
Introduction to General Relativity

Janos Polonyi

University of Strasbourg, Strasbourg, France

(Dated: June 20, 2022)

Contents

I. Introduction 5

A. Equivalence principle 5

B. Gravitation and geometry 6

C. Static gravitational field 8

D. Classical field theories 9

II. Gauge theories 12

A. Global symmetries 12

B. Local symmetries 13

C. Gauging 14

D. Covariant derivative 16

E. Parallel transport 17

F. Field strength tensor 19

G. Classical electrodynamics 21

III. Gravity 22

A. Classical field theory on curved space-time 22

B. Geometry 25

C. Gauge group 26

1. Space-time diffeomorphism 26

2. Internal Poincaré group 27
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I. INTRODUCTION

A distinguishing feature of gravitation compared with the other known interactions in Physics

is that it touches upon the geometry of space and time. Correspondingly, the traditional approach

to General Relativity is based on differential geometry. But there is another issue, locality which

historically came up in connection with gravity first with fully recognized importance. Locality is

evoked at two different stages in General Relativity. One is the independence of the equations of

the theory from the choice of space-time coordinates. This renders the theory invariant under local

reparametrization of the coordinate system. The equivalence principle, the existence of coordinate

systems where gravitational forces disappear at a given point is another indication that locality

plays more important role than thought before.

But locality actually represents a bridge to the other interactions. In fact, the interplay of lo-

cality and Special Relativity leads to gauge theories, a formal structure, common in all interactions

known to us, gravity included. Inspired by this common structure General relativity is introduced

below as a classical gauge field theory. After that a brief description of two applications is given,

namely the Schwarzschild geometry and the Robertson-Walker geometry based cosmology.

Two appendices contain some complementary material, a short introduction into the formalism

of classical field theory and the presentation of General Relativity as the gauge theory of the

Poincaré group.

A. Equivalence principle

The unique status of gravitational forces among possible interactions is the surprising equiv-

alence of the inertial mass appearing in Newton’s third law in mechanics, min, and the coupling

strength to a gravitational potential Ugr, the gravitational mass mgr,

min(a− ain) = −mgr∇Ugr(x), (1)

where ain denotes the inertial acceleration, arising in non-Euclidean coordinate systems. Lorand

Eötvös’ measurement of the late nineteenth century and the improved versions performed later

show the equivalence of gravitational and inertial masses with convincingly high accuracy. The

Weak Equivalence Principle states that the world line of a small, free falling body is independent

of its composition or structure, min = mgr = m. As a result, the trajectory of a point particle is

independent of its mass within Newton’s theory.
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The Strong Equivalence Principle consists of keeping the Weak Equivalence Principle valid in

the presence of other, non-gravitational force, Fext,

m[a− ain +∇Ugr(x)] = Fext. (2)

This equation suggests a further equivalence, the identical origin of the gravitational and inertial

forces. For instance, a homogeneous gravitational field, Ugr(x) = gz, can be eliminated by means

of accelerating coordinate system, z → z − gt2/2, one is in a levitation, weightless state in the

falling elevator.

The equivalence of inertial and gravitational forces is a local phenomenon, an inhomogeneous,

time dependent gravitational potential can be eliminated at a given space-time point only by means

of a suitable chosen space-time coordinates. In other words, the usual dynamics and symmetries,

predicted by Special Relativity can be recovered in the absence of non-gravitational forces at any

given point in space-time by means of a well chosen coordinate system. The Strong Equivalence

Principle can be rephrased as the possibility of eliminating the gravitational forces at a given

space-time point by a suitable chosen coordinate system. This principle holds only locally.

Yet another version of the Strong Equivalence Principle is that in a small enough region of the

space-time it is impossible to detect the presence of a gravitational field and the laws of physics

reduce to those of Special Relativity. In other words, the space-time and the physical laws can be

made locally Lorentz-invariant. The mathematical details of locally observed Lorentz invariance

will be spelled out below as a gauge symmetry.

Note that the gravitational forces are assumed to be originating from a simple scalar potential

in this discussion, a restriction to be released later. But the principle is not flawless and has a

limited validity, for instance quantum effects, related to the spin of the particles seem to represent

an O (~) violation. But quantum effects will be ignored in the rest of this notes. There are several,

slightly different versions of the Equivalence Principle in the literature which confuses the picture

even more. One may say that the Equivalence Principle is a rough guidance for our intuition which

comes from the pre-gauge theory era of physics. Its simpler form and its limitation can easily be

found when gravity is considered as a gauge theory.

B. Gravitation and geometry

The equivalence of the inertial and the gravitating mass makes that the only characteristic

classical quantity of the point particle, its mass, drops out from the gravitational dynamics. But



7

R

x

y

FIG. 1: The best matching circle of a curve.

what determines then the particle trajectory if not its mass? It has been suspected ever since the

construction of Riemann-geometry that the gravitational force ought to be related to the curvature

because it determines the geometry.

The curvature can be defined in its simplest form for a regular planar curve, y(x), in the

following manner: Let us look for approximations of the curve around a given point, x0, with

increasing precision. The zeroth order approximation is the constant, y(x0+ǫ) ≈ y(x0). The linear
approximation, y(x0 + ǫ) ≈ y(x0) + y′(x0)ǫ, characterizes the tangent to the curve. The quadratic

approximation, y(x0 + ǫ) ≈ y(x0) + y′(x0)ǫ+ f ′′(x0)ǫ
2/2, defines the curvature radius of the curve

up to a sign as the radius of the best matching circle. The curvature radius has a non-trivial sign,

it is positive (negative) if the circle in question is above (below) of the curve. To find the expression

of the curvature radius let us imagine a circle, shown in Fig. 1. The equation of the circle,

R2 = x2 + (y −R)2, (3)

yelds

y =
x2

2R
+O

(
x4
)

(4)

for the lower hemisphere. If an at lest twice differentiable curve has vanishing value and slope at

x = 0 then its curvature radius is

R =
1
d2y
dx2







> 0 above,

< 0 below.

(5)

Let us now consider the free fall in the (x, y) plane, x(t) = vt, y(t) = y0− gt2/2, with curvature

radius

R = −v
2

g
. (6)
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The gravitational force makes the particle to follow a trajectory with a given curvature. But the

curvature contains the initial velocity, v, as well, hence it is not of purely geometric origin. It was

Einstein’s radically new point of view that the trajectory should be viewed in the space-time rather

than in the space only where the curvature becomes independent of the initial conditions and can

be assigned to geometry alone.

The inertial forces appear as a special manifestation of gravitational forces according to (1). This

kind of gravitational forces appear without curvature. A simple example, discussed in Appendix

A, is given by a family of uniformly accelerating world lines.

C. Static gravitational field

We have seen a distinguishing feature of gravitational forces, the equivalence principle above.

We turn now to the similarity between static gravitational and electric forces, by comparing the

Coulomb force

FC = r
e1e2
r3

, (7)

and Newton’s gravitational law,

Fg = −rm̃1m̃2

r3
, (8)

where e denote the electric charge and m̃ = m
√
G, G being Newton’s gravitational constant.

Despite their formal similarity the static electric and weak gravitational forces differ on two

counts. One difference is that the gravitational charge, the mass can not be negative as opposed

to the electric charge. This eliminates the possibility of screening of gravitational interaction. As

a result, the gravitational forces remain long range like the unscreened Coulomb force and lead to

instabilities and a number of interesting differences between the rules of statistical physics with

and without gravitational forces. The other difference appears when the charges are not static but

accelerate. The resulting electrodynamical and gravitational radiation are very different from each

other.

The dynamical degree of freedom representing the electromagnetic interaction is the vector

potential Aµ(x). The space-time geometry of classical General Relativity is characterized by the

invariant length, defined by the metric tensor, gµν(x) introduced below. This tensor field can be

considered as the dynamical degrees of freedom, responsible of gravitational interaction in classical

physics.
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The vector potential and the metric tensor describe elementary particles with spin one, S = 1,

and spin two, S = 2, respectively. It is now understood that both the absence of gravitational

repulsion and the complicated structure of gravitational radiation, compared to classical electro-

dynamics arise from the different spin of the carriers of the interaction.

An unifying concept, local gauge symmetries, streamlines the construction of classical theories

for fields with non-vanishing spin. The minimalist version of a gauge theory, the Yang-Mills model

will be introduced in the next Chapter.

D. Classical field theories

The need of classical fields appear as a way around an unexpected problem in Special Relativity.

The non-relativistic equation of motion and the initial conditions for a system of N point particles,

interacting by instantaneous, action-at-a-distance force are

ma
d2xa(t)

dt2
= Fa(x1(t), . . . ,xN (t)),

xa(ti) = xa,i,
dxa(t)

dt
= va,i, (9)

where a = 1, . . . , N , with initial conditions imposed at t = ti. The relativistically covariant

extension of these equations is given for the world lines, xµ(s), parameterized by the invariant

length s, called proper time, and read

maẍ
µ
a(sa) = Fµ

a (x1(s1), . . . , xN (sN )),

xµa(sa,i) = xµa,i, (10)

where the dot stands for the derivation with respect to the proper time, the proper time of the

particles is chosen in such a manner on the right hand side of the equation of motion that x0a(sa) =

x0b(sb) and the initial conditions are imposed at x0a(si) = ti. The problem comes from the fact that

that the four velocity preserves its length, ẋ2a(s) = 1 and the derivative with respect to the proper

time gives the constraint 0 = ẋaẍa = ẋaFa for each world line. One can show that there is no

covariant function Fµ
a which satisfies this constraint.

The origin of the problem is that the instantaneous action-at-a-distance interaction requires

propagation of signals with infinite velocities which is excluded by Special Relativity. The solution

is to represent the interaction by means of a field variable, denoted by φ(x) for the sake of a simple

example, a dynamical degrees of freedom at each space point. To make up the propagation of a

signal we couple φ(x) to the fields of the neighboring points in a relativistically invariant manner.
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A simple mechanical model of a scalar field in 1+1 dimensional space-time can be given by a

chain of pendulums, coupled to their neighbors by a spring, depicted in Fig. 2. The Lagrangian is

given by

L =
∑

n

[
mr2

2
θ̇2n −

kr20
2

(θn+1 − θn)2 − gr cos θn
]

. (11)

The variable transformation θn(t)→ Φθn(t) = φ(t, xn) brings it into the form

L = a
∑

n

[

1

2c2
(∂tφn)

2 − 1

2

(
φn+1 − φn

a

)2

− λ cos φn
Φ

]

(12)

(Φ = r0
√
ak, c = a r0

r

√
k
m and λ = gr

a ). Next one goes into the continuum limit, a→ 0,

L =

∫

dx

[
1

2c2
(∂tφ(x))

2 − 1

2
(∂xφ(x))

2 − λ cos φ(x)
Φ

]

(13)

and finds the action of the sine-Gordon model,

S =

∫

dtdx

[
1

2
∂µφ(x)∂

µφ(x)− λ cos φ(x)
Φ

]

. (14)

● ● ● ● ●

a

r

r0

θ

FIG. 2: The mechanical model of a 1+1 dimensional scalar field.

The local dynamics of a field is usually defined by means of its Lagrangian, cf. Appendix C.

The simplest, the free real scalar field theory is defined by the Lagrangian

L =
1

2
∂µφ∂

µφ− m2c2

2~2
φ2 (15)

where ∂µ = ∂
∂xµ and λC = ~

mc denotes the Compton wave-length of a particle of mass m. The

action

S =

∫

dx

[
1

2
∂µ(x)φ∂

µφ(x) − m2c2

2~2
φ2(x)

]

(16)
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is manifestly Lorentz invariant. The normal modes, teh degrees of freedom which diagonalize the

quadratic action, can be found by performing a Fourier transformation in space,

φk(x
0) =

∫

d3xφ(x)e−ikx,

φ(x) =

∫
d3k

(2π)3
φk(x

0)eikx (17)

and expressing the action in terms of the Fourier amplitude φk(x
0),

S =

∫

dx
d3kd3q

(2π)6

[
1

2
∂0φk∂0φq +

kq

2
φkφq −

m2c2

2~2
φkφq

]

ei(k+q)x

=

∫

dx0
d3k

(2π)3

[
1

2
∂0φ−k∂0φk −

1

2

(

k2 +
m2c2

~2

)

φ−kφk

]

, (18)

where the Fourier representation of the Dirac delta,

δ(x) =

∫
d3k

(2π)3
eikx, (19)

is used in the last equation. The field is real,

φ(x) =

∫
d3k

(2π)3
φk(x

0)eikx = φ∗(x) =

∫
d3k

(2π)3
φ∗k(x

0)e−ikx (20)

hence φ−k(x
0) = φ∗k(x

0) and

S =

∫

dx0
d3k

(2π)3

[
1

2
∂0φ

∗
k∂0φk −

1

2

(

k2 +
m2c2

~2

)

φ∗kφk

]

. (21)

Relativistic normal modes are plane waves, φk(x
0) = φ1,k(x

0) + iφ2,k(x
0), since

S[φk] =
∑

j=1,2

∫

dx0
[
1

2
[∂0φj,k(x

0)]2 − 1

2

(

k2 +
m2c2

~2

)

[φj,k(x
0)]2
]

=
∑

j=1,2

∫

dx0
[
Mk

2
[∂tφj,k(x

0)]2 − MkΩ
2
k

2
φj,k(x

0)φj,k(x
0)

]

(22)

with

Mk =
1

c2
, Ω2

k = c2
(

k2 +
m2c2

~2

)

, Ek = ~Ωk. (23)

The four-momentum of the normal mode, belonging to the wave vector k, is

p =

(
E

c
,p

)

=




~c
√

k2 + m2c2

~2

c
, ~k



 = (
√

m2c2 + p2,p). (24)
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II. GAUGE THEORIES

We know four fundamental interactions in Nature, the gravitational, the electric, the weak and

the strong forces. The last three appears in quantum version but we have so far no experimental

evidence whatsoever indicating propagating classical gravitational field or any quantum effect in

gravity. The remarkable fact is that all four interactions are described by the same type of models,

by gauge field theories. These theories express a central assumption of physics in a distinguished

manner, namely that the fundamental laws are local in the space-time. Non-gravitational gauge

theories are introduced in this section in flat space-time.

A. Global symmetries

A transformation of the field configuration, φa(x)→ φ′a(x′), where x→ x′(x) is a symmetry if

it changes the action S[φ] at most by total derivative,

S[φ]→ S[φ′] = S[φ] +

∫

d4x∂µΛ
µ(x) (25)

because such transformations leave the variational equations of motion unchanged.

It is advantageous to distinguish two different spaces in field theory. A field configuration of an

n-component real field, φ(x) : E → I, is a mapping of the external space into the internal space,

the former denoting the space-time E = R4 and the latter standing for the set of values of the

field, I = Rn.

A symmetry transformation can be internal, external or both. Internal symmetry transforma-

tions, φa(x)→ φ′a(x), act in the internal space only. Examples are charge conjugation, rotation in

flavor or color space of quarks and leptons. External symmetry transformations change the space-

time coordinates only, φa(x)→ φa(x′), eg. the Poincaré group, consisting of space-time translation

and Lorentz transformations.

Continuous symmetries generate currents in classical field theories which satisfy the continu-

ity equation according to Noether’s theorem. The conserved quantity, the space integral of the

time component of the Noether current is usually called charge in case of internal symmetry. The

conserved quantities of external symmetries define energy-momentum (translation), angular mo-

mentum (space rotation) and a further vector (Lorentz boosts). Note that these symmetry trans-

formations are global, meaning that they are characterized by the same parameters everywhere in

the space-time.
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B. Local symmetries

It has already been realized in the twenties by H. Weyl and been employed in constructing new

theories by Yang and Mills in the sixties that the global symmetries of physics are in conflict with

the spirit of special relativity. Let us consider for example a global internal symmetry, represented

by the transformation

ψ(x)→ ψω(x) = ωψ(x) (26)

acting an the multi-component field variable φ(x) with ω being an element of the symmetry group,

typically ω ∈ G = O(n) (real fields) or ω ∈ G = U(n) (complex fields). The symmetry is

global because we have to apply the same change of basis in the internal space anywhere and

anytime in the Universe in order to keep the dynamics unchanged. Is the rigid application of the

symmetry transformation really necessary in our world where special relativity holds? One can

not exchange information between two locations in the space-time separated by space-like interval,

c2∆t2 − ∆x2 < 0 according to special relativity. How can then be a problem in using different

bases in the description of physics at space-like separated regions? The symmetry transformations

which seem to be in harmony with special relativity should concern change of basis in locations

equipped with the possibility of the exchange of physical signals.

The suggestion is to give up any correlations among bases used at different space-time locations

and to use local, so called gauge symmetries,

ψ(x)→ ψω(x) = ω(x)ψ(x). (27)

This is an extreme possibility, opposite to the global transformations. It creates obvious problems

if applied to space-time regions with time-like separation, ∆t2 − ∆x2 > 0 which can exchange

signals. In particular, gauge symmetry makes it impossible to obtain any equation of motion for

gauge non-invariant quantity which can freely be changed in an arbitrary time-dependent manner.

This problem leads to the issue of gauge-fixing not pursued in this simple treatment.

The transformation rule (27) is homogeneous and has the virtue that any local equation

0 = F (ψ(x), χ(x), · · · ) (28)

which transforms in a homogeneous manner as in (27),

Fω(ψ(x), χ(x), · · · ) = F (ψω(x), χω(x), · · · ) = f(ω(x))F (ψ(x), χ(x), · · · ), (29)



14

f(ω) 6= 0, remains valid after any gauge transformation. These are called covariant or ’absolute’

equations because they are valid in any convention, in other words in any gauge. We are interested

in laws of Physics in as simple form as possible. Thus we seek absolute equations. Invariant

quantities are called scalars and set of numbers or fields transforming in a homogeneous manner are

usually called vectors or tensors. The rules of generating absolute equations consist of prescriptions

of constructing scalars, vectors or tensors from scalars, vectors or tensors.

Let us, for the sake of example, consider an imaginary world consisting of two kind of particles,

say particle 1 and 2, which participate in an identical manner in their interactions. The field variable

has two components and the theory to start with displays a global symmetry group G = O(2) or

G = U(2). The definition of the particle 1 or 2, amounts to a choice of a basis in the internal

space. It is a convention used by physicists to construct models and communicate the results of

their work.

Physicists at different laboratories may use different definitions, called in general conventions

below. Experimental physicists need no basis since measurements are performed without making

any reference to internal space. Nevertheless they need conventions as soon as they want to

compare their findings with model predictions. In this imaginary world the physical phenomena

are the same, independently of any choice of conventions. Hence there is a non-trivial condition

that a function of the dynamical variabe be a measurable quantity, it must be gauge invariant.

C. Gauging

The main question for us in this section is to find the rules of modification of the theory in order

to upgrade the global symmetry G into a local one. The result of this procedure, called gauging,

is a theory with a gigantic symmetry group, G = ⊗∏xGx. We shall see that the price of such an

enlargement of the symmetry is the introduction of a vector field, the gauge field.

Let us start with a theory defined by the Lagrangian L(φ, ∂φ), cf. Appendix C, with global

symmetry, ω ∈ G. The Lagrangian has ultra-local terms, involving the field variable φ(x) at

strictly the same space-time point, such as the mass term 1
2m

2φa(x)φa(x) or a local potential

U(φa(x)φa(x)). There is no difference between global and local symmetry transformations as far

as these terms are concerned. But pieces of the Lagrangian involving space-time derivative of the

field are actually detecting the variation of the field on the space-time and are not strictly local.

What is important from the point of view of the symmetry is that the transformation rule

∂µφ(x)→ ∂µφ
ω(x) = ∂µωφ(x) = ω∂µφ(x) (30)
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of the global symmetry transformation is modified for local symmetry briefly gauge transformations,

∂µφ(x)→ ∂µφ
ω(x) = ∂µω(x)φ(x) = ω(x)∂µφ(x) + (∂µω(x))φ(x), (31)

the trouble maker being the last term. It arises because the derivative compares the field values

at neighboring points,

∂µφ(x) = lim
ǫ→0

φ(x+ ǫnµ)− φ(x)
ǫ

(32)

and this term represents the contribution due to the different conventions in different points. This

contribution should not be there if by difference of the field variables we mean ”physical” difference.

We should transform the field variables into the same convention before subtraction. The expressing

of the field at y into the convention of x, φ(y) → ω(x ← y)φ(y), is a change of basis again. We

are interested in this transformation for space-time points within each others vicinity when, the

continuous dependence on the space-time coordinate assumed, this transformation is close to the

identity. The possible moves of y into a neighboring x are characterized by an infinitesimal vector

∆xµ = xµ − yµ and the corresponding change of base,

ω(y ← x) = 11−∆xµAµ(x) +O
(
∆2x

)
, (33)

is given in terms of four generators of the gauge group, Aµ(x) corresponding to the possible

linearly independent moves of the point x. The use of a basis τa, a = 1, . . . , N for the Lie-algebra

(generators) of an N -dimensional gauge group allows us to write

Aµ(x) = Aa
µ(x)τ

a (34)

where the basis matrices are assumed to satisfy the normalization conditions

tr τaτ b = −1

2
δab (35)

and commutation relations

[

τa, τ b
]

= fabcτ c. (36)

We have a vector field, a gauge field for each direction of the symmetry group following the change

of basis one has to compensate for.
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D. Covariant derivative

Once we have an expression for the compensation needed to bring the field around a space-time

point into the convention at the same point we can define the covariant derivative as the derivative

of the field φ(x) computed always in the convention at x,

Dµφ(x) = lim
ǫ→0

eǫn·A(x+ǫn)φ(x+ ǫnµ)− φ(x)
ǫ

= lim
ǫ→0

[1 + ǫn ·A(x+ ǫn)]φ(x+ ǫnµ)− φ(x)
ǫ

= (∂µ +Aµ)φ(x), (37)

giving

Dµ = ∂µ +Aµ. (38)

The gauge field which appears in the definition of the covariant derivative is sometime called

compensating field since its role is to compensate out the contributions of the inhomogeneous

conventions from the derivative of a physical field.

Let us now find out the transformation rule for the gauge field Aµ(x) during the gauge trans-

formation

ψ(x)→ ψω(x) = ω(x)ψ(x). (39)

The covariant derivative is the derivative of the field computed in fixed convention therefore Dµφ(x)

transforms in the same way,

Dµψ = (∂µ +Aµ)ψ → Dω
µψ

ω = (∂µ +Aω
µ)ψ

ω = ωDµψ = ω(∂µ +Aµ)ψ, (40)

yielding

ω(∂µ +Aµ)ψ = (∂µ +Aω
µ)ψ

ω = (∂µω)ψ + ω∂µψ +Aω
µωψ (41)

and

Aω
µ = −(∂µω)ω−1 + ωAµω

−1. (42)

Let us use the space-time derivative of the identity ω(x)ω−1(x) = 11,

0 = (∂µω)ω
−1 + ω∂µω

−1, (43)
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to write

Aµ → Aω
µ = ω(∂µ +Aµ)ω

−1. (44)

The transformation rule (40) gives the rule of replacing the partial derivative with covariant

derivative in the Lagrangian,

L(φ, ∂φ)→ L(φ,Dφ) = L(φ, (∂ +A)φ), (45)

as the rule of gauging. The interaction induced in this manner between the particle described by

the field φ and the gauge field is called minimal coupling. It should be clear by inspecting again

the derivation of the conserved Noether-current in Chapter C 2 where the new coordinates, related

to the global symmetry transformations are actually gauge transformation parameters that the

minimal coupling involves the scalar product of the Noether-current and the gauge field, Aµj
µ.

E. Parallel transport

Since two internal space vector residing at two different space-time locations can not be com-

pared in their natural bases we need a definition what physically equivalent internal space vectors

mean at different space-time points. This is achieved by the parallel transport, a generalization of

the infinitesimal change of basis, given by (49).

Let us consider a continuously derivable path γµ : [0, 1]→ R
4 in the space-time with γµ(0) = xµi

and γµ(1) = xµf as initial and final points, respectively and a field φ(x) defined on this path. What

is the condition that the values of this field long our path, φ(γ(s)) are physically equivalent, despite

the possible dependence of the components of φ(γ(s)) on s when expressed in terms of the local

basis? Suppose that we have a physical method to check the equivalence of the field along the path.

The resulting field φ(γ(s)) of a parallel transported internal space vector satisfies the equation

φ(y) =Wγ(y, x)φ(x) (46)

where Wγ(y, x) is a symmetry (basis) transformation which naturally depends on the choice of the

points x and y and a somehow surprising manner will also depend on the path γ, too.

Since this function compensate the change of conventions along the path it should closely be

related to the compensating field Aµ(x) introduced in defining the covariant derivative. In fact,

parallel transport of a point of the internal space, vector in short, means that the ”physical”

components do not change along the path,

dγµ

ds
Dµφ(γ(s)) = 0. (47)
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which can be written as an equation for the parallel transport transformation

dγµ

dτ
DyµWγ(y, x) = 0 (48)

according to Eq. (46). The O (∆x) solution, (49), can be written by the help of the exponential

map (B3) in the form

Wγ(x+∆x, x) = e−∆xµAµ(x), (49)

by assuming that the gauge field is constant in the straight line segment [x, x + ∆] of the path.

The general solution, valid for a path of finite length is given in Appendix D.

It is easy to find out the transformation rule for parallel transport under gauge transformations.

