φ·K·φ, (I3)

together with

K(x,y) = (
√

−∆+m2)xy =

∫
d3p

(2π)3
ei(x−x)pωp (I4)

and

E0 =
1

2
TrK =

∫
d3p

(2π)3
ωp

2
. (I5)

The one-particle states are supposed to have the form

Ψ[φ] =

∫

d3xd3yφ(x)K(x,y)f(x)Ψ0[φ] = φ ·K · fe− 1
2φ·K·φ. (I6)

The first two derivatives are

δΨ[φ]

δφ
= K · (f − φφ ·K · f)e− 1

2φ·K·φ

δ2Ψ[φ]

δφxδφy
= {[−(K · f)x + (K · φ)x(φ ·K · f)](K · φ)y − (φ ·K · f)Kxy − (K · φ)x(K · f)y}e−

1
2φ·K·φ

= {−(K · f)x(K · φ)y − (K · φ)x(K · f)y + (K · φ)x(φ ·K · f)(K · φ)y − (φ ·K · f)Kxy}e−
1
2φ·K·φ. (I7)

and the functional Schrödinger equation reads

HΨ[φ] =
1

2
{2f ·K ·K · φ+ [−φ ·K ·K · φ+TrK − φ ·∆ · φ+m2φ · φ](φ ·K · f)}e− 1

2φ·K·φ

= [f ·K ·K · φ+ E0(φ ·K · f)]e−
1
2φ·K·φ

= E1φ ·K · fe−
1
2φ·K·φ. (I8)

Our ansatz is a solution if

E1φ ·K · f = f ·K ·K · φ+ E0(φ ·K · f) (I9)

or

K · f = ∆Ef (I10)

where E1 = E0 +∆E. This eigenvalue condition can be written as

∆Ef̃ (P )(q) = ωq f̃
(P )(q) (I11)

where

f̃ (P )(p) =

∫

d3xe−ixpf (P )(y). (I12)

The solution of Eq. (I11) is f̃ (P )(p) = c(P )δ(P − p) giving ∆E = ωP .
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One can easily construct the creation and destruction operators, too. It fact, it is easy to verify that the operator

a(p) = f (p)∗ ·K · φ+ f (p)∗ · δ
δφ

= f (p)∗ ·
(

ωpφ+
δ

δφ

)

(I13)

satisfies the commutation relation

[a(p), a†(q)] =

[

f (p)∗ ·
(

ωpφ+
δ

δφ

)

, f (q) ·
(

ωqφ−
δ

δφ

)]

= −
[

f (p)∗ · ωpφ, f
(q) · δ

δφ

]

+

[

f (p)∗ · δ
δφ
, f (q) · ωqφ

]

= ωpf
(p)∗ · f (p) + ωqf

(p)∗ · f (q) = δ(p− q) (I14)

as soon as the orthogonality condition

f (p)∗ · f (q) =
δ(p− q)

2ωp

(I15)

is assured.
The wave-functional of states with several particles can easily be constructed by acting with a†(p) on Ψ0[φ].
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