The starting point is that the product φ†(y)Wγ(y, x)φ(x) or φ(y)Wγ(y, x)φ(x) for complex or real

φ, respectively, is gauge invariant. Hence the equation ω−1(y)W ω
γ (y, x)ω(x) = Wγ(y, x) follows

and we have

W ω
γ (y, x) = ω(y)Wγ(y, x)ω

−1(x). (50)

Two features of the parallel transport should be mentioned at this point:

� Path dependence: To understand the impact of the phase dependence of Wγ(y, x) let us

imagine first a gauge field Aµ(x) for which Wγ(y, x) is independent of the path γ. In this

case we may choose a reference point in space-time, say x0 and extend its convention, its basis,

to the rest of the space-time by performing the gauge transformation ω(x) = W−1(x, x0).

In fact, this transformation renders all parallel transport trivial,

W ′(y, x) =W−1(y, x0)W (y, x)W (x, x0) =W (x0, y)W (y, x0) = 11. (51)

The gauge field which leads such a path independent parallel transports is called pure gauge

because it can be canceled by an appropriate gauge transformation.

� Parallel transport along closed paths: An equivalent characterization of path independence

of parallel transports is the triviality of parallel transport on any closed paths, Wγ(x, x) = 11.

In fact, let us choose another point than x of the closed path γ what will be denoted by

y = γ(s), 0 < s < 1. We introduce the fragments of γ from x to y and from y to x, as

γ1(t) = γ(ts) and γ2(t) = γ(s+ t(1− s)) which satisfy the equation

Wγ(x, x) =Wγ1(x, y)Wγ2(y, x) =Wγ1(x, y)W
−1
γ2 (x, y) (52)

the two parallel transports, Wγ1(x, y) and W
−1
γ2 (y, x) correspond to two different paths con-

necting the events x and y therefore the path dependence is equivalent with the non-triviality

of the parallel transports along closed paths.
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F. Field strength tensor

The gauging, the upgrade of a global symmetry to a local one brings in a generator valued

vector field. We are accustomed to the fact that fields corresponds to particles. Therefore the

gauging of a symmetry suggests the presence of spin 1 bosons in the system. The dynamics of

these particle can not come from the Lagrangian (45) because of the lack of the velocities ∂0Aµ in

it. The simplest solution is the add a new term to the Lagrangian L→ L+LA where LA satisfies

the following conditions:

1. It should be quadratic in the velocities, LA = O
(
(∂0Aµ)

2
)
.

2. It should be Lorentz invariant.

3. It should be gauge invariant.

The last property requires that LA should be vanishing for pure gauge fields, it should depend

on the non-pure gauge component of the field. This property suggests La, a local quantity, be

constructed in terms of the deviation of parallel transports on infinitesimally small loops from the

identity. Let us therefore consider the parallel transport of a field along a rectangle x→ x+ u→
x+u+ v → x+ v → x in space-time, u and v being infinitesimal, non-parallel vectors. The change

of the field during the parallel transport is infinitesimal, as well, φ→ φ+ δφ and should be linear

in u, v and φ itself. Therefore one expects the relation

δφa = −F a
bµνu

µvνφb. (53)

According to the definition of the parallel transport along an infinitesimal straight line, Eq. (49),

the parallel transport along the rectangle is

U� = evA(x)euA(x+v)e−vA(x+u)e−uA(x). (54)

We expand up to the displacement squares for each exponential functions gives

U� ≈
(

11 + vA(x) +
1

2
[vA(x)]2

)(

11 + uA(x+ v) +
1

2
[uA(x+ v)]2

)

×
(

11− vA(x+ u) +
1

2
[vA(x + u)]2

)(

11− uA(x) + 1

2
[uA(x)]2

)

(55)

which can be simplified within this approximation to

U� ≈ 11 + (v∂)uA − (u∂)vA − (uA)(vA) + (vA)(uA)

= 11− uµvν(∂µAν − ∂νAµ + [Aµ, Aν ]), (56)
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resulting the field strength tensor

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ] = [Dµ,Dν ], (57)

a generator valued field,

Fµν = F a
µν

τa

2i
, (58)

with

F a
µν = ∂µA

a
ν − ∂νAa

µ + fabcAb
µA

c
ν . (59)

The gauge field strength is the measure of the non-triviality of the parallel transport of a state

along a closed path.

The transformation rule for the parallel transport on a closed path,

11− uµvνFµν(x)→ ω(x)[11− uµvνFµν(x)]ω
−1(x) (60)

gives the transformation rule

Fµν(x)→ ω(x)Fµν(x)ω
−1(x). (61)

One can show that the triviality of the parallel transport over infinitesimal loops, the vanishing of

the field strength tensor, assures the triviality of the parallel transport over arbitrary loops and

restricts the gauge field to a pure gauge form, Aµ = ω∂µω
−1 in space-time without boundary con-

ditions. When boundary conditions apply then the elimination of a pure gauge field configuration

may be impossible. Such a configuration play an important role in the dynamics.

The unique solution of the constraints for LA on a space-time with trivial topology is the

Yang-Mills Lagrangian,

LYM =
1

2g2
tr(Fµν)

2, (62)

fixed up to the coupling constant g. The normalization

tr τaτ b = −1

2
δab (63)

of the generators and commutation relations

[τa, τ b] = fabcτ c (64)
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of the Lea algebra of the gauge group yield

LYM = − 1

4g2
(F a

µν)
2. (65)

It is advantageous to use the notation Aµ → gAµ in perturbation expansion, giving rise to the

Yang-Mills Lagrangian

LYM = −1

4
F a
µνF

µνa, (66)

in terms of the field strength tensor

F a
µν = ∂µA

a
ν − ∂νAa

µ + gfabcAb
µA

c
ν . (67)

The coupling constant, appearing together with teh structure constant of teh gauge group indicates

that the self-interaction of the gauge field is due to the non-commutativity of the gauge group.

G. Classical electrodynamics

Let us consider the electromagnetic interactions as the simplest toy model for General Relativity.

case. We need the interaction for point charges, described by their world lines, xµn(s), the index n

identifying the particles. The electrodynamical interaction is the gauge theory which is based on

local, gauged realization of the global phase symmetry of quantum mechanics, ψ(x)→ eiαψ(x). It

is a U(1) gauge theory and having a single gauge symmetry generator, i, the commutator term is

vanishing in the field strength tensor (57). The action is

S = −c
∑

n

mn

∫

dsn −
e

c

∫

dtd3xjµ(x)Aµ(x)−
1

16π

∫

dtd3xFµν(x)F
µν(x)

= −c
∑

n

mn

∫

dsn −
e

c2

∫

d4xjµ(x)Aµ(x)−
1

16πc

∫

d4xFµν(x)F
µν(x), (68)

where

jµ(x) = c
∑

n

∫

dsδ(x − xn(s))ẋµn (69)

stands for the electric current.

To find the equation of motion of the vector potential one writes the last term, Maxwell’s action

in the form

SM = − 1

8πc

∫

d4x(∂µAν∂
µAν − ∂µAν∂

νAµ). (70)
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The variation equation for Aν ,

e

c
jν =

1

4π
∂µ(∂

µAν − ∂νAµ)

=
1

4π
∂µF

µν , (71)

is Maxwell’s equation, to be generalized in general relativity to Einstein’s equation.

To recover independent equations of motion for components of the the world line xµn(s) we have

to avoid the constraint ẋ2n(s) = 1 hence we start with a non-invariant length parametrization by

replacing s by τ , x(s)→ x(τ) and write the first two terms of the action (68) in the form

Sch = −
∑

n

∫

dτ

[

mnc
√

ẋµ(τ)gµν ẋν(τ) +
e

c
ẋµn(τ)Aµ(xn(τ))

]

. (72)

The corresponding variational equation,

0 = −e
c
ẋνn(τ)∂µAν(xn(τ)) −

d

dτ

[

−mc ẋµn(τ)
√

ẋµ(τ)gµν ẋν(τ)
− e

c
Aµ(xn(τ))

]

= mc
ẍµn(τ)
√

ẋ2(τ)
− e

c
ẋνn(τ)[∂µAν(xn(τ))− ∂νAµ(xn(τ))] +mc

ẋµn(τ)

[ẋ2(τ)]3/2
ẍµ(τ)ẋµ(τ), (73)

simplifies to the mechanical equation of motion with the Lorentz force,

mcẍµn(s) =
e

c
Fµν ẋ

ν
n(s), (74)

when the invariant length is used to parameterized the world lines.

III. GRAVITY

It seems to be an essential feature of Nature that all known interactions belong to the class

of gauge theories. For the electromagnetic, weak and strong interactions the internal space is

independent of the space-time. The special feature of gravity is that it influences the geometry of

the space-time therefore its internal space is not independent of its external space. The formalism

of general relativity will be introduced below by underlying its origin in gauge theories.

A. Classical field theory on curved space-time

The mathematical view of a field configurations, φ(x), is a map φ : E → I which describes

“what” (I) happens “where” (E). Gravity and other interactions provide dynamics for E and

I, respectively. Such a dynamics may generate singular x-dependence which can be avoided by
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renouncing the global, single valued nature of the dynamical fields. Instead, the fields are expected

to produce a well defined image point in subsets of the space-time only and the resulting structure

is called differentiable manifold. The regions Mj ⊂ E where both the space-time coordinates and

the fields have unique, well defined values are maps and the collection of maps, {Mj}, an atlas, is

supposed to satisfy the following properties:

1. Maps: Each space-time point correspond at least to one map. ie. each space-time point

can be identified by means of the coordinates.

2. Coordinates: There is a one-to-one mapping, xj : Mj → V , of each map into an open

subset V of RdE . These dE-dimensional functions, xµj (p), µ = 1, . . . , dE , p ∈ E, play the

role of coordinates defined for each map and the space-time looks locally dE-dimensional,

in agreement with the Equivalence Principle. The inverse function, p(x), labels the vicinity

of p by the coordinates x. We assume dE = 4 in what follows. Experimental devices are

supposed to be available to measure the values of the coordinates at each space-time point.

3. Coordinate transformations: The space-time point of a given environment, U , may be-

long to several maps. If p ∈ U can be represented by two maps, x(p) and x′(p) then the

inverse function, p(x), defined on an open set in R4, establishes the coordinate transforma-

tion, x′(x) = x′(p(x)), which is supposed to be infinitely many times differentiable.

The internal space, a linear space consisting of the possible field values, is called tangent space

in the case of gravity. This name shows the origin of the gravitational internal space Tp: the space

of possible space-time directions at the given space-time point. A more formal, coordinate system

independent definition is that Tp consists of the equivalence classes of world lines x(s), crossing p,

x(sp) = x(p) where x(s) and x′(s) are considered equivalent if they have the same tangent vector

in p, ẋ(sp) = ẋ′(sp). We assume that experimental devices are available at each space-time point

to measure the four velocity of point particles and identify a point in the tangent space. The

gravitational interaction determines the motion masses, therefore it governs the dynamics in T .

An important result of this particular construction of the tangent space is that the infinitesimal

vectors u ∈ Tp, can be related to the infinitesimal displacement, p→ p′,

xµj (p
′) = xµj (p) + uµ. (75)

Let us choose a standard map, Xµ(p), for a given environment U . The basis vectors of Tp,
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corresponding to a given map x(p), are

eµ =
∂X

∂xµ
, (76)

in particular

e0 =











1

0
...

0











, e1 =











0

1
...

0











, . . . , ed−1 =











0

0
...

1











(77)

in the case of the standard map. The change of the coordinate system, x→ x′ = x′(x), leads to a

new basis in Tp, defined by the equation

eµ =
∂x

∂xµ
=

∂x

∂x′ν
∂x′ν

∂xµ
= e′ν

∂x′ν

∂xµ
. (78)

It is easy to check that the corresponding transformation rule of a contravariant vector is

eµ =
∂xµ

∂x′ν
e′ν (79)

These transformation rules can easily be memorized by the following observations: One could have

derived eq. (78) by using (76) by droppingX(x). The result is that the covariant vectors transform

as partial derivatives,

∂µ = ∂′ν
∂x′ν

∂xµ
. (80)

Since dxµ∂µ remains invariant under coordinate transformations the contravariant vectors trans-

form as the infinitesimal coordinate changes,

δxµ =
∂xµ

∂x′ν
δx′ν . (81)

This observation is the starting point of an elegant formalism in differential geometry. It sometime

is called the absolute calculus since these objects can formally be defined without using a standard

(local) coordinate system. Equations which preserve their form under the reparametrization of the

coordinates are called covariant. The absolute calculus produces covariant equations, constructed

in terms of functions (coordinates), their derivatives (covariant vector fields) and infinitesimal

changes (contravariant vector fields). One arrives at nice and compact equations in this manner,

showing the geometrical essence in as clear manner as possible. But this scheme has two drawbacks

from the point of view of physics. One is that one is interested in the agreement between observed
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and theoretically predicted quantities and such a comparison can not be made without actually

“dirtying our hand” with a given coordinate system. The other is that while the idea of representing

vector fields by partial derivatives or by infinitesimal changes is correct and justified mathematically

it leads to a wrong intuition in physics. I believe that it is more advantageous first to spend the

time needed by improving our way of reading and understanding equations, written in terms of a

coordinate system until we recognize the general structure. When the physics is properly expressed

then, as a second step, one may go over the coordinate independent scheme if one wishes.

B. Geometry

There are three important properties of the space-time geometry which appears in gravitational

interactions.

1. The metric property is related to the existence of an invariant distance and it is essential

in establishing spatial and temporal distances between events. It is assumed that physical

measurements provide us spatial distances, time intervals and angles to determine the metric.

Due to the Equivalence Principle the metric structure must locally be compatible with Special

Relativity. This is achieved by introducing the invariant length in a local manner,

ds2(x) = dxµgµν(x)dx
ν (82)

where the metric tensor gµν(x) is a symmetric tensor with three positive and a negative

eigenvalues, i.e. with signature +,−,−,−.

2. The affine property controls parallelism by determining what directions can we consider

parallel at different space-time points. The velocity and the internal angular momentum,

the classical spin, of a small enough body is constant in the absence of external forces and the

acceleration and the time derivative of the spin are vanishing. According to the Equivalence

Principle this remains valid locally in a suitable chosen coordinate system in the presence

of external gravitational field. Thus the velocity and the spin preserve their directions in

a non-trivial geometry and can be used to establish the concept of parallelism. The affine

structure is realized by the affine connection, alias compensating or gauge field of gauge

theories.

3. The torsion of the space-time represents certain distortions of the space-time. This property

seems to be important in describing the interaction of the quantum mechanical spin with the
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gravitational field only. Note that thought the Equivalence Principle has been build in by

point 2. in Section IIIA, it can eventually violated by implying the torsion in the dynamics

because the distortions, characterized by the torsion can not be eliminated by using suitable

local coordinate system. We consider General Relativity in classical physics and the torsion

will be assumed to be absent.

C. Gauge group

It is instructive to recall that the absolute location in space-time becomes unobservable and the

space-time location is relative when the dynamics is translation invariant. The spatial directions

are relative in rotational invariant systems. The symmetry with respect to Lorentz boost makes

the absolute velocity unobservable in Special Relativity. The acceleration and all higher order

derivatives of the world line are rendered relative in General Relativity by imposing invariance of the

dynamics under reparametrization of the space-time coordinates, called space-time diffeomorphism.

Hence the choice of the coordinate system in the space-time is mere convention, the role of the

coordinates is to identify space-time points only and the actual numerical values of the coordinate

have no physical meaning.

The fundamental physical laws. eg. the Maxwell-equations, are supposed to be local in space-

time, they can be expressed as equations among dynamical quantities, corresponding to the same

space-time location. There is indeed no need of absolute coordinates for such a description. When

we do not intend to follow and find the equation of motion for all dynamical degree of freedom then

we seek an effective description. The motion of point particles or propagation of waves which are

not followed by us relate and correlate dynamical quantities at different space-time location and

are used to introduce direction and distance in space-time. We are interested here the fundamental

laws therefore we assume that the equations of motions are expressed for each space-time location

independently. This assumption leads to a rich gauge theory structure in an obvious manner and

gravity can be founded as a gauge theory with either external or internal symmetries.

1. Space-time diffeomorphism

The reparametrization of the coordinates, the diffeomorphism of the external space, can be

generated by the infinitesimal local translations in space time, xµ(x)→ x′µ(x) = xµ(x)+δxµ(x). If

the value of the coordinates are not relevant then the change of the coordinate system is represented
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by the change of the tangent vectors of world lines, in particular the coordinate axes. Therefore,

the gauge group is GL(4), consisting of 4× 4 non-singular matrices describing the transformation

of the coordinate axes eµ(x) during general coordinate transformations,

eµ(x)→ e′µ(x) =M ν
µ (x)eν(x). (83)

The affine structure of the space-time which is the central feature of this formalism handles the

relation of directions at different space-time points by means of parallel transport in the GL(4)

gauge theory. The drawback of this line of thought is that the other independent geometrical

structure, the metric which is a key player in the traditional approach to General Relativity is

constructed in an indirect manner from the affine connection.

The internal space is chosen to be the tangent space, the directional vectors at each point

of the space-time and its elements are contravariant vectors. The independent field variables

are the metric tensor gµν and the GL(4) gauge field, Γρ
µν , the affine connection. The metric

tensor is symmetrical, contains 10 independent component and has the signature (+,−,−,−).
Once the metric tensor is introduced the tangent spaces can be represented covariant vectors, too.

Furthermore, the direct product of the tangent space givers rise to the space of local tensors, as

well.

The representation of the diffeomorphism by the transformation of the tangent spaces, (83)

with M ν
µ (x) = δνµ − ∂µδx

ν raises a consistency issue, namely what conditions should the four

vector fields, eµ(x) satisfy to make up a coordinate basis? The necessary condition arises from the

symmetry of the second partial derivatives, ∂µeν = ∂µ∂νx
′ = ∂ν∂µx

′ = ∂νeµ. It is easy to check

that this condition is sufficient. In fact,

∂µeν = ∂νeµ (84)

is sufficient to assure the local existence and unicity of integral curves, the solution of the equations

∂µx
′(x) = eµ(x). The tetrads, satisfying (84) and can be used to construct well defined local

coordinates are called holonomic. The possibility of representing the reparametrization of the

space-time by the transformation of the coordinate basis vectors stems from the preservation of

the holonomy under diffeomorphism.

2. Internal Poincaré group

Both the metric and the affine structures can be derived in the gauge theory formalism by

means of internal gauge symmetry. The starting point is the Equivalence Principle which assures
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the existence of a coordinate system with local Lorentz invariance.

Lorentz transformations: The local Lorentz coordinate axes, ea(x), can be considered as

basis in the internal Lorentz space. But one might as well use another reference frame, obtained

by a local Lorentz transformation,

ea(x)→ e′a(x) = ωa
b(x)e

b(x). (85)

Thus one is led to propose Lorentz transformation as a local symmetry. A gauge field, ωa
bµ,

introduced to handle the compensations of the local Lorentz transformations defines the affine

structure of the space-time.

Translations: The special feature of gravity is the relation between dynamics and geometry,

a link between the internal and the external spaces. The external diffeomorphism, the coordinate

reparametrization invariance can be generated by the infinitesimal local translations in space time,

xµ(x) → x′µ(x) = xµ(x) + δxµ(x). The tangent space, Tp, consists of tangent vectors of world

lines, ẋµ, at p. By representing the tangent vectors in the local Lorentz reference frame, ẋµ = ξ̇aeµa ,

we turn this latter into the tangent space, Tp. The internal space equivalent of local, infinitesimal

translations,

ξa(x)→ ξ′a(x) = ξa(x) + δξa(x) (86)

is now considered as a local gauge transformation. The gauge field compensating such a local

modification of the coordinates of the local Lorentz spaces, eaµ(x) is called vierbein and provides

the desired link between infinitesimal shifts in the internal Lorentz space and the space-time:

δξa(x) = eaµδx
µ(x). (87)

We shall use Greek and Latin letters to denote vector indices in the Lorentz and in the space-time

coordinate system, respectively. The translations (86), together with the Lorentz transformations

(85) form the Poincaré group as gauge symmetry.

An unexpected bonus of the Poincaré group formalism is the possibility of treating fermions. In

fact, fermions do not have well covariant transformations properties under the GL(4) group, the

general change of coordinates. They show well defined transformation rules for the Lorentz group

only. Another advantageous feature of this formalism is the natural way torsion couples to angular

momentum in the dynamics.
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D. Gauge theory of diffeomorphism

The simpler framework for gravity, based on the external diffeomorphism as gauge group is

introduced first.

1. Covariant derivative

The affine structure is defined by the connection Γµ, a 4 × 4 matrix valued vector field with

64 independent components. We shall use the notation (Γρ)
µ
ν = Γµ

νρ for the components of the

connection. The covariant derivative,

Dνv
µ = ∂νv

µ + Γµ
ρνv

ρ, (88)

detects the ’real’, physical changes of a vector field by projecting out the changes of the vector

components arising from the changing conventions. By suppressing the indices in Eq. (88) we have

for contravariant vectors

(Dνv)
µ = (∂νv + Γνv)

µ. (89)

The metric structure is behind the reduplication of the vectors and suggests the definition

(Dνv)µ = (∂νv − vΓν)µ (90)

for covariant vector field. The reason is that this definition allows us the contraction of indices

within the covariant derivative and to recover the equivalence of the covariant and the partial

derivatives for scalar fields,

Dµ(uνv
ν) = (∂µu− uΓµ)νv

ν + uν(∂µv + Γµv)
ν = ∂µ(uνv

ν) (91)

The action of the covariant derivative is extended over any tensor field by performing the necessary

compensation on each vector index, eg.

Dνv
µ
ρ = ∂νv

µ
ρ + Γµ

κνv
κ
ρ − vµκΓκ

ρν . (92)

It is easy to check that such an extension reproduces Leibnitz’s rule,

Dµ(u
ρvσ) = (Dµu

ρ)vσ + uρDµ(v
σ). (93)

Notice that a coordinate transformation x→ x′(x) induces the change

Γµ
νρ → Γ′µ

νρ =
∂xσ

∂x′ρ
ωµ

κ(δ
κ
λ∂σ + Γκ

λσ)(ω
−1)λν . (94)
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according to the transformation rule (44) and the application of the second equation in (78) to the

connection as a four-vector. The expressions ωµ
κ = ∂x′µ

∂xκ and (ω−1)µκ = ∂xµ

∂x′κ allow us to write

Γµ
νρ →

∂xσ

∂x′ρ
∂x′µ

∂xκ
∂2xκ

∂x′ν∂xσ
+
∂xσ

∂x′ρ
∂x′µ

∂xκ
Γκ

λσ

∂xλ

∂x′ν

=
∂x′µ

∂xκ
∂2xκ

∂x′ν∂x′ρ
+
∂xσ

∂x′ρ
∂x′µ

∂xκ
Γκ

λσ

∂xλ

∂x′ν
, (95)

showing that the affine connection is not a tensor due to the inhomogeneous term in the gauge

transformation (44), the first term on the right hand side of (95). But the antisymmetric part in

the covariant indices, called torsion,

Sρ
νµ =

1

2
(Γρ

µν − Γρ
νµ). (96)

is a tensor. The form (42) of the gauge transformation is sometime useful,

Γµ
νρ → Γ′µ

νρ = − ∂x
σ

∂x′ρ
∂σω

µ
κδ

κ
λ(ω

−1)λν +
∂xσ

∂x′ρ
ωµ

κΓ
κ
λσ(ω

−1)λν

= − ∂x
κ

∂x′ν
∂2x′µ

∂xκ∂xσ
∂xσ

∂x′ρ
+
∂xσ

∂x′ρ
∂x′µ

∂xκ
Γκ

λσ

∂xλ

∂x′ν
. (97)

It is advantageous to use harmonic gauge, defined by

Γρ = gµνΓρ
µν = 0 (98)

for solving the equations of motion. The name comes from the equation

�xµ = gρνDρDνx
µ = gνρDρ∂νx

µ = −Γµ (99)

where the second equation holds because xµ is a scalar field for a given value of µ, stating that the

coordinates are harmonic functions. Eq. (97) leads to the transformation rule

Γµ → g′νρΓ′µ
νρ = gτσ

∂x′ν

∂xτ
∂x′ρ

∂xσ

(

− ∂x
κ

∂x′ν
∂2x′µ

∂xκ∂xσ
∂xσ

∂x′ρ
+
∂xσ

∂x′ρ
∂x′µ

∂xκ
Γκ

λσ

∂xλ

∂x′ν

)

= −gτσ ∂2x′µ

∂xτ∂xσ
+
∂xµ

∂x′κ
Γκ (100)

which gives the equation

gτσ
∂2x′µ

∂xτ∂xσ
=
∂xµ

∂x′κ
Γκ. (101)

The harmonic gauge can always be reached by solving this equation for x′µ(x) when the field Γκ

is given.

The Equivalence Principle can be rephrased in a mathematical form. Let us first consider a

gauge theory where the gauge field transforms according to eq. (44). It is easy to see that the
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gauge transformation, ω(x) = e(x
µ−xµ

0 )Aµ(x0), defined by the help of a given, fixed space-time point,

x0, yields

Aω
µ(x) = ω(x)(∂µ +Aµ(x))ω

−1(x)

= [11 + (xµ − xµ0 )Aµ(x0)](∂µ +Aµ(x))[11 − (xµ − xµ0 )Aµ(x0)] +O
(
(x− x0)2

)

= O (x− x0) . (102)

In other words, the gauge field can be eliminated at x0 by means of a suitable gauge transformation,

rendering the covariant derivative locally equivalent with the partial derivative, and leaving only its

space-time derivatives non-vanishing. In case of gravity the internal and external spaces are related

and we first perform linear change of coordinates in such a manner that the metric tensor assumes

its Minkowski form at x0. After that we make a further nonlinear coordinate transformation,

x→ x′, given by

xµ − xµ0 = x′µ − x′µ0 −
1

2
Γµ

νρ(x0)(x
′ν − x′ν0 )(x′ρ − x′ρ0 ) (103)

where

∂xκ

∂x′µ
= δκµ −

1

2
Γκ

µρ(x0)(x
′ρ − x′ρ0 )−

1

2
Γκ

νµ(x0)(x
′ν − x′ν0 ), (104)

and in particular

∂xκ

∂x′µ |x′=x′
0

= δκµ. (105)

The transformation rule of the affine connection,

Γ′µ
νρ(x

′) = −∂x
′µ

∂xκ
Γκ

νρ(x0) +
∂xσ

∂x′ρ
∂x′µ

∂xκ
Γκ

λσ(x)
∂xλ

∂x′ν
, (106)

gives at x = x0

Γ′µ
νρ(x

′
0) = −Γµ

νρ(x0) + Γµ
νρ(x0) = 0. (107)

In other words, the metric tensor can be brought into its flat space-time form and the affine con-

nection can be made vanishing at any fixed space-time point by the use of appropriate coordinates.

Such an elimination of the non-trivial geometry of the space time is a local feature because the

second derivatives of the metric tensor and the first derivatives of the affine connection remain

non-trivial in any coordinate system.



32

2. Lie derivative

The Lie derivative, the covariant derivative, generated by space-time diffeomorphism, gives the

change of a field φ(x) during a space-time diffeomorphism xµ → xµ − wµ(x) expressed in the

coordinate basis at x. The field is symmetric under such a diffeomorphism if its Lie derivative is

vanishing.

Let us consider for the sake of simplicity a vector field uν(x). Its Lie derivative with respect to

the diffeomorphism w(x) is the sum of two terms. The first is the change u→ u(x+ w), induced

by the coordinate transformation, wν∂νu
µ. The other contribution comes from the transformation

of the vector u(x + w) into the basis at x. The corresponding transformation (79) contains the

matrix ωµ
ν = δµν − ∂νwµ. The Lie derivative is therefore

∇wu
µ = wν∂νu

µ − ∂νwµuν . (108)

The form

∇wu
µ = wνDνu

µ − uνDνw
µ + 2Sµ

ρνu
ρwν (109)

shows that the Lie derivative of vector field is a covariant vector field. The Lie derivative of a scalar

is given by the partial derivative, ∇wφ = wν∂νφ and the generalization of (109) for covariant vectors

and tensors is straightforward, eg.

∇wu
µ
κ = wν∂νu

µ
κ − ∂νwµuνκ + ∂κw

νuµν

= wνDνu
µ
κ − uνκDνw

µ + uµνDκw
ν + 2Sµ

ρνu
ρ
κw

ν + 2Sρ
κνu

µ
ρw

ν . (110)

3. Field strength tensor

The GL(4) field strength tensor is

Fµν = [Dµ,Dν ] = [∂µ + Γµ, ∂ν + Γν ] = ∂µΓν − ∂νΓµ + [Γµ,Γν ] (111)

which is antisymmetric in the space-time indices,

Fµν = −Fνµ. (112)

The field strength tensor is called the curvature tensor and reads

Rµ
νρσ = (Fρσ)

µ
ν = ∂ρΓ

µ
νσ − ∂σΓµ

νρ + Γµ
κρΓ

κ
νσ − Γµ

κσΓ
κ
νρ (113)
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with all indices shown. According to the remark, made after Eq. (61) the vanishing of the curvature

tensor is equivalent with the absence of gravitational forces in a space-time without boundary.

A useful identity for the curvature tensor obtained from symmetrical connection is

Rρ
κµν +Rρ

µνκ +Rρ
νκµ = 0. (114)

An important relation for the curvature tensor follows from the Bianchi identity for commuta-

tors,

0 = [A, [B,C]] + [B, [C,A]] + [C, [A,B]], (115)

which yields

0 = [Dµ, [Dν ,Dρ]] + [Dν , [Dρ,Dµ]] + [Dρ, [Dµ,Dν ]]

= [Dµ, Fνρ] + [Dν , Fρµ] + [Dρ, Fµν ]

= DµFνρ +DνFρµ +DρFµν , (116)

or

0 = DµR
σ
κνρ +DνR

σ
κρµ +DρR

σ
κµν , (117)

by writing all indices explicitly.

The Lagrangian of a gauge field is usually a quadratic expression of the the field strength

tensor, trFµνF
µν . The distinguished feature of gravity is that its internal space, the tangent space

of external space, is related to the space-time. This feature allows us to contract internal index

with external one and to construct invariant expressions which are linear in the field strength. We

may make three different contractions, the Ricci tensors, defined as

Rνσ = Rρ
νρσ

= ∂ρΓ
ρ
νσ − ∂σΓρ

νρ + Γρ
κρΓ

κ
νσ − Γρ

κσΓ
κ
νρ (118)

Rρ
νσρ = −Rνσ, and

R′
ρσ = Rµ

µρσ

= ∂ρΓ
µ
µσ − ∂σΓµ

µρ + Γµ
κρΓ

κ
µσ − Γµ

κσΓ
κ
µρ

= ∂ρΓ
µ
µσ − ∂σΓµ

µρ. (119)

We have relied so far the GL(4) gauge field only. The other independent field variable, the

metric tensor can be used to construct the scalar curvatures, R = gµνRµν and R′ = gµνR′
µν . The
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scalar curvature is actually trivial, R′ = 0, because R′
µν is antisymmetric and its contraction with

the symmetric gµν is vanishing. Note that the curvature tensor is different in the presence of torsion

and R′ becomes non-trivial.

E. Metric admissibility

The metric and the affine properties are in principle independent as are the metric tensor,

gµν(x), and the affine connection, Γµ
νρ. A natural relation can be established between the affine

connection and the metric by following a geometric argument. This argument will be replaced by

a variational equation later, when the Einstein equation is derived by the variational principle.

The geometric argument goes as follows. Let us consider two vector fields, uµ(x) and vµ(x),

which are parallel transported along a path γ(s),

γ̇(s)Dµu = γ̇(s)Dµv = 0. (120)

The connection between the symmetric part of the affine connection, { ρ
µν} = 1

2(Γ
ρ
νµ + Γρ

µν), called

Christoffel symbol and the metric structure is achieved by imposing the condition that the scalar

product of parallel transported vectors is preserved,

γ̇(s)Dµu
νgνρv

ρ = uνvργ̇(s)Dµgνρ = 0 (121)

which amounts to the covariant equation,

Dg = 0, (122)

the metric admissibility condition which fixes the torsion free affine connection. In order to find a

more explicit form we write down this equation with all indices shown together with the relations

obtained by performing cyclic permutations on the indices,

Dρgµν = ∂ρgµν − gκνΓκ
µρ − gµκΓκ

νρ

Dµgνρ = ∂µgνρ − gκρΓκ
νµ − gνκΓκ

ρµ

Dνgρµ = ∂νgρµ − gκµΓκ
ρν − gρκΓκ

µν . (123)

By taking the sum of the last two equations minus the first one arrives at

Γρµν + Γρνµ = ∂µgνρ + ∂νgρµ − ∂ρgµν (124)

with Γρµν = gρκΓ
κ
µν and the relation

{
ρ
µν

}
=

1

2
gρσ(∂µgνσ + ∂νgσµ − ∂σgµν). (125)
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The antisymmetric part of the affine connection, the torsion tensor is left free after imposing the

metric admissibility condition.

The curvature tensor, given in terms of the metric, occurs frequently in applications. We have

Rρκνµ = gρλ

[

Γλ
κµ,ν + Γλ

σνΓ
σ
κµ − (µ ⇐⇒ ν)

]

=
1

2
gρλ

{

[

g
λσ(gσκ,µ + gµσ,κ − gκµ,σ)

]

,ν
+ Γλ

σνΓ
σ
κµ − (µ ⇐⇒ ν)

}

=
1

2
gρλg

λσ
,ν (gσκ,µ + gµσ,κ − gκµ,σ) +

1

2
(gµρ,κν − gκµ,ρν) + gρλΓ

λ
σνΓ

σ
κµ − (µ ⇐⇒ ν) (126)

where the notation f,µ = ∂µf is used.The relation

gρλg
λσ
,ν = −g

λσ
gρλ,ν = −g

λσ(Γνρλ + Γνλρ) (127)

allows us to write

Rρκνµ = −
1

2
g
λσ(Γνρλ + Γνλρ)(gσκ,µ + gµσ,κ − gκµ,σ) +

1

2
(gµρ,κν − gκµ,ρν) + gρλΓ

λ
σνΓ

σ
κµ

−(µ ⇐⇒ ν)

= −Γλ
κµ(Γνρλ + Γνλρ) +

1

2
(gµρ,κν − gκµ,ρν) + gρλΓ

λ
σνΓ

σ
κµ − (µ ⇐⇒ ν)

=
1

2
(gµρ,κν − gνρ,κµ − gκµ,ρν + gκν,ρµ)− gσλΓ

λ
κµΓ

σ
ρν − gσρΓ

λ
κµΓ

σ
λν + gρλΓ

λ
σνΓ

σ
κµ

+gσλΓ
λ
κνΓ

σ
ρµ + gσρΓ

λ
κνΓ

σ
λµ − gρλΓ

λ
σµΓ

σ
κν

=
1

2
(gµρ,κν − gνρ,κµ − gκµ,ρν + gκν,ρµ)− gσλΓ

λ
κµΓ

σ
ρν + gσλΓ

λ
κνΓ

σ
ρµ. (128)

Let us consider a two-dimensional sphere as a simple example. The invariant length ds2 =

r2(dθ2 + sin2 θdφ2) gives the metric tensor

gµν = r2




1 0

0 sin2 θ



 , gµν =
1

r2




1 0

0 1
sin2 θ



 . (129)

The non-vanishing matrix elements of the Christoffel symbol,
{

θ
φφ

}

= − sin θ cos θ,
{

φ
θφ

}

=
{

φ
φθ

}

=

− cot θ, give rise

Rθ
φθφ = ∂θ

{
θ
φφ

}

− ∂φ
{

θ
θφ

}

+
{

θ
θµ

}{
µ
φφ

}

−
{

θ
φµ

}{
µ
θφ

}

= −∂θ sin θ cos θ + sin θ cos θ cot θ = sin2 θ (130)

and Rφ
θθφ = gφφRφθθφ = −gφφRθφθφ = −gφφgθθRθ

φθφ = −1. The Ricci tensor is diagonal, Rθθ = 1,

Rφφ = sin2 θ and the scalar curvature is R = 2
r2
.

The symmetries of the curvature tensor in addition to (112) and (114) in the metric admissible

case are

Rρκµν = −Rκρµν = Rµνρκ (131)

and the number of independent components is 256→ 20. We note that the curvature is vanishing

for flat space only.
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The contraction of two indices in the Bianchi-identity (117) gives

0 = DµRκρ +DνR
ν
κρµ −DρRκµ. (132)

A further contraction of indices κ and µ by means of the metric tensor gives for the metric admissible

curvature tensor

0 = 2DµR
µ
ρ −DρR (133)

which expresses the covariant conservation law for the Einstein tensor

Gµν = Rµν −
1

2
gµνR, (134)

as

DµG
µ
ν = 0. (135)

Einstein’s original argument to establish the equation of motion for the space time geometry

was based on a trial and error method of finding a covariant equation whose source term is the

energy-momentum tensor,

Xµν = T µν . (136)

Due to the conservation law, DµT
µν = 0, we have DµX

µν = 0. Since Xµν is expected to be linear

in the curvature tensor the choice X = κG, κ being a constant, is a natural one.

The metric admissibility simplifies the condition, expressing the invariance of the metric tensor

under space-time diffeomorphism. In fact, the vanishing of the Lie derivative of the metric tensor,

0 = ∇wgµν = wκ∂κgµν + ∂µw
κgκν + ∂νw

κgµκ

= Dµwν +Dνwµ + 2Sρ
νκgρµw

κ (137)

and the diffeomorphism wµ(x), satisfying this condition for a given metric tensor is called Killing

field, representing a symmetry of the metric in question.

F. Invariant integral

Two problems still have to addressed before embarking the variational equations of General

Relativity. One is the integral measure in the action,

S =

∫

d4xL. (138)
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In the case of relativistic field theories in flat space-time the Lorentz invariance of the action

is realized by using Lorentz invariant Lagrangian, L, and integration measure, d4x. The gauge

invariance of the action is assured in a similar manner, by the gauge invariance of the action

(non-trivial) and the integral measure (trivial). The gauge invariance in General Relativity is the

invariance under (non-linear) change of coordinates. The integral measure d4x is obviously non-

invariant. Hence we have to find an integral measure which remains invariant under the change

of coordinates. The other problem to settle is presented by the modified form of the continuity

equation in gauge theory. The usual continuity equation in flat space-time, ∂µj
µ = 0 is replaced

by the covariant equation, Dµj
µ = 0 in General Relativity. The affine connection, appearing in

the covariant derivative, prevent us to arrive at the balance equation, expressing the change of

the charge, enclosed in a given volume as a surface integral on the boundary of the volume. We

shall see that this latter problem disappears when the invariant integral measure is used in the

space-time.

The metric tensor transforms as

gµν =
∂x′ρ

∂xµ
∂x′σ

∂xν
g′ρσ (139)

during the coordinate change xµ → x′µ and its determinant, g = det gµν , changes as

g = g′
(

det
∂x′

∂x

)2

(140)

showing that the integral measure

dinvx = dx
√−g → dx′ det

∂x

∂x′

√

−g′ det ∂x
′

∂x
(141)

stays invariant. Thus one speaks of scalar, vector and tensor densities constructed by means of the

determinant of the metric tensor as S
√−g, vµ√−g, T µν√−g, etc.

A useful and simple expression can be obtained for the divergence of a vector field in the absence

of torsion by using the equation

δg =
∂g

∂gσµ
δgσµ = ggσµδgσµ (142)

which holds because ggσµ is actually the minor corresponding to the matrix element gσµ. (The

minor MA of an n× n matrix A,

(MA)j,k = (−1)j+kdk,j, (143)

is defined in terms of the determinant dj,k of the n − 1 × n − 1 matrix, obtained by omitting the

j-th row and the k-th column of A. The determinant of A, expanded along the k-th row of A can
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be written as

det[A] =
∑

j

Ak,j(−1)j+kdk,j. (144)

The equation for ℓ 6= j

0 =
∑

j

Ak,j(−1)j+kdℓ,j (145)

expresses the vanishing of the determinant of a matrix whose j-th and ℓ-th rows are identical (When

the determinant is expanded along the ℓ-th row then the matrix element Aℓ,j enters only as the

coefficient of the sub-determinant dℓ,j. Thus this equation can be interpreted as the determinant

of a matrix whose ℓ-th row is Ak,j, the same as the k-th row.) Eqs. (144) and (145) can be

summarized by the expression

A−1 =
MA

det[A]
(146)

for the inverse matrix. Finally, eq. (142) follows from

∂ det[A]

∂Ak,j
= (−1)j+kdk,j = (MA)j,k (147)

and (146) for the symmetric metric tensor.)

Eq. (142) gives ∂νg = ggσµ∂νgσµ allows us to write

Γµ
νµ =

1

2
gσµ(∂νgσµ + ∂µgνσ − ∂σgνµ) =

1

2
gσµ∂νgσµ =

∂νg

2g
=
∂ν
√−g√−g . (148)

The Gauss’ theorem can finally be obtained for the divergence

Dµv
µ = ∂µv

µ + Γµ
νµv

ν = ∂µv
µ +

∂µ
√−g√−g vµ =

1√−g∂µ(
√−gvµ) (149)

as

∫

dx
√−gDµv

µ =

∫

dx∂µ(
√−gvµ) =

∫

dsµ
√−gvµ. (150)

A particularly useful application of this relation is for covariantly conserved currents, Dµj
µ =

0 which yield ordinarily conserved current density, ∂µ(
√−gjµ) = 0 and conserved charge Q =

∫
d3x
√−gj0.

Metric admissibility renders the definition of the D’Alambertian unique. In fact, we find

DµD
µ = gµνDµDν = Dµg

µνDν = DµDνg
µν , (151)
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and its action on a scalar is particularly simple,

DµD
µφ = Dµ∂

µφ =
1√−g∂µ(

√−g∂µφ) (152)

As an example consider a d-dimensional Euclidean space, parametrized by polar coordinates,

xj =





















r

r cosφ1

r sinφ1 cosφ2

r sinφ1 sinφ2 cosφ3

...

r sinφ1 · · · sinφn−2 cosφn−1

r sinφ1 · · · sinφn−2 sinφn−1





















, (153)

0 ≤ φj ≤ π, j = 1, . . . , d− 2, 0 ≤ φd−1 ≤ 2π where the metric tensor is of the form

gjk = r2




1 0

0 gSd−1



 . (154)

and

D2 =
1

rd−1
∂rr

d−1∂r +
1

r2
D2

Sd−1 . (155)

Another example, the Laplace operator on the two-sphere with metric (129) is

∆S2 =
1

r2

[
1

sin θ
∂θ sin θ∂θ +

1

sin2 θ
∂2φ

]

. (156)

The relation between the affine connection and the metric tensor, the metric admissibility, was

imposed as a reasonable assumption. We shall see below that General Relativity supports this

relation and the metric admissibility will be the result of the equation of motion for the affine

connection.

G. Dynamics

The equations of motion of Einstein’s general relativity can be obtained as the Euler-Lagrange

equations of the Einstein action

SE = − 1

16πG

∫

dx
√−g(R+ 2Λ) = − 1

16πG

∫

dx
√−g(gµνRµν + 2Λ) (157)
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with G and Λ being the gravitational and the cosmological constants. The action is considered as

the functional of the independent field variables g and Γ. The metric admissibility will be derived

rather than assumed.

The affine connection is not a tensor and it will be advantageous to use tensor fields as inde-

pendent variables. Thus we separate the Christoffel symbol from the affine connection by writing

Γρ
µν =

{
ρ
µν

}
+ Cρ

µν (158)

and consider Cρ
µν , a tensor, rather than the whole Γρ

µν as the independent variable controlling the

affine structure.

Notice the following slight complication about the choice of the independent components of the

metric tensor used for the variational procedure. The variation of the relation δµρ = gµνgνρ gives

0 = δgµνgνρ + gµνδgνρ

δgµν = −gµρgνσδgρσ (159)

thus the metric can not be used in this calculation to change the position of the indices. Instead,

we keep gµν as the independent tensor field for the metric.

A notation which will serve us is the metric admissible covariant derivative,

D̃µv
ν = ∂µv

ν +
{

ν
ρµ

}
vρ (160)

which is independent of the tensor field Cρ
µν .

We can now write the GL(4) field strength tensor, the Riemann curvature tensor, expressed in

term of the ’background field’ covariant derivative D̃ as

Fµν = [Dµ,Dν ] = [D̃µ + Cµ, D̃ + Cν ]. (161)

The variation when C → C + δC generates

δFµν = [Dµ + δCµ,Dν + δCν ]− [Dµ,Dν ]

= (Dµ + δCµ)(Dν + δCν)− (Dν + δCν)(Dµ + δCµ)−DµDν +DνDµ

= DµδCν + δCµDν −DνδCµ − δCνDµ +O
(
δC2

)

= (DµδCν)− (DνδCµ) +O
(
δC2

)
(162)

which gives

δRµ
νρσ = DρδC

µ
νσ −DσδC

µ
νρ (163)
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when the indices are written explicitly and

δRνσ = DρδC
ρ
νσ −DσδC

ρ
νρ. (164)

The variation of the curvature scalar, gνσδRνσ is a sum of terms which are proportional to δC

or ∂δC. It is a scalar therefore the terms proportional to ∂δC can be extended the replacement

∂δC → D̃δC by the expense of modifying the terms proportional to δC. The result is the expression

gνσδRνσ = D̃ρv
ρ + δCκ

νρK
νρ

κ , (165)

K being linear in C. The actual calculation

g
νσ

δRνσ = g
νσ(D̃ρδC

ρ
νσ − D̃σδC

ρ
νρ) + C

ρ
κρδC

κ ν
ν − δC

ρ ν
κ C

κ
νρ − δC

ρ
νκC

κν
ρ − C

ρ ν
κ δC

κ
νρ + δC

ρ
κρC

κ ν
ν + δC

ρ
νκC

κ ν
ρ

= D̃ρv
ρ + C

ρ
κρδC

κ ν
ν + δC

ρ
κρC

κ ν
ν − δC

ρ ν
κ C

κ
νρ − δC

ρ
νκC

κν
ρ − C

ρ ν
κ δC

κ
νρ + δC

ρ
νκC

κ ν
ρ

= D̃ρv
ρ + C

ρ
κρδC

κ ν
ν + δC

ρ
κρC

κ ν
ν − δC

κ ρ
ν C

ν
ρκ − δC

κ
νρC

ρν
κ − C

ρ ν
κ δC

κ
νρ + δC

κ
νρC

ρ ν
κ

= D̃ρv
ρ − D̃σ(g

νσ
δC

ρ
νρ) + δC

κ ν
ν C

ρ
κρ + δC

ρ
κρC

κ ν
ν − δC

κ
νρ(C

νρ
κ − C

ρν
κ − C

ρ ν
κ + C

ρ ν
κ )

= D̃ρv
ρ + δC

κ
νρ(g

νρ
C

ρ
κρ + g

κρ
C

ν λ
λ − C

νρ
κ +C

ρν
κ) (166)

yields

v
ρ = g

νσ
δC

ρ
νσ − g

νρ
δC

σ
νσ, (167)

and

K
νρ

κ = g
νρ
C

ρ
κρ + g

κρ
C

ν λ
λ −C

νρ
κ + C

ρν
κ. (168)

After these preparation one can easily calculate the variation of the integrand in the action

δ[
√−g(Rµνg

µν + 2Λ)] = δ
√−g(Rµνg

µν + 2Λ) +
√−gδRµνg

µν +
√−gRµνδg

µν . (169)

The first term contains

δ
√−g = − g

2
√−gg

µνδgµν

= −1

2

√−ggµνgµρgνσδgρσ

= −1

2

√−ggνσδgνσ , (170)

the second is given by Eq. (165) thus we have

δ[
√−g(Rµνg

µν + 2Λ)] = −1

2

√−ggνσδgνσ(R+ 2Λ) +
√−gD̃ρv

ρ +
√−gδCκ

νρK
νρ

κ +
√−gRµνδg

µν

=
√−g

(

Rµν −
1

2
gµνR− Λgµν

)

δgµν +
√−gδCκ

νρK
νρ

κ +
√−gD̃ρv

ρ (171)

The last contribution can be ignored being a surface term which is ignored from the point of view

of the equations of motion. The variation of the affine connection yields K = 0 which gives C = 0,
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the metric admissibility condition for the affine connection. Finally, the variation of the metric

tensor leads to the Einstein equation

Gµν − Λgµν = 0 (172)

in the absence of matter.

IV. COUPLING TO MATTER

After having obtained the Lagrangian and the equations of motion for the gravitation field in

the absence of matter let us turn to the question of introducing matter in our description.

A. Point particle in an external gravitational field

First we consider the simplest problem of the motion of a massive point particle in a fixed

gravitational field, ie. in a fixed geometry where the trajectory, identified by the equation of

motion is the generalization of the straight line of the Minkowskian, flat space-time.

1. Equivalence Principle

The simplest way to find the equation of motion for a point particle is to use the Equivalence

principle. A free particle follows the straight trajectory ξa(s) satisfying the equation of motion

dξ̇a(s)

ds
= 0 (173)

with ξ̇ = dξ
ds in flat space-time, in the absence of gravity. When an external gravitational field is

introduced then the trajectory xµ(s) is not a straight line anymore but the Equivalence Principle

allows us to recover the same equation of motion locally, at a given space-time point, by an

appropriate choice of the coordinate system. Eq. (173) shows that the four velocity, assumed as

a vector field, uµ(x) = ẋµ, filling up a region of the space-time, remains unchanged on the world

line. The unique covariant extension of such a parallel transport on a non-flat geometry is

uνDνu
µ = u̇µ + uρΓµ

ρνu
ν = 0. (174)

Let us now assume that an external, non-gravitational force acts on the particle and Eq. (174)

is replaced by

u̇µ + uρΓµ
ρνu

ν =
Fµ

mc
. (175)
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The form

mcu̇µ = Fµ + Fµ
gr (176)

of this equation with

Fµ
gr = −muµΓµ

ρνu
ν (177)

shows that the gravitational field generates a force Fgr which is linear in the velocities in a manner

similar to the Lorentz force of electrodynamics where

mcẍµ = Fµ + Fµ
ed

Fµ
ed =

e

c
Fµ

νu
ν , (178)

where Fµν = ∂µAν − ∂νAµ is the field strength tensor.

2. Spin precession

It is instructive to generalize this argument for a gyroscope, a point particle with an angular

momentum, spin, given by the four-vector Sµ = (0,S) in the rest-frame. In the absence of external

forces we have time independent spin,

dSµ

ds
= 0. (179)

The covariant generalization for an external gravitational field of the form Sµ = (0,S) of the spin

vector is the equation of motion

Ṡµ + Γµ
ρνS

ρẋν = 0, (180)

together with the auxiliary condition

Sµẋ
µ = 0, (181)

expressing the structure Sµ = (0,S), found in the rest-frame, in a covariant manner.

We furthermore assume that the external force Fext does not exert torque on the system. The

spin will still be conserved, dS/dt = 0, in the co-moving frame which can be reproduced in a

covariant form by requiring that the vector Ṡ be proportional to ẋ,

Ṡ = aẋ. (182)
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The covariant derivative of the orthogonality condition (181) along the world line, 0 = aẋµẋ
µ +

Sµẍ
µ, yields

a = −Sµẍµ = −Sµ
Fµ

mc
. (183)

The covariant generalization of the equation of motion (182),

Ṡµ = −Sν
F ν

mc
ẋµ, (184)

is the Fermi-Walker transport of the spin which reduces to parallel transport in the absence of

external force, F = 0.

3. Variational equation of motion

A direct derivation of the trajectory of a point particle, without referring to the Equivalence

Principle starts with the action of a free massive point particle,

S = −mc
∫ √

ẋµgµν(x)ẋνdτ (185)

where ẋµ = dxµ(τ)/dτ . The corresponding Euler-Lagrange equation,

∂L

∂xρ
− d

dτ

∂L

∂ẋρ
= 0 (186)

containing the terms

∂L

∂xρ
= −mc ẋ

µ∂ρgµν ẋ
ν

2
√
ẋµgµν ẋν

,

∂L

∂ dxρ

dτ

= −mc gρν ẋ
ν

√
ẋµgµν ẋν

, (187)

reads

0 = − ẋµ∂ρgµν ẋ
ν

2
√
ẋµgµν ẋν

+
d

dτ

gρν ẋ
ν

√
ẋµgµν ẋν

=
1

√
ẋµgµν ẋν

[

−1

2
ẋµ∂ρgµν ẋ

ν + ẋκ∂κgρν ẋ
ν + gρν ẍ

ν + gρν ẋ
ν d

dτ

1
√

ẋµgµλẋλ

]

(188)

We symmetrize in the indices κ and ν the factor ∂κgρν in the second term of the last line and find

0 = −1

2
ẋµ∂ρgµν ẋ

ν +
1

2
ẋκ(∂κgρν + ∂νgρκ)ẋ

ν + gρν ẍ
ν + gρν

dxν

dτ

d

dτ

1
√

ẋµgµλẋλ

= gρσ(ẍ
σ + Γσ

νκẋ
ν ẋκ + ẋσ ḟ) (189)

with f(τ) = 1/
√

ẋµgµλẋλ. This equation assumes the simplest form (174) when f(τ) is constant,

ie. τ = s, the invariant length of the world line and its solution is called geodesic. For τ 6= s the

term, proportional to ḟ adjusts the length of the four-velocity without changing its direction.
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4. Geodesic deviation

The dynamics of an infinitesimal deviation from a solution of the Newton equation of a particle

moving in a given potential is that of a harmonic oscillator with time dependent frequency. In fact,

let us consider a trajectory ξ(t) which obeys the equation of motion, mξ̈j = −∇jU and consider a

neighboring trajectory ξ(t) + δξ(t). The infinitesimal shift δx satisfies the linear, time dependent

equation mδξ̈j = −δξk∇k∇jU .

The generalization of the equation of motion of infinitesimal deviation δξµ from a geodesic

consists of a straightforward linearization of (174) in the deformation. But the result is easier to

find by embedding our world line and its deformed partner into a family of world lines, solutions

of Eq. (174) which fill up the space-time in the vicinity of our observation point and using a

curve γµ(τ) which crosses our world line and its deformed partner. The integral curves of the

four-velocity vector field, u(x) = d
dsξ(x) = ξ̇(x), are the world lines, hence d

dsφ = uνDνφ = φ̇ holds

for any field φ(x).

Let us consider the surface in the space-time which is swept through by the world lines which

cross γ and use the coordinates s and τ to identify its points ξµ(s, τ). The coordinate basis vector

fields, u = ∂sξ(s, τ), v = ∂τ ξ(s, τ) are holonomic, ∂sv = ∂τu according to Eq. (84), and we have

uνDνv
µ = vνDνu

µ. (190)

Let us calculate finally the acceleration of the deformation δξ = ǫ∂τξ = ǫv,

v̈ = uµDµ(u
νDνv) (191)

Two successive applications of the holonomy condition give

v̈ = uµDµ(v
νDνu)

= uµ(Dµv
ν)Dνu+ uµvνDµDνu

= vµ(Dµu
ν)Dνu+ uµvν [Dµ,Dν ]u+ uµvνDνDµu

= vµ(Dµu
ν)Dνu+ uµvν [Dµ,Dν ]u+ vνDν(u

µDµu)− vν(Dνu
µ)Dµu

= uµvν [Dµ,Dν ]u+ vνDν(u
µDµu) (192)

The four-acceleration of the world lines is vanishing, therefore

v̈ρ = Rρ
κµνu

κuµvν , (193)

the acceleration satisfies a linear equation whose coefficient matrix depends is a quadratic function

of the four-velocity.
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It is instructive to see what happens in electrodynamics where we may start with the the

equation of motion, (178), written for the deformed world line x+ δx is

mc(ẍµ + δẍµ) =
e

c
Fµ

ν(x+ δx)(ẋν + δẋν). (194)

The linearization in the deformation δx yields immediately

mcδẍµ =
e

c
δxρ∂ρF

µ
ν ẋ

ν +
e

c
Fµ

νδẋ
ν . (195)

This equation can be obtained from Eq. (192) by first making the replacement Dµ → ∂µ,

mcv̈ = vν∂ν u̇, (196)

followed by the use of the equation of motion, Eq. (178),

mcv̈µ =
e

c
vν∂νF

µ
ρu

ρ +
e

c
Fµ

ρv
ν∂νu

ρ. (197)

Eq. (195) follows by noting vν∂νu
ρ = δxν∂ν ẋ

ρ = δτ∂τ∂sx
ρ = ∂s(δτ∂τx

ρ) = δẋν .

5. Newtonian limit

It is instructive to consider the Newtonian limit where the static gravitational field is weak and

the motion of the test particle is slow by writing

gµν = ηµν + γµν (198)

and assuming that γ is an infinitesimal tensor. The slow motion of the test particle leads to

dxµ

ds ≈ (1, 0, 0, 0) which together with gµν = ηµν − γµν gives

ẍµ ≈ −Γµ
00 =

1

2

∂γ00
∂xµ

, (199)

or

ẍ = −∇φ (200)

where the static Newtonian potential is

φ =
γ00
2
. (201)
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B. Interacting matter-gravity system

The variation of the the Einstein action SE with respect to the metric tensor leads to the

vacuum Einstein equation, Eq. (172). When matter is included then the action becomes the sum

of the gravitational and the matter actions,

S = SE + SM . (202)

Therefore the matter contribution to the Einstein equation will be given by the expression

Gµν − Λgµν = 8πGMµν(x) (203)

with

Mµν(x) =
2√−g

δSM
δgµν(x)

(204)

The source of the gravitational interaction is the mass. According to special relativity this

corresponds to energy and covariance makes the whole energy-momentum tensor as the source.

Thus one expects that the quantity (204) is proportional to the energy momentum tensor. But

the Einstein equation (203) then expresses the vanishing of the full energy-momentum tensor. The

vanishing of the total energy-momentum tensor is understandable because this latter is defined by

carrying out space-time translations, an operation which becomes ill-defined without a background

space-time.

A nontrivial condition, satisfied by the Einstein equation in the presence of matter is Eq. (135),

amounts to the energy-momentum conservation, DµM
µ
ν = 0, for any theory with action of the

form (202). Hence the energy-momentum of the matter and the gravitation field are conserved

separately. It is remarkable is that the gravity-matter interaction does not violate the conservation

of the matter energy-momentum and the energy-momentum density and flux, the matrix elements

of the energy-momentum tensor, are identical for the gravity and mater, except their sign.

We review briefly the energy-momentum tensor of a system of point particles, ideal fluid and a

scalar field.

1. Point particle

Let us suppose that we have a particle of mass m moving along the world lines xµ. The action

is

SM = −mc
∫

ds
√

ẋµgµν ẋν (205)
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whose variation

δSM = −1

2
mc

∫

ds
ẋµδgµν ẋ

µ

√
ẋµgµν ẋν

= −1

2
mc

∫

dsẋµẋνδgµν

= −1

2

∫

dx

∫

ds
pµ(s(t))pν(s(t))

mc
δ(x− x(s))δgµν(x), (206)

where the parameter of the world line is chosen to be the invariant length in the second equation,

after having completed the variation. The definition (204) yields

√−gMµν(x) =

∫

ds
pµ(s(t))pν(s(t))

mc
δ(x − x(s)). (207)

The density of the four-momentum is

T µ0(t,x) = pµ(s(t))δ(x − x(t)). (208)

The tensor which reduces to this expression is

T µν(x) =
pµ(s(t))pν(s(t))

p0(s(t))
δ(x − x(t)), (209)

and it can be written in a manifestly covariant form as

T µν(x) =

∫

ds
pµ(s(t))pν(s(t))

p0(s(t))
c
dt

ds
δ(x− x(s))

=

∫

ds
pµ(s(t))pν(s(t))

mc
δ(x − x(s)), (210)

establishing
√−gM = T .

2. Ideal fluid

It is worthwhile mentioning that in a more realistic situation one assumes a continuous distri-

bution of matter. For homogeneous and isotropic matter in the rest frame we have

T µν =











ǫ 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p











(211)

which can be written in a covariant manner as

T µν = (p+ ǫ)ẋµẋν − pgµν , (212)
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because the relation ẋµ = (1, 0, 0, 0) holds in the rest frame. For ideal fluid where mean free path

and times are short enough to maintain isotropy we have

T µν(x) = (p(x) + ǫ(x))uµ(x)uν(x)− p(x)gµν , (213)

as the source term to the Einstein equation where uµ(x) = ẋµ(x) is the four-velocity of the fluid

particles at the space-time point x.

3. Classical fields

We consider finally a simple scalar field theory with the action

SM =

∫

dx
√−g

[
1

2
gµν∂µφ(x)∂νφ(x)− V (φ(x))

]

. (214)

The calculation of the variation with respect to the metric tensor is greatly simplified by the fact

that the Lagrangian depends on the metric tensor and not its space-time derivatives,

Mµν =
2√−g

∂
√−g
∂gµν

L+ 2
∂L

∂gµν
. (215)

The use of Eq. (142) which gives gµν as the coefficient of the Lagrangian in the first term and the

relation

∂L

∂gµν
=

1

2
gνκ

∂L

∂∂κφ
∂µφ (216)

establishes the identity of Mµν with the energy-momentum tensor

Tµν =
∂L

∂∂µφ
∂νφ− gµνL, (217)

given by (C41).

V. GRAVITATIONAL RADIATION

A gauge theory has two distinct sectors. One the one hand, there are dynamical degrees of

freedom distributed in space-time in such a manner that they support a retarded or advanced

signal, generated by external charges, like the far or radiation field in electrodynamics. One the

other hand, there are “slave” modes which follow the motion of the external charges in an algebraic

manner, without any non-trivial dynamics, like the near or Coulomb field of electrodynamics. We

turn now to the former and mention few rudimentary features of gravitational radiation.
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Let us start with the state without radiation: the flat Minkowski space-time solves trivially the

Einstein equation. A weak radiation field,

gµν = ηµν + hµν (218)

with |hµν | ≪ 1 should not change the space-time geometry in a fundamental manner, an assumption

which allows to consider General Relativity on the flat background space-time as a relativistic

classical field theory. We shall discuss the plane wave solutions of the linearized Einstein equation

in what follows.

A. Linearization

We have up to O (h)

Γρ
µν =

1

2
ηρσ(∂µhνσ + ∂νhσµ − ∂σhµν) =

1

2
(∂µh

ρ
ν + ∂νh

ρ
µ − ∂ρhµν),

Rµ
νρσ = ∂ρΓ

µ
νσ − ∂σΓµ

νρ =
1

2
∂ρ(∂νh

µ
σ + ∂σh

µ
ν − ∂µhνσ)− (ρ↔ σ),

Rνσ =
1

2
∂µ(∂νh

µ
σ + ∂σh

µ
ν − ∂µhνσ)−

1

2
∂σ(∂νh

µ
µ + ∂µh

µ
ν − ∂µhνµ)

=
1

2
(∂ν∂µh

µ
σ + ∂σ∂µh

µ
ν −�hνσ − ∂σ∂νh),

R = ∂ν∂µh
µν −�h, (219)

where the indices are raised and lowered by ηµν and ηµν , respectively as in an ordinary relativistic

field theory and h = hµµ.

A GL(4) gauge transformation, an external diffeomorphism xµ → xµ + ξµ(x) induces

hµν → h′µν = hµν + ∂µξν + ∂νξµ. (220)

The linearization in hµν suppresses the commutator of the field strength tensor in the third equation

which now looks as an Abelian field strength. As a result our expression for the Riemann, Ricci

and the Einstein tensors, as well as the scalar curvature are gauge invariant.

We shall use harmonic gauge (98) where

∂νhµν =
1

2
∂µh. (221)

This condition is satisfied after the gauge transformation which solves

�ξν =
1

2
∂νh− ∂ρhρν (222)
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since

∂

∂x′ν
h′νµ = ∂ν(hµν + ∂µξν + ∂νξµ) = ∂νhµν + ∂ν∂µξν +

1

2
∂µh− ∂ρhρµ =

1

2
∂µh+ ∂µ∂

νξν =
1

2

∂

∂x′µ
h′.

(223)

Note that the harmonic gauge condition is preserved by further gauge transformations which cor-

respond to harmonic functions, �ξµ = 0.

B. Wave equation

The linearized Einstein equation, (203),

1

2
(∂ν∂µh

µ
σ + ∂σ∂µh

µ
ν −�hνσ − ∂σ∂νh− ηνσ∂ρ∂µhµρ + ηνσ�h)− Λhνσ = 8πGTνσ (224)

contains the O
(
h0
)
, Minkowski energy-momentum tensor because h = O (G). The wave equation

reads in harmonic gauge as

�hνσ −
1

2
ηνσ�h+ 2Λhνσ = −16πGTνσ . (225)

The equations simplify when expressed in terms of

h̄µν = hµν −
1

2
ηµνh (226)

where h̄µµ = h̄ = −h because the gauge condition and the Einstein equation are

∂ν h̄
ν
µ = 0, (227)

and

�h̄νσ + Λ(2h̄νσ − ηνσh̄) = −16πGTνσ , (228)

respectively. The cosmological constant, Λ, plays the role of a mass which makes the radiation

field short ranged and will be ignored below. The retarded solution is

h̄νσ(t,x) = 4G

∫

d3x′
Tνσ(t− |x− x′|)
|x− x′| (229)

which is automatically given in harmonic gauge due to ∂νT
νµ = 0.

C. Plane-waves

The linearized Einstein equation in vacuum is satisfied by plane waves,

h̄µν = eµνe
ikx + e∗µνe

−ikx, (230)
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given in terms of the polarization tensor eµν . The wave vector is light-like, k2 = 0 and the

gravitational wave propagates on the line cone. The symmetric polarization tensor contains 10

parameters but the gauge fixing,

kµeµν = 0 (231)

decreases the number of the independent parameters to 6.

We may perform a further gauge transformation, xµ → xµ + ξµ with �ξµ = 0 without leaving

the harmonic gauge. The choice

ξµ = iaµeikx − ia∗µe−ikx (232)

transforms the polarization tensor into

eµν → e′µν = eµν + kµaν + kνaµ (233)

and leaves 2 independent parameters. Some simplification of the covariant expressions can be

achieved by choosing the longitudinal and transverse component bµ in such a manner that eµµ →
eµµ + 2kµaµ = 0 and eµ0 → eµ0 + kµa0 + k0aµ = 0, respectively.

It is instructive to compare this situation with electrodynamics in Lorentz gauge, ∂µAµ = 0,

where the plane waves satisfy the wave equation �Aµ = 0. The solution

Aµ(x) = eµe
ikx + e∗µe

−ikx, (234)

k2 = 0, has 4 independent parameters in the polarization vector eµ and this number is reduced

to 3 by the gauge condition, kµeµ = 0. The gauge transformation, Aµ → Aµ + ∂µφ, performed

by a harmonic function �φ = 0 leaves the Lorentz gauge condition unchanged and the choice

φ(x) = iaeikx − ia∗e−ikx transforms the polarization vector, eµ → eµ − akµ, and can be used to

reduce the free parameters to 2.

D. Polarization

Let us now consider a simple application, the effect of a gravitational plane wave on the motion

of point particles, namely the equation of motion for the deformation of the geodesics, discussed

in Section IVA4. We assume stationary unperturbed particles, uµ = (1,0)+O (h), v = O (h) and

write Eq. (193) as

∂20v
ρ = Rρ

00νv
ν =

1

2
∂20h

ρ
νv

ν , (235)
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where we used hµ0 = 0 in the second equation. The gauge condition (231) shows that the deforma-

tion is transverse, kµv
µ = 0. Since uµv

µ = 0 the deformation is transverse in the spatial directions,

as well, kv = 0, with kµ = (k0,k) and vµ = (0,v).

We shall use coordinates where kµ = (k, 0, 0, k). We know that (i) kµeµν = 0, (ii) eµµ = 0 and

(iii) e0ν = 0. The equations (i) and (iii) imply e3ν = 0, leaving ejk 6= 0 for j, k = 1, 2 only. Due to

(ii) the symmetric matrix eµν is traceless, leaving two independent components, e11 = −e22 and

e12 = e21. When e12 = 0 one finds

∂20v
j = −1

2
k02(e11e

ikx + e∗11e
−ikx)ǫjkvk, (236)

yielding the solution



v1(x)

v2(x)



 =




[1 + 1

2(e11e
ikx + e∗11e

−ikx)]v1(0,x)

[1− 1
2(e11e

ikx + e∗11e
−ikx)]v2(0,x)



 . (237)

A ring of particle in the (1, 2) plane oscillates horizontally and vertically, as shown in Fig. 3 (a).

For e11 = 0 we have

∂20v
1
2 = −1

2
k02(e12e

ikx + e∗12e
−ikx)v

2
1, (238)

and



v1(x)

v2(x)



 =




[1 + 1

2(e12e
ikx + e∗12e

−ikx)]v2(0,x)

[1 + 1
2(e12e

ikx + e∗12e
−ikx)]v1(0,x)



 . (239)

The direction of the deformation of the ring in the (1, 2) plane rotated by π/4 compared to the

previous case as shown in Fig. 3 (b). The direction independent, isotope deformation is due to

the monopole term of the multipole expansion, the deformation along a fixed direction indicate

the presence of the dipole term and these deformations, carried out in two directions belong to the

quadrupole order.

In the case of electrodynamics the plane wave (234) corresponds to the field strength tensor

Fµν = ikµ(eνe
ikx − e∗νe−ikx)− (µ↔ ν), (240)

which gives for Eq. (195)

mcδẍµ =
e

c
{i[kµ(eνeikx − e∗νe−ikx)− kν(eµeikx − e∗µe−ikx)]δẋν

−δxρkρ[kµ(eνeikx + e∗νe
−ikx)− kν(eµeikx + e∗µe−ikx)]ẋν}. (241)

A plane wave, propagating in the spatial 3 direction is polarized in the (1, 2) plane and one finds

deformations, characteristic of dipole field.
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(a)

(b)

FIG. 3: The shape of a circle of particles in the (1, 2) plane as a function of time for (a): e12 = 0 (b):

e12 = 0.

Gravitational radiation is too weak to be seen in a direct manner. But an indirect evidence is

known, the slowing of the PSR1913+16 binary system, pulsar, is consistent with the energy loss,

caused by the power, radiated.

VI. SCHWARZSCHILD SOLUTION

After a short digression into the dynamics of the propagating gravitational field let us now turn

to a simpler problem and inquire about the physical phenomena of the non-propagating, near field

sector. The simplest electrodynamics problem for fixed external charges is that of a point charge

with the solution of the Coulomb force. The analogous problem, the gravitational field created by

a static point mass is the Schwarzschild solution. We use the notation x0 = ct→ t in this section.

A. Metric

The symmetry of the corresponding space-time is time independence and rotational invariance.

The rotational invariance requires that (i) the space-time can be foliated by a family of two-

dimensional surfaces, Σ(t, r) and (ii) that any pair of points of a hyper-surface there is a spatial

rotation bringing one point into the other. The time independence assures that there is a time-like

unit vector field n(x), n2(x) = 1, generating an infinitesimal transformation of the space-time,

xµ → xµ + ǫnµ(x), which leaves the geometry, the metric tensor in particular, invariant. The

spatial rotations generate displacement orthogonal to the time direction defined by the vector field

nµ(x) therefore the most general static, rotational invariant metric is of the form

ds2 = f(r)dt2 −
3∑

j,k=1

xjhjk(r)x
k (242)
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where r =
√
x2, hjk(r) is a three-dimensional, rotational invariant metric. Let us chose the radial

coordinate

r =

√

A

4π
(243)

where A is the time independent area of the surface Σ(t, r) and parameterize this surface by the

polar angle parameters θ and φ, giving

ds2 = f(r)dt2 − h(r)dr2 + r2(dθ2 + sin2 θdφ2). (244)

The non-vanishing Christoffel symbols of this metric are

Γt
rt =

f ′

2f
, Γr

tt =
f ′

2h

Γr
rr =

h′

2h
, Γr

θθ = −
r

h
, Γr

φφ = −r sin
2 θ

h
, Γθ

rθ = Γφ
rφ =

1

r

Γθ
φφ = − sin θ cos θ, Γφ

θφ = cot θ (245)

and the other non-vanishing components can be obtained by exchanging the covariant indices. The

Ricci tensor is diagonal,

Rtt = −f
′′

2h
+
f ′

4h

(
f ′

f
+
h′

h

)

− f ′

rh

Rrr =
f ′′

2f
− f ′

4f

(
f ′

f
+
h′

h

)

− h′

rh

Rθθ = −1 + r

2h

(
f ′

f
− h′

h

)

+
1

h

Rφφ = Rθθ sin
2 θ. (246)

The vacuum Einstein equation for r 6= 0 where R = 0 are

Rtt = Rrr = Rθθ = 0. (247)

Since

0 =
Rtt

f
+
Rrr

h
= − 1

rh

(
f ′

f
+
h′

h

)

(248)

we have

f ′

f
+
h′

h
= 0 (249)

requiring

hf = A, (250)
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A being a constant. The condition that the metric approaches the flat one for r→∞ gives A = 1

and find for the last equation in (247)

0 = rf ′ + f − 1 (251)

or

drf

dr
= 1. (252)

The solution is

f = 1 +
B

r
(253)

where B is a constant. The parametrization B = −2GM/c2 yields the metric

ds2 =
(

1− rs
r

)

dt2 − dr2

1− rs
r

− r2(dθ2 + sin2 θdφ2). (254)

where

rs =
2GM

c2
(255)

is the Schwarzschild-radius (with c 6= 1 restored). It is advantageous to remove the dimension of

the coordinates by the intrinsic scale rs, t→ trs and r→ rrs and write the dimensionless invariant

length square as

ds2 =

(

1− 1

r

)

dt2 − dr2

1− 1
r

− r2(dθ2 + sin2 θdφ2). (256)

Few remarks are in order at this point.

1. The gravitational field is weak for r ≫ 1 and Newton’s gravitational law applies approxi-

mately according to Eq. (201).

2. Consider two stationary observers, two signals are emitted by one at time te1 and te2 from

radius re and received by the other at time tr1 and tr2 and radius rr. The geometry is time

independent hence tr1− te1 = tr2− te2, implying tr2− tr1 = te2− te1. The proper time passed

between the two signals,

∆se =

√

1− 1

re
(te2 − te1), ∆sr =

√

1− 1

rr
(tr2 − tr1), (257)

lead to the redshift

∆se
∆sr

=
νr
νe

=

√
√
√
√

1− 1
re

1− 1
rr

. (258)
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3. The metric shows two singularities, one at the Schwarzschild radius

rs ≈







2.8 M
Msun

km

2.4 M
Mproton

· 10−52 cm

(259)

and another at r = 0. The former turns out to be a singularity of this coordinate system

because the curvature tensor remain regular and can be eliminated by means of appropriately

defined coordinates. The latter is a true singularity.

4. A stationary observer’s four-velocity is ut =
1

√

1− 1
r

, ur = uθ = uφ = 0. Its four-acceleration,

aµ = uνDνu
µ = uν∂νu

µ + Γµ
ρνu

ρuν =
Γµ

tt

1− 1
r

, (260)

has a single non-vanishing component, ar = 1
2r2 = φ′(r) where φ(r) = − 1

2r is the Newto-

nian potential according to Eq. (201), canceling the gravitational force, in agreement with

the Equivalence Principle. But the regularity of the acceleration is misleading because the

physical, gauge invariant acceleration is obtained by multiplying it by
√
grr,

√
−aµgµνaν =

1

2r2
√

1− 1
r

, (261)

and it diverges at r = 1: An extended system, bound by elementary particles is torn into

pieces as it approaches r = 1 from above.

5. Despite the absence of a singularity something dramatic happens at the Schwarzschild radius.

The light cone corresponds to the infinitesimal changes

dt

dr
= ± 1

1− 1
r

, (262)

the light cones have space-dependent orientation which becomes singular at r = 1, the causal

structure changes discontinuously at the Schwarzschild radius. Another pathology is seen

by considering the motion of a massive particle where ds2 > 0. This inequality is consistent

with constant r, the particle can be at rest compared to the Schwarzschild radius if r > 1.

But this is not possible anymore for r < 1 where the role of the time t as a coordinate with

positive unit vector is taken over the the radius r and thereby is forced to change during the

motion.

6. The solution requires that the mass be concentrated at r = 0. For any realistic, non-singular

mass distribution the solution is more complicated in the space region with non-vanishing
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FIG. 4: The light-cone structure of time-like geodesics and an inward (a) and outward (b) massive particle

world line.

mass density. The Schwarzschild-radius is naked and visible only for mass distributions

which are vanishing for r ≥ 1. the numerical values given in Eq. (259) suggest that the

Schwarzschild-radius might be found experimentally in astrophysics rather than in particle

physics.

7. A massive point particle has two characteristic length scales: The Compton wavelength,

λC = ~/mc, denotes the maximal localization the particle can have because its restriction

into a region with shorter size leads to pair creation and the loosing sight of the original

particle. In other words, a point particle is surrounded with a virtual particle-anti particle

cloud of the size λC . The other length scale, the Schwarzschild radius, increases with the

mass and the two scales coincide at m = mP l/
√
2 where mP l =

√

~c/G ∼ 2.1 × 10−5g

denotes the Planck-mass. A point particle which is lighter or heavier than the Planck mass

is surrounded by a cloud of virtual pairs (quantum effect in approximately flat space-time)

or appears as a Schwarzschild sphere (strong gravitational field effect).

8. The solution remains the same when time independence is not assumed at the beginning,

namely the spherically symmetric solutions of the vacuum Einstein equation are static (Kirch-

hoff’s theorem). This holds in the Newtonian theory in an obvious manner since the mass

can be concentrated at the origin for spherically symmetrical field. This theorem excludes

the spherically symmetric s-waves from gravitational radiation field.
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B. Geodesics

Let us consider the motion of a massive particle in the Schwarzschild geometry where the

Lagrangian

L = −mc
√

ẋµgµν(x)ẋν (263)

can be written as

L = −mc
√(

1− 1

r

)

ṫ2 − ṙ2

1− 1
r

− r2(θ̇2 + sin2 θφ̇2). (264)

The motion is always planar, equation of motion for θ,

r2 sin θ cos θφ̇2 =
d

ds
r2θ̇ (265)

is satisfied by θ(s) = π/2, the case considered hereafter. The coordinates t and φ are cyclic therefore

the corresponding generalized momentums are conserved,

− 1

mc

∂L

∂ṫ
=

(

1− 1

r

)

ṫ = E,

1

mc

∂L

∂φ̇
= r2φ̇ = ℓ, (266)

One usually solves the non-relativistic radial equation of motion by exploiting the energy con-

servation. Since the temporal component of the relativistic equation of motion is the energy

conservation such a starting point corresponds to the use of the equation ẋ2 = κ, giving

(

1− 1

r

)

ṫ2 − ṙ2

1− 1
r

− r2φ̇2 = κ. (267)

We set κ = 1 in this calculation of the orbit of a massive object and find the radial equation of

motion

E2 − ṙ2
1− 1

r

− ℓ2

r2
= κ (268)

what we write

ṙ2 + V (r) = E2 (269)

in terms of the effective potential

V (r) =

(

1− 1

r

)(

κ+
ℓ2

r2

)

. (270)
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FIG. 5: The effective potential, (270), as the function of r/rs for ℓ2/r2
s
= 1.5,

√
3, 1.85, 2.0 in increasing

order.

The contribution proportional to κ = 1 is the Newtonian effective potential and the remaining

O
(
r3
)
piece represents relativistic effects.The motion with |E| < 1 is bounded, 0 < r < rmax,

because V (0) = −∞ and V (∞) = 1. The extremes of the potential satisfy the equation

dV (r)

d1
r

= −3 ℓ
2

r2
+ 2

ℓ2

r
− 1 = 0. (271)

The potential is monotonous when ℓ <
√
3 and the particle falls into the center. For ℓ >

√
3 the

potential displays a local maximum at are

rmax =
3

1 +
√

1− 3
ℓ2

, (272)

and a local minimum at

rmin =
3

1−
√

1− 3
ℓ2

, (273)

cf. Fig. 5 and there are stable orbits in certain range of E.

The presence of the O
(
r−3
)
relativistic term in the effective potential (270) violates Kepler’s law

for planetary motion, in particular it induces a perihelion motion. This brought the first decisive

victory for General relativity when Einstein could reproduce the perihelion motion of Mercury,

known since in 1859.

The Euler-Lagrange equation of the Lagrangian of a massive particle, (189), gives a geodesics.

One expects that the world line of a light particle approaches the motion of a massless particle

when the mass tends to zero. This can be easily established in an obvious manner for photons in

the geometrical limit by means of Fermat’s principle. By assuming here that massless particles

follow null-geodesics the previous consideration remains valid with κ = 0. Photons with κ = 0 do

not feel the Newtonian gravitational potential as expected but their orbital angular momentum

is coupled to gravitation. This is not surprising since the affine connection term in the covariant

derivative couples the polarization of the electromagnetic radiation to gravity. The polarization
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follows the change of the direction of propagation and couples the orbital angular momentum to

gravity. The deflection of light around the Sun has been observed first in 1919 and was the second

major support of General Relativity.

C. Space-like hyper-surfaces

The Schwarzschild geometry is static and its non-trivial features are captured by the constant

time hyper-surfaces, a one-dimensional manifold of curved three-dimensional spaces, parametrized

by t. Each three-dimensional hyper-surface can be embedded into a four dimensional Euclidean

space. To simplify matters we consider the two-dimensional θ = π/2 section of the hyper-surfaces,

obeying the metric

−ds2 = dr2

1− 1
r

+ r2dφ2. (274)

This surface can easily be embedded into a three-dimensional Euclidean space by means of the

cylindrical coordinates (z, r, φ). The surface z = z(r) in the Euclidean three-space space of metric

−ds2 = dz2 + dr2 + r2dφ2 (275)

has the invariant length

−ds2 =
[
1 + z′2(r)

]
dr2 + r2dφ2, (276)

where z′(r) = dz(r)
dr . The comparison with (274) gives

1 + z′2(r) =
1

1− 1
r

, (277)

and

z(r) =

∫ r

1

dr′√
r′ − 1

= 2
√
r − 1, (278)

defined for r > 1 only.

D. Around the Schwarzschild-horizon

The causal structure of space-time is determined by the local light cones because any signal or

interaction can propagate on their surface or within them. The light cones, given by Eq. (262)

become narrow and narrow as the Schwarzschild-radius is approached from above, as shown in
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Fig. 4. This indicates that the free fall motion, seen by a stationary observer slows down as the

horizon is approached. This can be understood as a manifestation of the red-shift, mentioned in

point 2. of SectionVIA. The role of the radial and the time coordinate of the metric is exchanged

for a time-like geodesic as it traverses r = 1 and the light-cones are oriented horizontally. The

Kruskal-Szekeres coordinate system, introduced below shows that such an orientation of the light-

cones makes that no physical object of signal can crosses r = 1 from below. Therefore the sphere

r = 1 is a horizon which can be traversed inside only and appears for the outside observers as a

black hole.

The metric (256) has a coordinate singularity only at the Schwarzschild-radius because the

non-vanishing components of the curvature tensor

Rtθtθ = Rtφtφ = −Rrθrθ = −Rrφrφ =
1

2
Rθφθφ = −1

2
Rtrtr =

1

r3
(279)

make the eigenvalues, the invariant content of the curvature tensor, regular. Therefore a point

particle experiences nothing irregular or special when crossing the horizon. But an object which

is extended in the radial direction suffers strong tidal forces at the horizon. This is because a

small, finite separation, ∆r, corresponds to diverging invariant length,
√
−∆s2 = ∆r/

√

1− 1/r,

as r→ 1.

1. Falling through the horizon

It is instructive to follow the radial free fall of a point particle through the horizon. The equation

of motion of a massive particle for ℓ = 0 is

ṙ2 =
1

r
+ E2 − 1. (280)

Let us suppose that the motion starts with vanishing velocity at r = r0 > 1 and write

ds =
dr

√
1
r − 1

r0

. (281)

Such a r(s) function can easily be obtained in a parametrized form,

r =
r0
2
(1 + cos η),

s =
r
3/2
0

2
(η + sin η), (282)

known from the description of the motion of a point on a circle, rolling with constant speed.

Nothing special happens at r = 1 and the total proper time of falling into the center at η = π is

s = π
2 r

3/2
0 , cf. Fig. 6.
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FIG. 6: (a): The geometrical origin of the parametrization (282). (b): The radius r as the function of the

proper time, s, for the free fall from r = 2.

2. Stretching the horizon

We have seen so far, that the free fall, followed by its proper time shows no particular singularity

at the horizon. But what does a stationary observer finds which uses the Schwarzschild coordinates

t and r? The Schwarzschild time can be found from the first equation of (266),

ṙ =
dr

dt
ṫ =

dr

dt

E

1− 1
r

, (283)

indicating a singularity for such an observer when the horizon is crossed. Such a singularity might

be avoided by the use of the coordinate r∗ satisfying

dr∗ =
dr

1− 1
r

, (284)

because the singular factor is absorbed in the new coordinate and our equation for the radius now

reads as

ṙ =
dr∗

dt
E. (285)

The solution of Eq. (284),

r∗ = r + ln |r − 1|, (286)

replaced into the equation of motion, (280), gives

E2

[

1−
(
dr∗

dt

)2
]

= 1− 1

r
. (287)

If r → 1 from above then r∗ → −∞,

dr∗

dt
→ −1 (288)
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FIG. 7: The tortoise coordinate, r∗ as function of r.

and t ∼ −r∗ → ∞, it takes infinitely long time to fall through the Schwarzschild-radius. It is

easy to understand that this is the result of the apparent singularity in the Schwarzschild metric,

gtt → 0, grr →∞ with gttgrr = 1 as r → 1.

The radius r∗, defied by Eq. (286) is called tortoise coordinate. We are told that Achilles could

not pass a tortoise because each time he reached the point where the tortoise was before it was

already ahead. The singularity of the Schwarzschild metric, the factor 1/(1 − 1/r) multiplying

dr2 in the expression of the invariant length (256), signals that the scale of the radius should be

refined, r should be allowed to decrease beyond zero to describe the free fall through the horizon.

We have r∗ ∼ r and r∗ → −∞ as r → 1, shown qualitatively in Fig. 7, stretching out conveniently

the approach of the horizon from either side.

3. Szekeres-Kruskall coordinate system

The Schwarzschild time diverges on both sides of the horizon as indicated in Fig. 4. To resolve

the traverse the horizon we need better suited coordinates. Instead of the coordinates t and r one

may use u = t− r and v = t+ r in Minkowski flat space-time, labeling the out- and in-going light

rays, respectively. The expression of the invariant length is ds2 = dt2−dr2 = dudv, showing clearly

that the new coordinates correspond to light cones because ds2 = 0 for du = 0 or dv = 0. We can

preserve the light cone structure of the Schwarzschild geometry by the help of the new coordinates,

u∗ = t− r∗, v∗ = t+ r∗. (289)

The relation

dr2 =

(

1− 1

r

)2

dr∗2 (290)

yields the metric

ds2 =

(

1− 1

r

)

du∗dv∗ − r2(dθ2 + sin2 θdφ2) (291)
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which still displays a singularity at the horizon.

However this singularity is now less troublesome and a simple rescaling,

(I) u′ = −e−u∗

2 = −
√
r − 1e

r−t
2 , v′ = e

v∗

2 =
√
r − 1e

r+t
2 ,

(II) u′ = e−
u∗

2 =
√
1− re r−t

2 , v′ = e
v∗

2 =
√
1− re r+t

2 , (292)

where the transformations (I) and (II) apply outside and inside of the Schwarzschild sphere,

respectively, removes the singularity since the metric in terms of the new dimensionless coordinate,

ds2 =
4

r
e−rdu′dv′ − r2(dθ2 + sin2 θdφ2), (293)

is regular at r = 1. The coordinates u′ and v′ correspond to null-directions, it is more natural to

use the time- and space-like coordinates,

ρ =
v′ − u′

2
, τ =

v′ + u′

2
, (294)

given by

(I) ρ =
√
r − 1e

r
2 cosh

t

2
, τ =

√
r − 1e

r
2 sinh

t

2
,

(II) ρ =
√
1− re r

2 sinh
t

2
, τ =

√
1− re r

2 cosh
t

2
, (295)

yielding the metric

ds2 =
4

r
e−r(dτ2 − dρ2)− r2(dθ2 + sin2 θdφ2). (296)

The final problem to overcome is that this transformation covers a part of the space-time only

because it gives v′ > 0. The regions with v′ < 0 can be obtained by using

(III) u′ = e−
u∗

2 =
√
r − 1e

r−t
2 , v′ = −e v∗

2 = −
√
r − 1e

r+t
2 ,

(IV ) u′ = −e−u∗

2 =
√
1− re r−t

2 , v′ = −e v∗

2 = −
√
1− re r+t

2 , (297)

instead of (292), yielding

(III) ρ = −
√
r − 1e

r
2 cosh

t

2
, τ = −

√
r − 1e

r
2 sinh

r

2
,

(IV ) ρ = −
√
1− re r

2 sinh
t

2
, τ = −

√
1− re r

2 cosh
t

2
. (298)

The transformation, given by eqs. (295) and (298) defines the Kruskal-Szekeres coordinates, satis-

fying

(r − 1)er = ρ2 − τ2 (I), (II), (III) and (IV ), t =







2arcth τ
ρ (I) and (III),

2arcth ρ
τ (II) and (IV ),

(299)
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FIG. 8: The mapping of two Schwarzschild space-time onto the Kruskal-Szekeres geometry. The constant

time and radius curves are radial or horizontally opening hyperbolic curves, respectively, such as the dotted

lines and t = −∞ → ρ = −τ , t = 0 → τ = 0, t = ∞ → ρ = τ . The outside and inside of the horizon

r = rs → ρ = ±τ , is mapped into (I)-(III) and (II)-(IV), respectively and the Schwarzschild geometry,

(I)-(II) is reduplicated into (III)-(IV).

cf. Fig. 8.

The matching of the two space-times in the outer region can be demonstrated by the Einstein-

Rose bridge, the extension of the embedding, described in Section VIC. One chooses an Euclidean

three-space, parametrized by by the coordinates (z, u, φ) and equipped by the metric

−ds2 = dz2 + dρ2 + r2dφ2. (300)

The surface z = z(ρ) has the induced metric

−ds2 = [1 + z′2(ρ)]dρ2 + r2dφ2, (301)

which is to be matched to (296),

−ds2 = 4

r
e−rdρ2 + r2dφ2. (302)

Hence the equation

1 + z′2(ρ) =
4

r
e−r (303)

follows. The solution, as a function of the Schwarzschild radius r,

z(r) =

∫ r

1
dr′

dρ

dr

√

4

r′
e−r′ − 1, (304)

is sketched qualitatively in Fig. 9. It remains a challenge to understand the effects of such a

dramatic reduplication of the Universe at each point particle.
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FIG. 9: The Einstein-Rosen bridge, connecting the two space-times in the (z, ρ cosφ, ρ sinφ) coordinate

system. The regions (I) and (III) belong to z > 0 and z < 0, respectively. A strip of the surface ρ = ∞
is indicated by the dotted lines, they form the horizontal part of a bended plane. The bending represents

the analytical continuation between the regions (I) and (III). It is supposed to be at infinitely far, leaving

the throat, indicated by the circles, φ-independent, rotation invariant. The dashed line follows the path

0 < ρ <∞ in (I) and (III).
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FIG. 10: The future light cones on the Kruskal-Szekeres space-time, indicated by the dotted lines running

parallel with the u′ and v′ axes. The fat solid line represents the singular point r = 0.

4. Causal structure

The causal structure can easily recognized in the Kruskal-Szekeres space-time because τ is

a time-like coordinate everywhere and the light-cones preserve their direction, contrary to the

Schwarzschild parametrization, displayed in Fig. 4. The equal time lines indicate that the

Schwarzschild time t runs in opposite direction in the two space-times, (I)-(II) and (III)-(IV).

On can see immediately that the two outer regions, (I) and (III) are causally disconnected.

Though time and space coordinates appear in equal footing in relativity, the time has a dis-

tinguished role, it parametrizes the motion and has an orientation, encoded by the time arrow.
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The radial (L = 0) null geodesic, line cones, are parallel to the coordinate axes u′ and v′ and two

forward oriented light cones of a particle, slightly before and after crossing the Schwarzschild radius

are indicated in Fig. 10. One can see that before and after the crossing the ingoing light rays fall

into the singularity but the outward oriented light rays stay outside of the horizon or fall later

into the center, respectively. The massive particle world lines remain within the future light cones,

therefore no particle, either massive or massless, is able to emerge from the region r < 1 to r > 1:

The Schwarzschild-sphere is impenetrable from inside. Note that the horizon is free of singularities

and its one-way oriented, irreversible passage results from an appropriate rearrangement of the

future light cones without strong forces.

VII. HOMOGENEOUS AND ISOTROPIC COSMOLOGY

The assumption that we do not occupy any special location in the Universe suggests that

there should be a coordinate system in which the matter distribution in the Universe appears

homogeneous on large enough distance scales. Furthermore, the absence of a preferred direction

suggests isotropy, as well. The astrophysical observations supports these assumptions with an

astonishing precision.

A gauge or coordinate system independent way of stating spatial homogeneity is to impose the

existence of a one dimensional family of hyper-surfaces, Σ(t) which (i) foliate the space-time, ie.

any space-time point corresponds to one and only one hyper-surface and (ii) for any pair of points

p, q ∈ Σ(t) there is an isometry, a scalar product preserving mapping of the space-time which sends

p into q.

Isotropy states that for any pair of space-like unit vectors, v(p) and v′(p) at a given space-time

point p there is an isometry of the space-time which rotates v(p) into v′(p). The Universe appears

isotropic in good approximation.

We introduce the concept of standard observers which find the the distant galaxies at rest. Their

world lines provides a time-like congruence, system of time-like curves which fill up the space-time.

It is worthwhile mentioning two remarks at this point. (i) The tangent vectors of the time-like

congruence are orthogonal to the tangent vectors of the space-like hyper-surfaces of the homogene-

ity assumption at each space-time point. In fact, otherwise one could construct a preferred spatial

direction which contradicts isotropy. (ii) The space-time metric g induces a three-dimensional met-

ric h on the hyper-surfaces. The isometry which maps a point of a hyper-surface Σ(t) into another

one according to the assumption of homogeneity is clearly an isometry of this three-dimensional in-
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duced metric, too. Furthermore, according to the previous remark this three-dimensional geometry

has no preferred directions.

A. Maximally symmetric spaces

The homogeneous and isotropic three-space at a given time appears as symmetric as possible.

To make this concept more precise let us consider geometries with maximal number of symmetries,

Killing vectors.

The reparametrization xµ → x′µ = xµ − wµ(x) is a symmetry of the metric tensor if the

deformation w(x) is a Killing field, satisfying the Killing equation, (137). The parallel transport

along an infinitesimal rectangle gives the equation

DµDνwρ −DνDµwρ = −Rλ
ρµνwλ. (305)

There are two similar equations, obtained by cyclic permutation of the indices,

DνDρwµ −DρDνwµ = −Rλ
µνρwλ,

DρDµwν −DµDρwν = −Rλ
νρµwλ. (306)

the sum of these three equation can be written for a Killing field as

DµDνwρ −DνDµwρ +DρDµwν = 0, (307)

due to cyclic symmetry (114). The expression (305) of the parallel transport allows us to rewrite

this equation in the form

DρDµwν = Rλ
ρµνwλ, (308)

stating that second (covariant) derivative of the Killing field can be expressed in terms of the

Killing field itself, w. The x-dependence is therefore given by the value of the Killing field and it

first derivative at a given point, wµ(x0), Dνw
µ(x0). We need yet another property of the vector

fields, a set of fields {wµ
n(x)} is called independent if the the vanishing of the linear superposition,

made up by constant coefficient,

∑

n

cnw
µ
n(x) = 0 (309)

implies cn = 0.

We have d independent vectors wµ(x0) and d(d − 1)/2 independent anti-symmetric tensors

Dνwµ(x0) − Dµwν(x0) at each point in d-dimensions hence the maximally symmetric space has
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d+ d(d− 1)/2 = d(d+1)/2 independent Killing vectors. For instance the d-dimensional Euclidean

space has d translational and d(d − 1)/2 rotational symmetries. Furthermore, homogeneous and

isotropic spaces have maximal symmetry.

B. Robertson-Walker metric

Let us consider now the three-dimensional curvature tensor, R̃j
kℓm, more precisely the tensor

R̃jk
ℓm = R̃j

nℓmh
kn (310)

which can be thought as a transformation of second order antisymmetric contravariant tensors,

T ℓk = −T kℓ → R̃kℓ
mnT

mn. (311)

The matrix R̃ which acts on the tensor space is symmetric according to the second line in Eqs.

(131) therefore it can be diagonalized. Isotropy of the tree-space, the absence of preferred direction

requires that the matrix of this map be degenerate,

R̃jk
ℓm = K(δjℓδ

k
m − δkℓ δjm). (312)

The degenerate eigenvalue K is related to the scalar curvature,

R̃ = R̃jk
jk = Kd(d− 1) = k|R̃|, (313)

with k = −1, 0, 1 in d spatial dimensions. The corresponding Ricci tensor is

R̃k
m = R̃jk

jm = K(d− 1)δkm =
R̃

d
δkm (314)

The spatial homogeneity makes R̃ constant within each spatial hyper-surface Σ(t).

We shall now construct the metric on a spatial hyper-surface with homogeneous curvature.

Spaces with positive curvature, k = 1, can be obtained by embedding into R4,

x2 + y2 + z2 + w2 = a2, (315)

yielding

0 = xdx+ ydy + zdz + wdw (316)

and the induced metric

ds2 = dx2 + dy2 + dz2 + dw2

= dx2 + dy2 + dz2 +
(xdx+ ydy + zdz)2

a2 − x2 − y2 − z2 (317)
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written in polar coordinates as

ds2 = dr2 + r2(dθ2 + sin2 θdφ2) +
r2dr2

a2 − r2

=
dr2

1− r2

a2

+ r2(dθ2 + sin2 θdφ2). (318)

For negative curvature the embedding is given by

x2 + y2 + z2 − w2 = −a2, (319)

which yields

0 = xdx+ ydy + zdz − wdw (320)

and the induced metric is

ds2 = dx2 + dy2 + dz2 − dw2

= dx2 + dy2 + dz2 − (xdx+ ydy + zdz)2

a2 + x2 + y2 + z2
. (321)

We find in polar coordinates

ds2 = dr2 + r2(dθ2 + sin2 θdφ2)− r2dr2

a2 + r2

=
dr2

1 + r2

a2

+ r2(dθ2 + sin2 θdφ2). (322)

The spatially homogeneous and isotropic space-time provides time coordinate axis orthogonal

to the space directions, therefore the four dimensional metric is of Robertson-Walker,

ds2 = dτ2 − a2(τ)
[

dr2

1− kr2 + r2(dθ2 + sin2 θdφ2)

]

(323)

where τ is the proper time measured by clocks in rest in the space-like hyper-surface, the coordinate

r is made dimensionless by means of the scale factor r → a(τ)r which is an arbitrary constant for

flat space and k = signK. The three-space is of finite volume for positive curvature, k = 1 and

infinite for k = 0,−1.
One may write the metric as

ds2 = dτ2 − a2(τ)
[
dχ2 + h2(χ)(dθ2 + sin2 θdφ2)

]
(324)

with

r = h(χ) =







sinχ k = 1

χ k = 0

sinhχ k = −1

(325)
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which justifies the use of the combination

rph = a(τ)h(χ) (326)

as a cosmic distance parameter. Yet another useful form of the metric is

ds2 = a2(η)
[
dη2 − dχ2 − h2(χ)(dθ2 + sin2 θdφ2)

]
(327)

where

η =

∫
dτ

a(τ)
. (328)

The metric tensor

gµν =




1 0

0 −a2(t)g̃ij



 , g̃ij =








1
1−kr2

0 0

0 r2 0

0 0 r2 sin2 θ







, (329)

µ, ν = (τ, r, θ, φ),

√−g = a3(τ)
r2 sin θ√
1− kr2

(330)

yields the Christoffel symbols with two or more indices τ vanishing and the further non-vanishing

components are

Γτ
ij = ȧag̃ij , Γi

τj =
ȧ

a
g̃ij , Γi

jk = Γ̃i
jk =

1

2
g̃iℓ(∂j g̃kℓ + ∂kg̃ℓj − ∂ℓg̃jk) (331)

with ȧ = da
dτ . The Ricci tensor of the metric tensor g̃ is proportional to g̃ itself and the propor-

tionality constant turns out to be after some calculation k(d− 1) for a d-dimensional homogeneous

and isotropic space. Thus we have

R̃jm = 2kg̃jm (332)

for the three-space and

Rµν =




R00 0

0 R̃jk + g̃jk(aä+ 2ȧ2)



 =




−3 ä

a 0

0 g̃jk(aä+ 2ȧ2 + 2k)



 (333)

for the four dimensional space-time. The scalar curvature is

R = R00 −
1

a2
g̃jkRjk = −6

(
ä

a
+
ȧ2

a2
+

k

a2

)

. (334)
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C. Equation of motion

In order to find the Einstein equation we approximate the matter, averaged over long distances,

as an ideal fluid which is rest in the cosmic coordinate system of the Robertson-Walker metric, ie.

the energy-momentum tensor is given by

T µν = (ρc2 + p)uµuν − pgµν , (335)

where uµ is the four-velocity of the matter, the unit tangent vector field of the time-like congruence.

The metric (323) is based on the time coordinate τ therefore uµ = (1, 0, 0, 0). We have T µ
µ =

ρc2 − 3p = 0 for scale invariant case like EM radiation, p = 0 for matter at rest, like cosmic dust

and T µν ∼ gµν , p = −ρc2 in the vacuum. Notice that ρc2 + 3p ≥ 0 in each case.

The first two terms in the divergence of a tensor Aµν

DνA
µν = ∂νA

µν + Γν
ρνA

µρ + Γµ
ρνA

ρν (336)

looks as the covariant divergence of a four-vector which can be written in a simpler manner ac-

cording to (149),

DνA
µν =

1√−g∂ν(
√−gAµν) + Γµ

ρνA
ρν . (337)

Thus the expression (335) leads to the energy-momentum conservation law

0 = −∂νpgµν +
1√−g∂ν [

√−g(ρc2 + p)uµuν ] + Γµ
ρν(ρc

2 + p)uρuν (338)

where the metric admissibility, Dg = 0, was used, too. The rest frame condition, uµ = (1, 0, 0, 0),

renders the spatial components, µ = 1, 2, 3 of this equation trivial and the temporal part µ = 0

reads as

a3ṗ =
d

dτ
[a3(ρc2 + p)], (339)

giving

0 =
d

dτ
(a3ρc2), (340)

ρ ∼ 1/a3 for dust. In the case of radiation we write

0 =
4

3

d

dτ
(a3ρc2)− 1

3
a3ρ̇c2 =

1

a

d

dτ
(a4ρc2), (341)

resulting in ρ ∼ 1/a4. The density drops faster in the latter case during the expansion of the

universe (growing a) than for dust. Though the radiation represents a negligible component in the

actual universe, it was dominant in an earlier phase.
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The Einstein equations read finally as

R00 −
1

2
R− Λ = 3

ȧ2 + k

a2
− Λ

= 8πGTττ = 8πGρc2 (342)

for the components 00 and

1

a2g̃rr

[

Rrr −
1

2
grr(R+ 2Λ)

]

=
1

a2g̃rr

[

Rrr +
a2g̃rr
2

(R+ 2Λ)

]

=
ä

a
+ 2

ȧ2

a2
+ 2

k

a2
− 3

(
ä

a
+
ȧ2

a2
+

k

a2

)

+ Λ

= −2 ä
a
− ȧ2

a2
− k

a2
+ Λ

=
8πG

a2g̃rr
Trr = 8πGp (343)

for rr.

We can express the acceleration ä by forming a suitable linear superposition of these two equa-

tions,

ä

a
=

Λ

3
− 4

3
πG(3p + ρc2). (344)

The cosmological constant introduces a pressure in the absence of matter and leads to violation

of the Newtonian gravitational law in the slow motion, weak gravitational field limit. We shall set

Λ = 0 in the rest of the discussion for simplicity.

The first remark is that there is no static solution, ä < 0, for 3p+ ρc2 > 0. The rate of change

of spatial physical distances, ℓph = ℓ̃a with ℓ̃ constant,

v =
dℓph
dτ

= ℓph
ȧ

a
= Hℓph, (345)

where

H =
ȧ

a
(346)

called Hubble-constant, though its value has slow time dependence on astrophysical time scale.

It was supposed to be around 600km/s/Mpc according as proposed by Hubble in the ’30s, its

present value is around 70km/s/Mpc. Note that v > c for large enough separation. This is not

in contradiction with special relativity which considers velocities at the same space-time point but

leads to the appearance of horizons as we shall see later.

The universe is expanding at the present, ȧ > 0 but in view of ä < 0 the expansion rate

must have been faster in the past. By assuming a constant expansion rate, a(τ) = ȧ(τ0)τ , where
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ȧ(τ0) = H(τ0)a(τ0), τ0 being our time, the life-time of the Universe, we have τ0 = 1/H. Due to the

slowing expansion rate the Big Bang must have occurred less time before and the inverse Hubble-

constant gives only an order of magnitude estimate of the lifetime of the universe. The zero size

signals a singularity in the time evolution which prevents us to inquire about the earlier state of

the Universe. The so called singularity theorems of general relativity assures that the singularity at

the Big Bang is present even without assuming homogeneity and isotropy. Naturally the classical

equations of General Relativity do not allow us to inquire about the state of the Universe when its

size was smaller than Planck’s length.

For the flat or open universe, k = 0 or k = −1, respectively ȧ 6= 0 according to Eq. (342) which

can be written as

ȧ2 =
8πG

3
a2ρc2 − k (347)

and the expansion continues forever. In fact, ρc2 = O
(
a−3
)
or ρc2 = O

(
a−4
)
for dust or radiation

dominated universe, ρc2a2 → 0 as τ →∞ and ȧ approaches zero from above. For closed universe,

k = 1, the matter contribution to Eq. (347) decreases compared to k during the expansion and

there is a maximal value of a, a ≤ a0. But the maximal value can not be approached asymptotically

because ä does not tend to zero according to Eq. (344) but instead a big crunch occurs at some

finite time where a = 0 is reached and the universe ceases to exists.

The 00 component of the Einstein equation (342) for Λ = 0 shows that the universe is closed

or open if ρ > ρc or ρ < ρc, respectively where

ρcc
2 =

3H2

8πG
. (348)

The actual observational and theoretical background suggests that the cosmological constant Λ

actually plays an important role in determining the age of the universe, in particular the choice

ρmatter ≈ 0.27ρc, ρΛ ≈ 0.73ρc, ρmatter + ρΛ ≈ ρc is preferred.

D. Frequency shifts

The precision spectroscopic measurement of the electromagnetic radiation from stars is an easy

way of collecting information about distant astrophysical objects. Three different mechanisms are

known to change the observed value of the characteristic frequency of a physical system. The first

is observed in flat space-time when the source of a wave and its observer moves with respect to

each other. The second and the the third mechanisms are for sources and observers at rest but in

the presence of a static or time-dependent gravitational field, respectively.
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1. Let us consider a monochromatic plane wave with wave vector kµ = (ω0/c,k) with k2 =

m2c2/~2 whose source is moving with velocity v with respect to an observer in flat space-time.

The time component of the wave vector in the observer’s reference frame is

ω =
ω0 − vk
√

1− v2

c2

. (349)

By means of the relation |k| =
√

ω2
0

c2
− k2 we write

vk = v
ω0

c

√

1− m2c4

~2ω2
0

cos θ (350)

and find

ω = ω0

1− v
c

√

1− m2c4

~2ω2
0
cos θ

√

1− v2

c2

(351)

This is the relativistic Doppler effect, its non-relativistic analogy for a simple wave propagating

with speed c̃ with v, c̃≪ c is

ω = ω0

(

1− v

c̃
cos θ

)

. (352)

The Doppler shift is particularly useful in the observation of the broadening of spectral lines of light

arriving from stars because it allows us to estimate the random velocity of the atoms or molecules

and the temperature on the surface of the star.

2. Time independent gravitational field changes the frequency, being proportional with the

energy. Let us consider two electron-positron pairs at rest far from a star of mass M . One pair

annihilates into a photon and the other starts to fall freely towards the star. Let us suppose that

at distance r form the star the second pair annihilates into a photon. The photon arising from

the first pair, at large distance form the star, is of frequency ω1(∞) = Ek(∞)/~ = 2m0c
2/~. The

photon which is created at distance r by the second pair is of the frequency ω2(r) = Ek(r)/~ where

Ek = 2

(

m0c
2 +

Gm0M

r

)

= 2m0c
2

(

1 +
GM

rc2

)

(353)

is the kinetic energy of the pair at the instance of the annihilation. Let us suppose that we send

the photon arising from the annihilation of the first pair at the location where the annihilation of

the second pair took place by means of static mirrors which leave the photon frequency unchanged

and denote its frequency ω1(r) there. Energy conservation requires ω1(r) = ω2(r) since otherwise

one can extract energy form static gravitational field by annihilation of electron-positron pairs at
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certain distance form the star, sending the photons arising from the process at a different distance

and recombining them into electron-positron pair again. Thus the frequency of the photon changes

as

ω(r) = ω(∞)

(

1 +
GM

rc2

)

(354)

due to the presence of the gravitational field. The relative change,

∆ω

ω
=
ω(r)− ω(∞)

ω(∞)
=
GM

rc2
(355)

is approximately 2 · 10−6 at the surface of the Sun but becomes comparable to one on the surface

of a neutron star and can be used to estimate the total mass.

3. Time dependent gravitational field leads the the change of frequency in a trivial manner

because the time of emission of a photon is different than the time of its absorption. Let us

suppose that a light signal is emitted at the point p0 = (cte, r) which is received at p = (cto,0).

The propagation is along a null-geodesic,

cdt = a(ct)dχ, (356)

yielding

∫ to

te

cdt

a(ct)
= χ. (357)

The source emits dn = dteωe periods during the time interval dte of the emission with frequency

ωe. It is the same number of periods, dn = dtoωo which is observed in time dto and frequency ωo.

Thus we have red shift parameter, the relative change of the wavelength λ = 2πc/ω,

z =
λo − λe
λe

=
dto
dte
− 1 =

a(cto)

a(cte)
− 1 (358)

where the difference of Eq. (357) and its analogy written for the times te → te + dte, to → to + dto

was used in the last equation. By assuming that the scale factor a(τ) changes slowly in time we

find

z =
ao

ao + (cte − cto)ȧo + 1
2(cte − cto)2äo + · · ·

− 1

=
ȧo
ao

(cto − cte) +
[(

ȧo
ao

)2

− äo
2ao

]

(cto − cte)2 + · · · (359)

where ao = a(cto). The deceleration parameter,

q = −aä
ȧ2

(360)
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measures the rate of change of the Hubble-constant in time and its experimental value is about 1.

Hubble’s law, the linearity of the red shift in the distance is obtained by

z ≈ ȧo
ao

(cto − cte) ≈
ȧo
ao
ℓ = Hℓ. (361)

As a simple application let us now consider the absolute luminosity L of a galaxy and the

measured flux (energy per unit time and unit area) F . The quantity

dL =

√

L
4πF (362)

can be interpreted as the luminosity distance of the galaxy. But due to the expansion of the universe

the distance of the galaxy at the time of the emission of the observed signal, re was different than

ro, the distance at the time of observation. Does the distance dL agree one of them? Not. Energy

conservation requires

F =
L

4πa2(cto)r2e
=

L
4πa2(cto)r2e(1 + z)2

, (363)

where the factor dA/4πa2(cto)r
2
e is the solid angle of a surface dA observed, one factor of 1 + z

arises from the red shift of the observed photons and the other from the ratio of the time intervals

dte/dto and we find

dL = a(cto)re(1 + z). (364)

E. Particle horizon

Can we receive signals from any part of the universe? It is true that the universe was smaller in

the past but the speed of light appeared smaller, too. This is the kind of dilemma which led to Eq.

(362) and requires more careful consideration. We now use the form (327) of the metric and look

for the spatial region form which signals can be received in the case of flat geometry, k = 0. The

metric is now conformally flat, we can replace the overall conformal factor a2(η) by one from the

point of view of this question and the problem is reduced to flat Minkowski geometry. Obviously

if the integral

∫ τ

ǫ

dτ ′

a(τ ′)
(365)

remains finite when ǫ→ 0 then we can not receive signals from the whole universe and there is a

particle horizon. The short time solution of the Einstein equations give a(τ) = O
(
τ2/3

)
for τ ≈ 0

even for a dust dominated universe and the particle horizon appears. For k = −1 the curvature
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term becomes negligible for short time and the same result is recovered. The situation is more

complicated for a closed universe and it turns out that the horizon disappears when the universe

reaches its maximal size for a dust domination but remains present for all times in the radiation

dominated case.

The presence of horizons raises serious problems for the description of the evolution of the

universe. The reason is that the difference between regions of the early universe which are separated

by horizon can not relax during the evolution and any inhomogeneity which appeared at such scale

in the very early universe should be observable today. The cosmic microwave background which

is supposed to originate from a rather early period of the universe is found to be homogeneous

and isotropic to such a large extent which is not possible to understand unless one assumes that

either the universe is created is an unusually homogeneous state or the Robertson-Walker metric

is not valid for the early phase. The inflationary universe model which involves a rapid expansion

in the early phase leads to an enlargement of the horizon and offers a possibility to reconcile the

entropy estimates of the early universe with the present homogeneity of the microwave background

radiation.

But the latest, more sensitive measurements of the anisotropy and inhomogeneities of the mi-

crowave background radiation lead to another serious problem, these fluctuations are apparently

too large to be explained by the inflationary standard model. Further problems arise from the

more precisely determined slowing down of the expansion of the universe. That phenomenon

might be explained by assuming that the majority of the matter in our universe is participating

in gravitational interaction only and pulls back the expanding, visible matter. But such a rescue

operation of the Einstein equation seems to be out of proportion and the slight modification of the

Einstein-Hilbert action appears to be a more economical and better justifiable way of establishing

consistency.

F. Evolution of the universe

We shall briefly review the salient feature of the evolutionary big bang model. It is clearly

unreasonable to expect that classical physics, in particularly general relativity as we know it today

is capable to trace the evolution just from the beginning, from t = 0, a = 0. The basic physical

constants can be put together to form a length scale,

ℓP =

√

G~

c3
≈ 10−33 cm, (366)
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called Planck length. At distances smaller than this scale the gravitational interaction should be

stronger than the quantum effects. In general, one should not extrapolate the physical laws across

such a wast regime of scale what separate the length scale 10−16cm, the space resolution of the

the experiments today, from the Planck length because the basic structure of the physical laws

changed in the last century several time by the discovery of new interactions or particles as the

observational length scale was reduced from the mm scale to the proton size, 10−13cm. It is a real

surprise that the structure of quantum mechanics found to be valid in this range when all other

laws in physics proved to be limited to longer length scales.

The first question one might raise after leaving the Planck-era (t ≈ 10−43s, T ≈ 1031K,

ρ ≈ 1092 gm/cm3) is whether thermodynamical equilibrium was reached by the universe. The

inflation, the rapid expansion of the universe can provide such a thermalization by the enlargement

of the horizons. The background microwave radiation is the indication that thermal equilibrium

was reached by a hot universe. According to Eqs. (340) and (341) the early universe was dominated

by radiation.

Another interesting issue of this period is the generation of matter-anti matter domains. Our

galaxy tend to have matter rather than anti-matter, the baryon number (+1 for a nucleon and

-1 for an anti-nucleon) its total baryon number, a conserved quantity, is positive. If the universe

was created by positive net baryon number then this is not surprising. But it is more natural to

imagine that the universe started its existence with vanishing conserved charges and the matter

excess observed around us is compensated by an anti-matter excess somewhere else in the universe.

What was the mechanism which created these matter-anti matter domains? There is no generally

accepted and satisfactory answer.

The following milestones should be mentioned for the subsequent evolution:

1. At the beginning after the Planck-era the non-gravitational interactions are supposed to be

unified by the Grand Unified Model. At about t ≈ 10−36s the symmetry of the Grand

Unified Model is broken spontaneously, the strong and the electro-weak interactions separate

into Quantum Chromodyanmics and the unified electro-weak theory, respectively and the

matter-anti matter island are supposed to be formed.

2. At about t ≈ 10−12s the symmetry of the unified electro-weak theory is broken sponta-

neously and electromagnetic and weak forces separate.

3. At t ≈ 10−5s quarks which were freely propagating became confined and the present day

hadrons are formed.
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4. At t ≈ 1s the universe consists of mainly neutrinos, photons, electrons, protons and neutrons

and their anti-particles were in thermal equilibrium up to now but the interaction with neu-

trinos becomes weak to maintain equilibrium from now on. As a result neutrinos decouple

and follow a passive red shift in the rest of the time. Soon after the proton-neutron con-

version is frozen out (T = 1010K corresponds approximately to 1MeV, the neutron-proton

mass difference), too.

5. At t ≈ 4s the electron-positron equilibrium is lost because T = T ≈ 5 · 109K belongs

to 0.5MeV, the mass of the electron. The annihilation process eliminate positrons and heat

up the photons slightly.

6. At 10s < t < 10min the thermal energy reaches the nuclear binding scale and nucleosyn-

thesis starts by producing 4He nuclei. The strong Coulomb barrier and the lack of other

stable elements with Z < 8 leave helium the only nuclei produced in mass, until all neutrons

left over after step 4. are bound into helium. At the end of the helium dominated era which

lasts few minutes 25% of the mass is in the form of 4He, the rest is essential distributed over

2H, 3He and 7Li. The reproduction of the fraction taken in the form of 4He is a convincing

success of the hot big bang nucleosynthesis model.

7. At t ≈ 4·105 year thematter reaches equilibrium with radiation and starts to dominate.

8. At t ≈ 106 year the thermal energy reaches the ionization energy of the hydrogen atom and

we enter in the recombination era when stable, neutral atoms, starting with the hydrogen

are formed. Most of the universe becoming electrically neutral the photons decouple. Their

subsequent expansion and cooling leads to the actual temperature 2.7K, observed with high

accuracy in the cosmic microwave background in the last decades. This is the second

decisive victory of the hot big bang model for the universe.

The decoupling of matter and radiation signals the end of the quantum-driven evolution era.

The resulting loss of radiation pressure leads to gravitational instabilities for masses M > 105Msun

whereMsun ≈ 2 ·1033g is the solar mass and galaxies start to be formed. About t ≈ 103−107years

hadronic matter started to dominate the total energy of the universe whose present age is currently

believed to be 14 · 109years.
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VIII. OPEN QUESTIONS

General Relativity has appeared a century ago as a radically new vision of interactions. In

addition the experimental texts of gravity are quite challenging. Hence there is an unusually large

set of open question left for future studies. Only the most general issues are mentioned here,

without any attempt to be exhaustive.

1. What is the action of General Relativity? The physical phenomenons and laws depend on

the scale of their observations. By using the units c = ~ = 1 one may use the length as a

single scale. All of our theories are effective, they cover given length scale windows. There

are always terms in the Lagrangian which represent the physics beyond the scale window but

they are negligible in the range of application of the theory in question. However these terms

become more important as we reach the edge of the scale window. The lesson of this feature

is that any experimentally established Lagrangian remains open to corrections, demanded

by later observations.

Gravity has the widest window of applicability among the four fundamental interactions

with the inconvenience that the scales where it is supposed to be strong are extremely

large (size of the Universe) or small (Schwarzschild radius, Plank’s scale), far away form us.

There are however experimentally confirmed phenomenons requiring some modifications of

the traditional Einstein-Hilbert action:

� Galactical scale: The rotation of and the velocity distribution within a galaxy indi-

cates stronger gravitational force than expected. The currently followed strategy to

incorporate such changes is to introduce dark matter, a matter which enters only into

gravitational interactions. The elimination of the dynamical degrees of freedom of dark

matter, in a manner similar to the application of the renormalization group method,

generates new terms to the gravitational action. It is more natural and promising

to address the changes of the action directly, without restricting the attention to a

particular, experimentally inaccessible sector of physics.

� Cosmological scale: The observed expansion of the Universe suggests that matter den-

sity is about the critical value, corresponding to the flat solution of the Robertson-

Walker model. The known matter can not make up the critical density and the deficit

in the cosmological constant is called dark energy contribution. Whatever is its physical

realization, the dark energy is another extension of the traditional action.
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� Consistency: The different modifications of the action must be consistent. The

value of the Hubble constant, inferred from observing some nearby galaxies, H =

73.5±0.5km/sec/Mpc, and extracting from the inhomogeneity of the cosmic microwave

background at Galaxy scale, H = 67.4± 1.4km/sec/Mpc, are inconsistent and requires

a more thorough approach to changing the gravitational action.

2. Is gravity quantized? The four fundamental interactions seem to belong to the class of gauge

theories and the other three are quantized. While there is neither experimental nor the-

oretical evidence that gravity needs quantization one tends to apply the same scheme for

all fundamental interactions and inquire about the possibility of quantizing gravity. How-

ever the application of the usual quantization procedure creates apparently insurmountable

difficulties.

� The properties exists only after observation according to Quantum Mechanics which

assumes the existence of the macroscopic world, in particular the availability of space

and time. How to approach the problem of generating the space-time coordinates by

observations, more precisely by the interaction of the space-time coordinates with a

sufficiently large environment, to generate the classical space-time, the carrier of the

quantization procedure of the other three fundamental interactions? What kind of

mathematical basis should we use for the emergence of the space-time coordinates?

� The operator mixing, the presence of higher than second order products of the coordi-

nate and the momentum operator in the Hamiltonian generates short time divergences

in Quantum Mechanics. Quantum field theories contain ultraviolet divergences due to

the unboundedness of the three-momentum. The lesson is that quantum mechanics

and the continuity of the space-time are incompatible. This problem is handled by the

introduction of a cutoff, reflecting our ignorance of physics at infinitesimal length scales.

This ignorance is build in into the theories by assuming no dynamics at shorter length

scale than the cutoff. Nevertheless there is a historic preference of renormalizable theo-

ries where the cutoff can be sent to zero in such a manner that an appropriately chosen

cutoff-dependence of the parameters of theory renders the predictions of the theory

convergent. The renormalizability allows the hiding of the cutoff scale, an irrelevant

parameter from the point of view of physical phenomenons taking place at finite scales,

in our equations. This is a matter of convenience rather than necessity.
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Nevertheless the question is there: Is gravity renormalizable? There are indications

of a non-perturbative renormalization in case of a slightly extended Einstein-Hilbert

action. Another possibility is to use string theory if one is ready to go beyond four

dimensions and the field theory framework to reach this goal.

3. Impact of gravity on thermodynamics: The thermodynamical laws are modified at short and

long distances by gravitational interactions. The absence of gravitational screening leaves

Newton’s gravitational force long range and creates difficulties in deriving the thermodynam-

ical laws in Statistical Mechanics. The one-way causal structure of event horizons introduces

an information loss for processes taking place close to the horizon. Entropy is related to

the missing information hence event horizons generate a particular contribution to the ther-

modynamical potentials. This latter question has thoroughly been studied analytically but

there is no experimental support in either issue.

Appendix A: Uniformly accelerating observer

If inertial and gravitational forces are identical then a uniformly accelerating observer should

experience a homogeneous gravitational potential and it is instructive to look more closely in this

case. Consider the first motion in the spatial x direction where the world line xµ(s),

xµ = (t, x) =
1

a
(sinh aτ, ρ− 1 + cosh aτ), (A1)

s being the invariant length, gives rise the four-velocity uµ(s) = d
dsx

µ(s) = ẋµ(s) which satisfies

u2 = 1 and the four acceleration aµ(s) = ẍµ(s) with constant invariant length, a2 = −a20. The

four-velocity, written as uµ = (cosh f(s), sinh f(s), 0, 0), gives the desired acceleration with the

choice f(s) = as. An integration of the velocity produces the world line

xµ =
1

a
(sinh as, cosh as, 0, 0), (A2)

a hyperbole with positive value of the x coordinate. It is advantageous to introduce a coordinate

system (t, x) → (η, ρ), where the hyperbolas are labeled by the spatial coordinate ρ and η is

proportional to the proper time,

xµ = ρ(sinh η, cosh η, 0, 0), (A3)
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where the proper time and the acceleration of the world lines are s = η/ρ and a = 1/ρ, respectively

and the invariant distance can be written as

ds2 = ρ2dη2 − dρ2. (A4)

The following features of the Rindler geometry are noteworthy:

1. The Rindler space covers the part x ≥ 0 of the whole Minkowski geometry,

2. The geometry, described by the metric (A4) is flat, it is a reparametrization of the Minkowski

space-time.

3. The acceleration along a given world line is constant but different world lines display different

acceleration hence the gravitational field is static but spatially inhomogeneous.

4. There are gravitational effects (inertial forces) even in flat space-time.

5. There is no contradiction with the Equivalence Principle because the accelerating world lines

fill up a part of the space-time only and no statement is made about the flatness of the rest.

6. Gravitational forces seem to generate space-time dependent metric tensor.

7. Gravitational forces seem to produce singularity whose more precise nature, namely whether

it is a coordinate singularity due to the wrong choice of coordinates or it is a real singularity,

reflected by physical quantities, remains to be clarified.

8. Gravitational forces seem to make a part of the space-time inaccessible, they can generate a

horizon.

Appendix B: Continuous groups

The continuous groups, {ω(α)}, are equipped with a continuous topology and the group multi-

plication law,

ω(α)ω(β) = ω(F (α, β)) (B1)

where α and β are n-dimensional vectors for an n-dimensional group and the function F (α, β)

describes the multiplication law. For instance the translations in space-time make up the group

{ω(α)}, α being a four vector α = xµ, with F (α, β) = α + β. The widely followed convention,

adopted here as well, is the choose the unit element at α = 0, ω(0) = 11.
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The classification of the possible continuous symmetry groups is made simple by Ado’s theorem

asserting that any finite dimensional Lie-algebra is identical with a subspace of the generators

of the matrix group GL(N) (GL=General Linear group), consisting of non-singular N × N real

matrices, for sufficiently large N . Thus any continuous group is locally identical with a subgroup

of GL(N) for certain N . In order to cover all continuous groups it is sufficient to study the matrix

groups. The important matrix groups are called classical matrix groups and are shown in Tables

I and II. The rest, the exceptional groups have not yet found application in physics.

The infinitesimal group elements are in the vicinity of the identity,

ω = 11 +
n∑

n=1

ǫaτa +O
(
ǫ2
)
, (B2)

with τa = ∂ω(0)
∂αa , called generators. The name originates from the possibility of enlarging this

structure over the whole matrix group by the exponential map, defined by the help of the equation

lim
n→∞

(

1 +
a

n

)n
= lim

n→∞
en ln(1+ a

n
) = lim

n→∞
en(

a
n
+O(n−2)) = ea, (B3)

valid for any finite number a. The choice a =
∑

a α
aτa yields

e
∑

a αaτa = lim
n→∞

(

1 +
∑

a

αa

n
τa

)n

, (B4)

showing that the repeating of an appropriately chosen infinitesimal transformation many times

generates the finite group element. One can be shown that any group element can be obtained in

such a form in a connected group. One can also be shown that the commutator of generators is

also a generator,

[τa, τ b] =
∑

c

fa,b,cτ c. (B5)

The real numbers fa,b,c are called structure constants and they uniquely determine the multiplica-

tion of the infinitesimal group elements.

Appendix C: Classical Field theory

The goal of this Appendix is a brief introduction to variational principle and conservation laws

in classical field theory. The reason to go beyond the usual, differential equation based definition of

the dynamics is have equations of motion which preserve their form under arbitrary transformation

of the space-time coordinates.
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TABLE I: Real classical matrix groups.

Symbol Name Definition Dimension Generators

GL(N) general linear group detA 6= 0a N2 {τ : real N ×N matrices}
SL(N) special linear group detA = 1 N2 − 1 trτ = 0b

O(N) orthogonal group AtrA = 11c 1

2
N(N − 1) τ tr = −τ

SO(N) special orthogonal group AtrA = 11, detA = 1 1

2
N(N − 1) τ tr = −τ , trτ = 0

aThe matrix A is supposed to be an element of the group in question.
bdet(11+ ǫτ ) = 1 + ǫtrτ +O

(

ǫ2
)

cdetAtrA = (detA)2 = 1 and detA = ±1.

TABLE II: Complex classical matrix groups.

Symbol Name Definition Dimension Generators

GL(N,C) complex general linear group detA 6= 0 2N2 {τ : complex N ×N matrices}
SL(N,C) complex special linear group detA = 1 2N2 − 2 trτ = 0

U(N) unitary group A†A = 11a N2 τ† = −τ
SU(N) special unitary group A†A = 11, detA = 1 N2 − 1 τ† = −τ , trτ = 0

adetA†A = (detA)∗ detA = |detA|2 = 1

1. Variational principle

Field theory is a dynamical system containing degrees of freedom, denoted by φ(x), at each

space point x. The coordinate φ(x) can be a single real number (real scalar field) or consist n-

components (n-component field). Our goal is to provide an equation satisfied by the trajectory

φcl(t,x). The index cl is supposed to remind us that this trajectory is the solution of a classical

equation of motion. The problem of identifying φcl(t,x) will be outlined in three steps.

a. Single point on the real axis

Problem: identification of a point on the real axis, xcl ∈ R, in a manner which is independent of

the reparametrization of the real axis.

Solution: Find a function with vanishing derivative at xcl only:

df(x)

dx |x=xcl

= 0 (C1)



88

To check the reparametrization invariance of this equation we introduce new coordinate y by the

function x = x(y) and find

df(x(y))

dy |y=ycl

=
df(x)

dx |x=xcl
︸ ︷︷ ︸

0

dx(y)

dy |y=ycl

= 0 (C2)

Variational principle: There is simple way of rewriting Eq. (C1). Let us perform an infinitesimal

variation of the coordinate x→ x+ δx, and write

f(xcl + δx) = f(xcl) + δf(xcl)

= f(xcl) + δx f ′(xcl)
︸ ︷︷ ︸

0

+
δx2

2
f ′′(xcl) +O

(
δx3
)

(C3)

The variation principle, equivalent of Eq. (C1) is

δf(xcl) = O
(
δx2
)
, (C4)

stating that xcl is characterized by the property that an infinitesimal variation around it, xcl →
xcl + δx, induces an O

(
δx2
)
change in the value of f(xcl).

b. Non-relativistic point particle

Problem: identification of a trajectory in a coordinate choice independent manner.

Variational principle: Let us identify a trajectory xcl(t) by specifying the coordinate at the initial

and final time, xcl(ti) = xi, xcl(tf ) = xf (by assuming that the equation of motion is of second

order in time derivatives) and consider a variation of the trajectory x(t): x(t)→ x(t)+ δx(t) which

leaves the initial and final conditions invariant (ie. does not modify the solution). Our function

f(x) of the previous section becomes a functional, called action

S[x(·)] =
∫ tf

ti

dtL(x(t), ẋ(t)) (C5)

involving the Lagrangian L(x(t), ẋ(t)). (The symbol x(·) in the argument of the action functional

is supposed to remind us that the variable of the functional is a function. It is better to put a dot

in the place of the independent variable of the function x(t) otherwise the notation S[x(t)] can be
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mistaken with an embedded function S(x(t)).) The variation of the action is

δS[x(·)] =

∫ tf

ti

dtL

(

x(t) + δx(t), ẋ(t) +
d

dt
δx(t)

)

−
∫ tf

ti

dtL(x(t), ẋ(t))

=

∫ tf

ti

dt

[

L(x(t), ẋ(t)) + δx(t)
∂L(x(t), ẋ(t))

∂x
+
d

dt
δx(t)

∂L(x(t), ẋ(t))

∂ẋ
+O

(
δx(t)2

)

−
∫ tf

ti

dtL(x(t), ẋ(t))

]

=

∫ tf

ti

dtδx(t)

[
∂L(x(t), ẋ(t))

∂x
− d

dt

∂L(x(t), ẋ(t))

∂ẋ

]

+ δx(t)
︸ ︷︷ ︸

0

∂L(x(t), ẋ(t))

∂ẋ

∣
∣
∣
∣

ti

tf

+O
(
δx(t)2

)
(C6)

The variational principle amounts to the suppression of the integral in the last line for an arbitrary

variation, yielding the Euler-Lagrange equation:

∂L(x, ẋ)

∂x
− d

dt

∂L(x, ẋ)

∂ẋ
= 0 (C7)

The generalization of the previous steps for a n-dimensional particle gives

∂L(x, ẋ)

∂x
− d

dt

∂L(x, ẋ)

∂ẋ
= 0. (C8)

It is easy to check that the Lagrangian

L = T − U =
m

2
ẋ2 − U(x) (C9)

leads to the usual Newton equation

mẍ = −∇U(x). (C10)

It is advantageous to introduce the generalized momentum:

p =
∂L(x, ẋ)

∂ẋ
(C11)

which allows to write the Euler-Lagrange equation as

ṗ =
∂L(x, ẋ)

∂x
(C12)

The coordinate not appearing in the Lagrangian in an explicit manner is called cyclic coordinate,

∂L(x, ẋ)

∂xcycl
= 0. (C13)

Noether’s therem, discussed below folllows from observation that each cyclic coordinate generates

a conserved quantity. In fact, the generalized momentum of a cyclic coordinate, pcycl, is conserved

according to Eqs. (C11) and (C13).
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c. Scalar field

Problem: identification of the equation of motion for an n-component field, φa(x), a = 1, . . . , n.

(Notation: x = (t,x).)

Variational principle: let us consider a variation of the trajectory φ(x):

φ(x)→ φ(x) + δφ(x), δφ(ti,x) = δφ(tf ,x) = 0. (C14)

The variation of the action

S[φ(·)] =
∫

V
dtd3xL(φ, ∂φ) (C15)

is

δS =

∫

V
dtd3x

(
∂L(φ, ∂φ)

∂φa
δφa +

∂L(φ, ∂φ)

∂∂µφa
δ∂µφa

)

+O
(
δ2φ
)

=

∫

V
dtd3x

(
∂L(φ, ∂φ)

∂φa
δφa +

∂L(φ, ∂φ)

∂∂µφa
∂µδφa

)

+O
(
δ2φ
)

=

∫

∂V
dsµδφa

∂L(φ, ∂φ)

∂∂µφa
+

∫

V
dtd3xδφa

(
∂L(φ, ∂φ)

∂φa
− ∂µ

∂L(φ, ∂φ)

∂∂µφa

)

+O
(
δ2φ
)

(C16)

The first term for µ = 0,

∫

∂V
ds0δφa

∂L(φ, ∂φ)

∂∂0φa
=

∫

t=tf

d3x δφa
︸︷︷︸

0

∂L(φ, ∂φ)

∂∂0φa
−
∫

t=ti

d3x δφa
︸︷︷︸

0

∂L(φ, ∂φ)

∂∂0φa
= 0 (C17)

is vanishing because there is no variation at the initial and final time. When µ = j then

∫

∂V
dsjδφa

∂L(φ, ∂φ)

∂∂jφa
=

∫

xj=∞
dsjδφa

∂L(φ, ∂φ)

∂∂jφa
︸ ︷︷ ︸

0

−
∫

xj=−∞
dsjδφa

∂L(φ, ∂φ)

∂∂jφa
︸ ︷︷ ︸

0

= 0 (C18)

and it is still vanishing because we are interested in the dynamics of localized systems and the

interactions are supposed to be short ranged. Therefore, φ = 0 at the spatial infinites and the

Lagrangian is vanishing. The suppression of the second term gives the Euler-Lagrange equation

∂L(φ, ∂φ)

∂φa
− ∂µ

∂L(φ, ∂φ)

∂∂µφa
= 0. (C19)

The generalized momentum of a particle, ∂L/∂tx, can be generalized in field theory to the

current, jµφ = ∂L/∂∂φµ, associated to the field φ. A field variable is cyclic when it does not

appear in the Lagrangian, ∂L/∂φcycl = 0. The Noether theorem for field theory stems from the

conservation of the current, associated to a cyclic field variable, ∂µj
µ
φcycl

= 0.
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Example: Scalar field (~ = c = 1):

L =
1

2
(∂φ)2 − m2

2
φ2 − U(φ) =⇒ (∂µ∂

µ +m2) = −U ′(φ) (C20)

2. Noether theorem

The reparametrization invariance of the Euler-Lagrange equation shows that there is a conserved

current for each continuous symmetry.

Symmetry: A transformation of the space-time coordinates xµ → x′µ, and the field φa(x)→ φ′a(x)

preserves the equation of motion. Since the equation of motion is obtained by varying the action,

the action should be preserved by the symmetry transformations. A slight generalization is that

the action can in fact be changed by a surface term which does not influence its variation, the

equation of motion at finite space-time points. Therefore, the symmetry transformations satisfy

the condition

L(φ, ∂φ)→ L(φ′, ∂′φ′) + ∂′µΛ
µ (C21)

with a certain local vector function Λµ(φ(x), ∂φ(x), x).

Continuous symmetry: There are infinitesimal symmetry transformations in an arbitrary small

neighborhood of the identity, xµ → xµ + δxµ, φa(x) → φa(x) + δφa(x). Examples: Rotations,

translations in the space-time, and φ(x)→ eiαφ(x) for a complex field.

Conserved current: ∂µj
µ = 0, conserved charge: Q(t):

∂0Q(t) = ∂0

∫

V
d3xj0 = −

∫

V
d3x∂vj = −

∫

∂V
ds · j (C22)

It is useful to distinguish external and internal spaces, corresponding to the space-time and the

values of the field variable. Eg.

φa(x) : R
4

︸︷︷︸

external space

→ R
n

︸︷︷︸

internal space

. (C23)

Internal and external symmetry transformations act on the internal or external space, respectively.

a. Point particle

The main points of the construction of the Noether current for internal symmetries can be best

understood in the framework of a particle.
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The intuitive idea behind Noether’s theorem is to consider an infinitesimal symmetry transfor-

mation which is almost the identity and exists only for continuous symmetry as a variation around

the solution of the Equler-Lagrange equation. Since the action is stationary for arbitrary variations

it remains stationary for such a special variation, too. Thus the Euler-Lagrange equation which

assumes the same form in any coordinate system reamins satisfied for the time dependent param-

eter of the transformation. The symmetry transformation should leave the Lagrangian invariance

hence its parameter should be a cyclic coordinate hence its generalize momentum is conserved.

The more detailed proof is slightly more involved because of the more general way symmetry

transformation may act. Let us start with the definition of the symmetry as a transformation of the

time and the coordinate, t→ t′, x(t)→ x′(t′), which leaves the equation of motion unchanged. A

sufficient condition for a transformation be symmetry is that it preserves the Lagrangian. But this

is not necessary since the variational equations remains unchanged when a total time derivative

is added to the Lagrangian it contributes by a boundary term which is irrelevant from the point

of view of variations, performed at intermediate time. Thus a transformation is symmetry if the

Lagrangian changes by a total time derivative,

L(x, ẋ) = L(x′, ẋ′) + Λ̇(t′,x′). (C24)

The symmetry transformation consist of a group and the elements of a continuous group can

be parametrized by continuous, real numbers. The usual convention is to assign 0 to the identity

transformation hence the infinitesimal transformation in the vicinity of the identity can therefore

be written in the form x→ x+ ǫf(t,x), t→ t+ ǫf(t,x) with infinitesimal ǫ.

Let us consider only two kinds of symmetries for the sake of simplicity:

Change of the coordinates: f 6= 0, f = 0: The symmetry transformation x → x′ = x + ǫf

with constant ǫ and the total time derivative can be neglected in (C24) as long as only the variational

equations are sought. Hence the symmetry can be expressed by taking the derivative with respect

to ǫ of (C24) without the total derivative term,

0 = ∂ǫL(x+ ǫf , ẋ+ ǫ∂tf + ǫ(ẋ∂)f)

=
∂L

∂x
f +

∂L

∂ẋ
(∂tf + ẋ∂f). (C25)

The parameter of the variation δx = ǫ(t)f is made time dependent, ǫ→ ǫ(t) and its Lagrangian is

L̃(ǫ, ǫ̇) = L(x+ ǫf , ẋ+ ǫ∂tf + ǫ(ẋ∂)f + ǫ̇f) +O
(
ǫ2
)

= ǫ

(
∂L

∂x
f +

∂L

∂ẋ
∂tf

)

+
∂L

∂ẋ
[ǫ(ẋ∂)f + ǫ̇f ] +O

(
ǫ2
)
, (C26)
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The variation principle, stated now as δS[ǫ] = O
(
ǫ2
)
, yields the Euler-Lagrange equation

∂L̃(ǫ, ǫ̇)

∂ǫ
=

d

dt

∂L̃(ǫ, ǫ̇)

∂ǫ̇
. (C27)

Note that the symmetry makes the symmetry transformation parameter a cyclic variable and its

generalized momentum,

pǫ =
∂L̃(ǫ, ǫ̇)

∂ǫ̇
=
∂L

∂ẋ
f , (C28)

conserved.

Examples:

1. Translation symmetry, f = n, n2 = 1, of the Lagrangian L = m
2 ẋ

2 − U(Tx) with T =

11− n⊗ n, leads to the conservation of the momentum pǫ = mẋn.

2. Rotational symmetry, f = n × x, n2 = 1 of the Lagrangian L = m
2 ẋ

2 − U(|x|) implies the

conservation of the angular momentum, pǫ = mẋ(n× x) = n(x×mẋ) = nL.

Change of the time: The argument is different in this case. We use shifted time, t → t′ =

t + ǫ(t), and the trajectory x(t) = x(t′ − ǫ(t)) ≈ x(t′ − ǫ(t′)) ≈ x(t′) − ǫ(t′)ẋ(t′) to rewrite the

action,

S[x] =

∫ tf+ǫ(tf )

ti+ǫ(ti)

dt′

1 + ǫ̇(t′)
L(x(t′ − ǫ(t′)), ẋ(t′ − ǫ(t′))) +O

(
ǫ2
)
. (C29)

whose O (ǫ) part is

0 = −
∫ tf

ti

dt

(

ǫẋ
∂L

∂x
+
d

dt
ǫẋ
∂L

∂ẋ
+ ǫ̇L

)

+ ǫL(x(t), ẋ(t))

∣
∣
∣
∣

tf

ti

= −
∫ tf

ti

dt

[

ǫẋ

(
∂L

∂x
− d

dt

∂L

∂ẋ

)

+ ǫ̇L

]

+ ǫ

(

L− ẋ
∂L

∂ẋ

)tf

ti

. (C30)

The integral is vanishing in the last line because trajectory solves the original equation of mo-

tion and by setting a time-independent transformation parameter, ǫ(t) = ǫ, one finds that the

Hamiltonian,

H =
∂L

∂ẋ
ẋ− L, (C31)

is conserved.
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b. Internal symmetries

An internal symmetry transformation of field theory acts on the internal space only. We shall

consider linearly realized internal symmetries for simplicity,

δxµ = 0, δφa(x) = ǫτabφb(x). (C32)

where τ is called generator, c.f. section B. This transformation is a symmetry,

L(φ, ∂φ) = L(φ+ ǫτφ, ∂φ + ǫτ∂φ) +O
(
ǫ2
)
. (C33)

Let us introduce new ”coordinates”, ie. new field variable, Φ(φ), in such a manner that Φ1(x) = ǫ(x)

where φ(x) = φcl(x) + ǫ(x)τφcl(x), φcl(x) being the solution of the equations of movement. The

linearized Lagrangian for ǫ(x) is

L(ǫ, ∂ǫ) = L(φcl + ǫτφ, ∂φcl + ∂ǫτφ+ ǫτ∂φ)

=
∂L(φcl, ∂φcl)

∂φ
ǫτ +

∂L(φcl, ∂φcl)

∂∂µφ
[∂µǫτφ+ ǫτ∂µφ] +O

(
ǫ2
)
. (C34)

The symmetry, Eq. (C33), indicates that ǫ is a cyclic coordinate and the equation of motion

∂L(ǫ, ∂ǫ)

∂ǫ
− ∂µ

∂L(ǫ, ∂ǫ)

∂∂µǫ
= 0, (C35)

shows that the current,

Jµ =
∂L(ǫ, ∂ǫ)

∂∂µǫ
=
∂L(φcl, ∂φcl)

∂∂µφ
τφ (C36)

defined up to a multiplicative constant as the generalized momentum of ǫ, is conserved. Notice

that (i) we have an independent conserved current corresponding to each independent direction in

the internal symmetry group and (ii) the conserved current is well defined up to a multiplicative

constant only.

Examples:

1. Real scalar field: φa, a = 1, · · · , n, the symmetry group is G = O(n),

L =
1

2
(∂φ)2 − V (φ)

δφ = ǫaτaφ, τa ∈ o(n)

Ja
µ = ∂µφτ

aφ (C37)
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xδ

V

V’

FIG. 11: Deformation of the space-time region.

2. Complex scalar field: φa, a = 1, · · · , n, G = U(n)

L = ∂φ†∂φ− V (φ)

δφ = iǫaτaφ, τa ∈ u(n)

Ja
µ = i∂µφ

†τaφ− iφ†τa∂µφ (C38)

3. Electromagnetic current: φ, G = U(1) = SO(2), φ = φ1 + iφ2 = (φ1

φ2
), i = (0,−1

1, 0 )

L =
1

2
∂µφ1∂

µφ1 +
1

2
∂µφ2∂

µφ2 −m2(φ21 + φ22)− V (φ21 + φ22)

Jµ = −(∂µφ1,∂µφ2)(0,−1
1, 0 )(

φ1

φ2
) = −∂µφ2φ1 + 2∂µφ1φ2 = i(∂µφ

†φ− φ†∂µφ) = −iφ†
↔
∂ µφ(C39)

c. External Symmetries

The non-relativistic external symmetry group, the Galilean group consists of translations of

the space-time, rotations of the space and boosts and is a 4 + 3 + 3 = 10 dimensional continuous

group. The relativistic Poincaré group has the same dimension and contains translations and

Lorentz transformations of the space-time. We shall consider the conserved currents related to the

translation invariance only for the sake of simplicity.

We can rewrite the action in terms of the infinitesimally changed coordinates, x′µ = xµ + ǫµ,

S = S′. The invariance of S′ under the transformation x → x′ + ǫ φ(x) → φ′(x) = φ(x) + δφ(x),

δφ(x) = −ǫµ∂µφ(x), renders the O (ǫ) part of S′ vanishing,

0 =

∫

V
δL(φ(x), ∂φ(x)) +

∫

V ′−V
dxL(φ(x), ∂φ(x))

=

∫

V
δL(φ(x), ∂φ(x)) +

∫

∂V
dSνǫ

νL(φ(x), ∂φ(x))

= −
∫

V
dxǫν∂νφ

(
∂L(φ, ∂φ)

∂φ
− ∂µ

∂L(φ, ∂φ)

∂∂µφ

)

∫

∂V
dSµ

[

−ǫν∂νφ
∂L(φ, ∂φ)

∂∂µφ
+ ǫµL(φ, ∂φ)

]

(C40)
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The field configuration satisfies the equation of motion hence the first term on the right hand side

of the last equation is vanishing. This holds for arbitrary translation ǫν and space-time region, V ,

rendering the the energy-momentum tensor,

T µν =
∂L

∂∂νφ
∂µφ− gµνL (C41)

conserved, ∂µT
µν = 0. The ”charge” of the translation ǫν ,

Pµ =

∫

d3xT 0µ, (C42)

defines the energy-momentum vector. The energy-momentum tensor can be parametrized by

T µν =




ǫ cp

1
c s σ



 (C43)

where

ǫ = energy density

p = momentum density

S = energy flux density

σjk = momentum flux pk in the direction j (C44)

(c is restored).

The Lorentz symmetry leads to six conserved currents, 3 of which give the angular momentum

and other three are the generators of the Lorentz boosts. The conservation of angular momentum

can be used to prove that the energy-momentum tensor is symmetric, T µν = T νµ for bosonic field

theories.

Appendix D: Parallel transport along a path

The expression of parallel transport, the solution to Eq. (48) is worked out in this Appendix.

The solution can formally be written as

Wγ(y, x) = P
[

e−
∫ y

x
dγµAµ(γ)

]

= P
[

e−
∫ 1
0
ds dγµ(s)

ds
Aµ(γ(s))

]

, (D1)

by means of the path ordered product of non-commuting objects defined along the path γ, defined

as

P [A(sA)B(sB)] = Θ(sA − sB)A(sA)B(sB) + Θ(sB − sA)B(sB)A(sA). (D2)



97

To see that we have the correct solution let us write first the integral in the exponent in Eq. (D1)

as

∫ 1

0
ds
dγµ(s)

ds
Aµ(γ(s)) = lim

N→∞

1

N

N∑

j=1

dγµ(sj)

ds
Aµ(γ(sj)) (D3)

where sj = j/N . The exponential function of an operator is defined by its Taylor-series,

e−
1
N

∑N
j=1

dγµ(sj)

ds
Aµ(γ(sj)) = 1− 1

N

N∑

j=1

dγµ(sj)

ds
Aµ(γ(sj))

+
1

N2

N∑

j1,j2=1

dγµ(sj1)

ds

dγµ(sj2)

ds
Aµ(γ(sj1))Aµ(γ(sj2)) + · · · , (D4)

and the path ordering applies term-by-term,

Wγ(y, x) = lim
N→∞

[

1− 1

N

N∑

j=1

dγµ(sj)

ds
Aµ(γ(sj))

+
1

N2

N∑

j1,j2=1

dγµ(sj1)

ds

dγµ(sj2)

ds
P [Aµ(γ(sj1))Aµ(γ(sj2))] + · · ·

]

. (D5)

We would have

Wγ(y, x) = lim
N→∞

N∏

j=1

e−
1
N

dγµ(sj)

ds
Aµ(γ(sj)) (D6)

according to the well known rule eaeb = ea+b, valid for numbers, without paying attention to

the non-commutativity of the objects occurring in the product. But the path ordering places the

contributions corresponding to higher j more to the left in the products and we find

Wγ(y, x) = lim
N→∞

e−
1
N

dγµ(sN )

ds
Aµ(γ(sN )) · · · e− 1

N

dγµ(s1)
dτ

Aµ(γ(s1)) (D7)

by repeating the same resummation as in Eq. (D6). The path ordering succeeded in factorizing

the dependence on the N -th division point to the integral at the very left of the product. The final

step is the calculation of the partial derivative of W along the path,

1

N

dγµ

ds
∂yµWγ(y, x) = Wγ(y, x) −Wγ

(

y − 1

N

dγµ(sN )

ds
, x

)

=

[

e−
1
N

dγµ(sN )

ds
Aµ(γ(sN )) − 11

]

e−
1
N

dγµ(sN−1)

ds
Aµ(γ(sN−1)) · · · e− 1

N

dγµ(s1)
dτ

Aµ(γ(s1))

≈ − 1

N

dγµ(sN )

ds
Aµ(γ(sN ))Wγ

(

y − 1

N

dγµ(sN )

ds
, x

)

≈ − 1

N

dγµ(1)

ds
Aµ(γ(1))Wγ(y, x), (D8)

which yields Eq. (48).
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Appendix E: Gauge theory of the Poincaré group

The brief derivation of the Euler-Lagrange equations is presented here for the gauge theory

formalism based on the Poincaré-group. The external space is the space-time as usual. The gauge

group is chosen to be the symmetry of the local dynamics expressed in a coordinate system specified

by the Equivalence Principle. The gravitation interaction is absence and the Poincaré symmetry

of the Special Relativity is recovered in this coordinate system. Therefore the internal space is

chosen to be the fundamental representation of the Poincaré group, a four dimensional real vector

space equipped with the Lorentzian metric tensor

ηab =











1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1











. (E1)

Notice that this metric is homogeneous, space-time independent as required by the Equivalence

Principle. Gauge transformations act as

ξa(x)→ ξa(x) + Λa
b(x)ξ

b(x) + ζa(x) (E2)

where ξa(x) is the internal space coordinate corresponding to the space-time point x, Λa
b denotes

a Lorentz transformation matrix and ζa stands for translations. The gauge group, the Poincaré

group, is the direct product of translations and Lorentz transformations, P = T × L.

1. Covariant derivatives

We shall introduce the covariant derivative in the following steps. Fist we construct it for scalars

s(x), vectors va(x) and tensors tab···(x) of the internal Lorentz symmetry. Next we extend it for

vectors or tensors defined by the space-time, vµ(x), tµν···(x).

a. Vierbein

Let us start by recalling that the unique feature of gravity as gauge theory is that the internal

space is the tangent space of the base manifold. Therefore there is a unique correspondence between

infinitesimal translations in the internal and the external spaces and the dependence on x and ξ

can be traded locally. A function f(y) defined in the vicinity of x gives rise the function

fx(ξ) = f(x+∆x) (E3)
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defined in the vicinity of the origin of the Lorentz space where

ξa = eaµ∆x
µ. (E4)

The matrix eaµ relating the directions in the two spaces,

eaµ =
∂ξa

∂xµ
, (E5)

is called vierbein. The relation

eaµ∂as =
∂s

∂xµ
= ∂µs (E6)

follows in an obvious manner and allows to represent the functions over the space-time locally as

functions over the tangent space, according to the intuitive role played by the coordinates in the

Equivalence Principle.

The inverse of the transformation (E5) is

eµa =
∂xµ

∂ξa
, (E7)

and the metric tensor is given by

gµν(x) = eµa(x)η
abeνb (x). (E8)

Thus we have the identities

eµae
a
ν = δµν , eµae

b
µ = δba, (E9)

and any vector or tensor can be represented as a Lorentz or world vector or tensor as in Eq. (E6),

eg.

vµ =
∂xµ

∂ξa
va = eµav

a, va =
∂ξa

∂xµ
vµ = eaµv

µ. (E10)

Note that the invariant integral measure can be written as

√

− det gµνd
4x = det(eaµ)d

4x. (E11)

b. Holonomic and anholonomic vector fields

The Equivalence Principle assures that the gravitation interaction can locally by eliminated by

a suitable choice of the coordinate system which is realised by the internal space. This special

coordinate system can be extended in a finite regions in the absence of gravitational field only.
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What is the condition on four world vector fields eµa(x) with a = 0, 1, 2, 3 for the existence of a

coordinate systems with these coordinate axes?

The solution of the differential equation

∂xµ(ξ)

∂ξ
= eµ(x) (E12)

can be written as

xµ(ξ) = e
ξ ∂
∂ξxµ(0). (E13)

We are now looking for the coordinates, defined by the coordinate axes

∂xµ(ξ)

∂ξa
= eµa(x). (E14)

Let us suppose that the world vectors eµa(x) are independent and the derivatives ∂a = ∂
∂ξa commute,

[∂a, ∂b] = [eµa∂µ, e
ν
b∂ν ]

= (eµa∂µe
ν
b − eµb ∂µeνa)∂ν = 0. (E15)

Then the coordinates can locally be introduced for example by

xµ(ξ) = e
ξ0 ∂

∂ξ0 e
ξ1 ∂

∂ξ1 e
ξ2 ∂

∂ξ2 e
ξ3 ∂

∂ξ3 xµ(ξ)ξ=0. (E16)

In fact, by varying ξ around zero we cover all four dimensions and

∂ax
µ(0) = ∂ae

ξ0 ∂

∂ξ0 e
ξ1 ∂

∂ξ1 e
ξ2 ∂

∂ξ2 e
ξ3 ∂

∂ξ3 xµ(ξ)ξ=0

= ∂a

(

1 + ξa
∂

∂ξa

)

xµ(ξ)ξ=0

= eµa(x(0)). (E17)

When the vectors eµa are independent only but the commutators are non-vanishing then ξa is

already an admissible coordinate system but the coordinate axes are different than the vectors eµa .

Conversely, let us suppose that the the solution of the system of differential equations lead to

admissible coordinates. The invertibility of the coordinate transformation requires the indepen-

dence of the world vectors eµa and the commutativity of the derivatives, ie. the symmetry of partial

derivatives of continuously derivable functions is trivial in the coordinate system ξa.

The vectors eµa are called holonomic if they are the directional vectors of a local coordinate

system. Therefore the vierbein defines anholonomic vectors in the presence of gravitational field.
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c. Local Lorentz transformations

The covariant derivative involves a generator valued vector field. The gauge group is a direct

product, P = T × L, therefore there will be separate gauge fields for translations and Lorentz

transformations. Due to continuity requirements the proper Lorentz group is generated by these

generators only, discrete inversions will be left out.

Local Lorentz transformations generate space-dependent orientation for the orthogonal Lorentz

coordinate basis and lead to the covariant derivative

D(L)
µ =

∂

∂xµ
+ ωµ (E18)

where the affine connection, ωabµ = ηac(ωµ)
c
b = ηacω

c
bµ, ωabµ = −ωbaµ is a generator of the special

Lorentz group in the fundamental representation (E2). The connection acts in the internal space

only, ie. on Lorentz tensors Ta,b,···, eg.

D(L)
µ vb = ∂µv

b + ωb
cµv

c (E19)

and considers the world tensors Tµν··· as scalars,

D(L)
µ vµ = ∂µv

µ. (E20)

In order to preserve the Lorentzian scalar product by parallel transport,

D(L)
µ (vbu

b) = ∂µ(vbu
b) (E21)

we define

D(L)
µ vb = ∂µvb − vcωc

bµ. (E22)

Notice the vanishing of the covariant derivative of the internal space metric,

D(i)
µ ηab = ωa

cµη
cb + ωb

cµη
ac

= ωab
µ + ωba

µ

= 0. (E23)

d. Local translations

Local translations generate space-time dependent shift of the Lorentz coordinate system which

in turn induces a shift in the space-time due to the fact that the internal space is the tangent space
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of the space-time. The corresponding covariant derivative is

D(T )
µ s = δaµ∂as+ taµ∂as = eaµ∂as (E24)

for a scalar function s(x) with taµ(x) as gauge field. The first term on the right hand side implements

the infinitesimal shift ∆xµD
(T )
µ in the internal space which corresponds to an infinitesimal shit

∆xµ∂µ in the external space and the second terms compensates for the difference of the position

of the origin of the internal coordinate system at the space-time points x and x + ∆x. Thus the

vierbein, satisfying Eq. (E6) is

eaµ = δaµ + taµ. (E25)

e. Full local Poincare group

The full internal symmetry is incorporated into the covariant derivative D
(i)
µ acts as D

(L)
µ ,

D(i)
µ s = D(T )

µ s = D(L)
µ s = ∂µs

D(i)
µ vb = δaµ∂av

b + taµ∂av
b + ωb

cµvc = ∂µv
b + ωb

cµvc = D(L)
µ vb

D(i)
µ vb = δaµ∂avb + taµ∂avb − vcωc

bµ = ∂µvb − vcωc
bµ = D(L)

µ vb (E26)

on scalars and Lorentz tensors and treating world vectors and tensors as scalars because ∂µ can be

considered as the covariant derivative for local translations.

It is an unusual feature that one can introduce derivatives in the internal space directions, ∂a.

The corresponding covariant derivative is

D(i)
a = eµaD

(i)
µ = eµa(∂µ + ωµ). (E27)

Notice the natural relation

D(i)
a v = ∂av + eµat

b
µ∂bv = ∂av + eµa(e

b
µ − δbµ)∂bv = 2∂av − eµaδbµ∂bv = ∂av. (E28)

f. World vectors and tensors

We could stop at this stage and start to work out the gauge theory for the Poincaré group by

means of the covariant derivative D(i). The drawback would be to use the internal Minkowski space

vectors va or tensors tab... only. This is obviously an artificial constraint because the coordinates xµ

lead naturally to world vectors vµ or tensors tµν.... In order to be construct covariant equations for
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these vectors or tensors we need the covariant derivative for the GL(4) gauge theory, controlling

the effects of coordinate transformations induced by the application of the local Poincaré group

in the internal space. The usual affine connection Γµ, introduced in differential geometry, realizes

this covariant derivative

D(e)
µ = ∂µ + Γµ (E29)

by acting on world scalars, vectors and tensors, eg.

D(e)
µ s = ∂µs

D(e)
µ vν = ∂µv

ν + Γν
ρµv

ρ

D(e)
µ vν = ∂µvν − vρΓν

ρµ. (E30)

The most general covariant derivatives D compensates in all spaces and indices, eg. its action

a Lorentz and world vector vaµ is

(Dνv)
aµ = [∂νv + (ων + Γν)v]

aµ, (E31)

etc.

2. Field strength tensors

The field strength tensor,

Fµν = [Dµ,Dν ] = [∂µ + Γµ + ωµ, ∂ν + Γν + ων ]

= ∂µων − ∂νωµ + [ωµ, ων ] + ∂µΓν − ∂νΓµ + [Γµ,Γν ], (E32)

is called curvature, it satisfies the Bianchi identity,

0 = [Dµ, [Dν ,Dρ]] + [Dν , [Dρ,Dµ]] + [Dρ, [Dµ,Dν ]]

= [Dµ, Fνρ] + [Dν , Fρµ] + [Dρ, Fµν ]

= DµFνρ +DνFρµ +DρFµν . (E33)

The field strength tensor acting on the internal space,

F (i)
µν = [D(i)

µ ,D(i)
ν ] = [∂µ + ωµ, ∂ν + ων] = ∂µων − ∂νωµ + [ωµ, ων ], (E34)

reads as

F
(i)a

bµν = (F (i)
µν )

a
b = ∂µω

a
bν − ∂νωa

bµ + ωa
cµω

c
bν − ωa

cνω
c
bµ (E35)
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when all indices are shown. One can introduce

F
(i)
cdµν = ηceF

(i)e
dµν = −F (i)

cdνµ = −F (i)
dcµν . (E36)

The field strength tensor for the external space reads as

F (e)
µν = [D(e)

µ ,D(e)
ν ] = [∂µ + Γµ, ∂ν + Γν ] = ∂µΓν − ∂νΓµ + [Γµ,Γν ] (E37)

or

F (e)ρ
σµν = (F (e)

µν )
ρ
σ = ∂µΓ

ρ
σν − ∂νΓρ

σµ + Γρ
κµΓ

κ
σν − Γρ

κνΓ
κ
σµ. (E38)

The field strength tensor corresponding to internal directions is

Fab = [Da,Db] = [eµaDµ, e
ν
bDν ]

= eµae
ν
b [Dµ,Dν ] + eµa [Dµ, e

ν
b ]Dν + eνb [e

µ
a ,Dν ]Dµ + [eµa , e

ν
b ]DνDµ

= eµae
ν
bFµν + eµa [Dµ, e

ν
b ]Dν + eνb [e

µ
a ,Dν ]Dµ

= eµae
ν
bFµν + eµaDµe

ν
bDν − eµaeνbDµDν + eνb e

µ
aDνDµ − eνbDνe

µ
aDµ

= eµae
ν
bFµν + eµa(Dµe

ν
b )Dν − eνb (Dνe

µ
a)Dµ

= eµae
ν
bFµν + Sµ

abDµ (E39)

with

Sµ
ab = eνaDνe

µ
b − eνbDνe

µ
a

= Dae
µ
b −Dbe

µ
a

= eνa(∂νe
µ
b − eµcωc

bν + Γµ
ρνe

ρ
b)− eνb (∂νeµa − eµcωc

aν + Γµ
ρνe

ρ
a) (E40)

being the torsion tensor. The translational part of Da defines the field strength tensor

tµab = ∂ae
µ
b − ∂beµa , (E41)

cf. Eq.(E15), because

[∂a, ∂b] = [eµa∂µ, e
ν
b∂ν ]

= eµa [∂µ, e
ν
b ]∂ν + eνb [e

µ
a , ∂ν ]∂µ + [eµa , e

ν
b ]∂ν∂µ

= eµa [∂µ, e
ν
b ]∂ν + eνb [e

µ
a , ∂ν ]∂µ

= eµa∂µe
ν
b∂ν − eµaeνb∂µ∂ν + eνb e

µ
a∂ν∂µ − eνb∂νeµa∂µ

= eµa(∂µe
ν
b )∂ν − eνb (∂νeµa)∂µ

= tµab∂µ. (E42)
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3. Variational equations

Let us suppose that the action can be written as

S = Sg[e, ω] + Sm[φ, e, ω] (E43)

where Sm[φ, e, ω] controls the dynamics of the matter field, denoted generically by φ on a given

geometry, specified by the fields e and ω. For a scalar field we may have

Sm[φ, e, ω] =

∫

dxE

[
1

2
D(e)

µ φD(e)µφ− V (φ)

]

(E44)

where

E = deteaµ (E45)

and for a fermion

Sm[ψ̄, ψ, e, ω]

∫

dxEψ̄iγa eµa(∂µ + ωab
µ τab)

︸ ︷︷ ︸

Da

ψ (E46)

with τab = −1
4 [γa, γb]. The gravitational action is chosen to be of the Einstein-Hilbert type,

Sg[e, ω] = −
1

16πG

∫

dxER. (E47)

a. Variation of ω

The scalar curvature can be written as

R = ηbcF a
bac

= ηbdeµae
ν
d(∂µω

a
bν − ∂νωa

bµ + ωa
cµω

c
bν − ωa

cνω
c
bµ)

= ηbd(eµae
ν
d − eνaeµd )(∂µωa

bν + ωa
cµω

c
bν)

= ηbdT µν
ad (∂µω

a
bν + ωa

cµω
c
bν) (E48)

where

T µν
ab = eµae

ν
b − eνaeµb . (E49)

The variation of the Lorentz connection gives the equation

0 = −16πG δS

δωa
bµ

= EηcdT µν
ad ω

b
cν + EηbdT νµ

cd ω
c
aν − ∂ν(EηbdT νµ

ad )

= ET µνc
a ωb

cν +ET νµb
c ωc

aν − ∂ν(ET νµb
a )

= −Eωb
cνT

νµc
a + ET νµb

c ωc
aν − ∂ν(ET νµb

a )

= −D(i)
ν (ET νµb

a ) (E50)
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The relation

∂µE = ∂µe
tr ln e = etr ln etre−1∂µe = Eeνa∂νe

a
µ (E51)

allows us to write it in the form

0 = ET νµb
a eρc∂ρe

c
ν +E∂νT

νµb
a + Eωb

cνT
νµc
a − ET νµb

c ωc
aν

= E[T νµb
a eρc∂ρe

c
ν + ∂νT

νµb
a + ωb

cνT
νµc
a − T νµb

c ωc
aν ]

= E[T νµb
a eρc∂ρe

c
ν +D(i)

ν T νµb
a ]

(E52)

or

−T νµb
a eρc∂ρe

c
ν = ∂νT

νµb
a + ωb

cνT
νµc
a − T νµb

c ωc
aν (E53)

which in turn gives

T νµ
ab ∂ρe

ρ
ce

c
ν = −T νµ

ab e
ρ
c∂ρe

c
ν

= ∂νT
νµ
ab + ωbcνT

νµc
a − T νµ

cb ω
c
aν

= ∂νT
νµ
ab − ωcbνT

νµc
a − T νµ

cb ω
c
aν

= ∂νT
νµ
ab − ωc

bνT
νµ
ac − T νµ

cb ω
c
aν

= DνT
νµ
ab . (E54)

In order to solve the equation

T νµ
ab ∂ρe

ρ
ce

c
ν = ∂νT

νµ
ab − ωc

bνT
νµ
ac − T νµ

cb ω
c
aν (E55)

for the Lorentz connection we write

(eνae
µ
b − eµaeνb )∂ρeρcecν = ∂ν(e

ν
ae

µ
b − eµaeνb )− ωc

bν(e
ν
ae

µ
c − eµaeνc )− (eνc e

µ
b − eµc eνb )ωc

aν

eµb ∂ρe
ρ
a − eµa∂ρeρb = ∂ν(e

ν
ae

µ
b − eµaeνb ) + ωc

bce
µ
a − ωc

ace
µ
b + 2ωµ

ab (E56)

and we find

2ωµ
ab + ωc

bce
µ
a − ωc

ace
µ
b = tµab (E57)

where

tµab = ∂ν(e
ν
ae

µ
b − eµaeνb )− e

µ
b ∂ρe

ρ
a + eµa∂ρe

ρ
b (E58)
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It will be more useful to have Lorentz indices only for the connection, therefore we multiply Eq.

(E57) by edµ

2ωd
ab + ωc

bcδ
d
a − ωc

acδ
d
b = tdab. (E59)

To find the second and third terms on the left hand side we contract the indices a and d and find

ωc
bc =

1

3
tccb (E60)

by recalling the antisymmetry of the spacial Lorentz group generators, ωabc = −ωbac. This result

leads us to the solution

ωd
ab =

1

6
tccaδ

d
b −

1

6
tccbδ

d
a +

1

2
tdab (E61)

where

tcab = ecµ∂ν(e
ν
ae

µ
b − eµaeνb )− δcb∂ρeρa + δca∂ρe

ρ
b

= ecµ∂νe
ν
ae

µ
b − ecµ∂νeµaeνb + ecµe

ν
a∂νe

µ
b − ecµeµa∂νeνb − δcb∂ρeρa + δca∂ρe

ρ
b

= δcb∂νe
ν
a − ecµeνb∂νeµa + ecµe

ν
a∂νe

µ
b − δca∂νeνb − δcb∂ρeρa + δca∂ρe

ρ
b

= ecµe
ν
a∂νe

µ
b − ecµeνb∂νeµa

= ecµ(∂ae
µ
b − ∂beµa)

= ecµt
µ
ab. (E62)

is given in terms of the translational field strength tensor introduced in Eq. (E41). Its contracted

expression,

tbba = ebµ(∂be
µ
a − ∂aeµb )

= ∂µe
µ
a − ebµeνa∂νeµb , (E63)

inserted in Eq. (E61) gives

ωc
ab =

1

6
tddaδ

c
b −

1

6
tddbδ

c
a +

1

2
tcab

=
1

6
(∂µe

µ
a − edµeνa∂νeµd )δcb −

1

6
(∂µe

µ
b − edµeνb∂νe

µ
d )δ

c
a +

1

2
ecµe

ν
a∂νe

µ
b −

1

2
ecµe

ν
b∂νe

µ
a (E64)
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and

ωc
aµ =

1

6
ebµ∂ρe

ρ
aδ

c
b −

1

6
ebµe

d
ρe

ν
a∂νe

ρ
dδ

c
b −

1

6
ebµ∂ρe

ρ
bδ

c
a +

1

6
ebµe

d
ρe

ν
b∂νe

ρ
dδ

c
a +

1

2
ebµe

c
ρe

ν
a∂νe

ρ
b −

1

2
ebµe

c
ρe

ν
b∂νe

ρ
a

=
1

6
ecµ∂ρe

ρ
a −

1

6
ecµe

d
ρe

ν
a∂νe

ρ
d −

1

6
δcae

b
µ∂ρe

ρ
b +

1

6
δcae

d
ρ∂µe

ρ
d +

1

2
ebµe

c
ρe

ν
a∂νe

ρ
b −

1

2
ecρ∂µe

ρ
a

=
1

6
ecµe

b
ρ∂be

ρ
a −

1

6
ecµe

d
ρ∂ae

ρ
d −

1

6
δcae

b
µe

d
ρ∂de

ρ
b +

1

6
δcae

d
ρe

b
µ∂be

ρ
d +

1

2
ebµe

c
ρ∂ae

ρ
b −

1

2
ecρe

b
µ∂be

ρ
a

=
1

6
ecµe

b
ρt

ρ
ba +

1

6
δcae

b
µe

d
ρt

ρ
bd +

1

2
ebµe

c
ρt

ρ
ab

=
1

6
(ecµδ

d
ae

b
ρ + δcae

b
µe

d
ρ − 3ecρδ

d
ae

b
µ)t

ρ
bd. (E65)

Notice that the affine connection of the external space covariant derivative does not appear in

this equation because the scalar curvature (E48) is expressed in terms of the field strength tensor

of ωµ.

b. Variation of e

We consider vierbein components eaµ as independent variables and the variation of

eνae
a
µ = δνµ (E66)

gives

δeνae
a
µ + eνaδe

a
µ = 0 (E67)

and

δeνb = −eµb eνaδeaµ. (E68)

The variational equation for the vierbein which appears in the tensor T µν
ab , given by Eq. (E49)

and in the determinant E is

0 = −16πG δS

δebρ
= 16πG

δS

δeκc
eκb e

ρ
c = 16πG

(

E
δR

δT µν
ad

δT µν
ad

δeκc
+
δE

δeκc
R

)

eκb e
ρ
c (E69)

what we can write by means of Eqs. (E48) and

δE = δetr ln e = etr ln etre−1δe = Eeµaδe
a
µ = −Eeaµδeµa (E70)

as

0 = ηbd(∂µω
a
bν + ωa

eµω
e
bν)(δ

µ
κδ

c
ae

ν
d + eµaδ

ν
κδ

c
d − δνκδcaeµd − eνaδµκδcd)− ecκR

= (∂µω
ad
ν + ωa

eµω
ed
ν)(δ

µ
κδ

c
ae

ν
d + eµaδ

ν
κδ

c
d − δνκδcaeµd − eνaδµκδcd)− ecκR

= (∂κω
cd
ν + ωc

eκω
ed
ν)e

ν
d + (∂µω

ac
κ + ωa

eµω
ec
κ)e

µ
a − (∂µω

cd
κ + ωc

eµω
ed
κ)e

µ
d

−(∂κωac
ν + ωa

eκω
ec
ν)e

ν
a − ecκR (E71)
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We contract the last equation with eκb and write

0 = (∂κω
cd
ν + ωc

eκω
ed
ν)e

ν
de

κ
b + (∂µω

ac
κ + ωa

eµω
ec
κ)e

µ
ae

κ
b

−(∂µωcd
κ + ωc

eµω
ed
κ)e

µ
de

κ
b − (∂κω

ac
ν + ωa

eκω
ec
ν)e

ν
ae

κ
b − δcbR

= 2(eνde
κ
b − eκdeνb )(∂κωcd

ν + ωc
eκω

ed
ν)− δcbR. (E72)

The Ricci tensor

Rbc = eνc e
µ
aF

a
bµν

= eνc e
µ
a(∂µω

a
bν − ∂νωa

bµ + ωa
cµω

c
bν − ωa

cνω
c
bµ)

= (eνc e
µ
a − eµc eνa)(∂µωa

bν + ωa
cµω

c
bν)

= T νµ
ca (∂µω

a
bν + ωa

cµω
c
bν) (E73)

gives finally the Einstein equation

Rab −
1

2
ηabR = 0 (E74)

c. Affine connection for world vectors

The affine connection Γµ appearing in the covariant derivative D(e) has not been included in

the action (E47) and it will be determined by a non-dynamical principle. The parallel transport

of a vector vµ during a displacement δxµ, expressed by the equation

δxνD(e)
ν vµ = 0 (E75)

must be equivalent with the similar equation expressing the parallel transport of the vector va,

δxνD(i)
ν va = 0. (E76)

The covariant condition for the equivalence of the two parallel transports, valid for arbitrary vector

field va, is

D(e)
ν eµav

a = eµaD
(i)
ν va. (E77)

The combination eµava is an internal space scalar,

D(e)
ν eµav

a = Dνe
µ
av

a (E78)

thus we have

Dνe
µ
av

a = eµaDνv
a, (E79)
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or

Dνe
µ
a = 0 (E80)

which leads to metric admissibility,

Dνe
µ
aη

abeκb = Dνg
µκ = 0 (E81)

The affine connection, Γ, can easily be obtained by solving Eq. (E80),

Dνe
µ
a = D(i)

ν eµa + Γµ
ρνe

ρ
a = 0 (E82)

with the result

Γµ
ρν = −eaρDνe

ρ
a

= eµaDνe
a
ρ

= eµa∂νe
a
ρ + eµaω

a
νbe

b
ρ 6= Γµ

νρ. (E83)


