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I. TRAJECTORIES IN CLASSICAL AND AND QUANTUM MECHANICS

The formal structure of quantum mechanics prevents us to use our intuition in interpreting

the basic equations. The path integral formalism offers an alternative where some ingredients of

classical mechanics can be salvaged.

The starting point of the mechanics is the concept of the state of motion, the set of information

which specifies the history of a point particle as the function of the time. The Newton equation

is second order in the time derivative hence we need two data per degree of freedom to identify

the time evolution, described by the trajectory, x(t). The Schrödinger equation is first order

in the time derivative thus it is sufficient to specify the wave function at the initial time and

the quantum mechanical state can be specified by the help of the coordinate alone. This is a well

known problem, the Heisenberg uncertainty principle, ∆x∆p ≥ ~/2, forces us to use the coordinate

or the momentum or a combination of the two to define the state of motion. The main victim

of the restriction is the trajectory, x(t). In fact, had we known the trajectory of a particle by a

continuous monitoring of its location then we would have access to the coordinate and velocity,

ie. the momentum simultaneously. The path integral formalism, guessed by Dirac and worked out

in detail by Feynman, offers an alternative way to describe the transition amplitudes of a particle

in quantum mechanics in terms of trajectories. Naturally the trajectory of this formalism is not

unique, we have actually an integration over trajectories.

Imagine the propagation of a particle from the point S to D where a particle detector is placed

in such a manner that a number of screens, each of them containing several small holes, are placed

in between the source and the detector, c.f. Fig. 1. The particle propagates through the holes

and the amplitude of detecting the particle, A, is the sum over the possible ways of reaching the

detector. This is a sum over rectangles from the source to the detector. In the limit when the

screens are placed closed to each others thus the particle traverses the next screen after a short

time of flight and the size of a hole become small and close to each others a rectangle approaches
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FIG. 1: The particle propagates from the source S to the location of the detector D through the holes of a

system of screens. The amplitude of propagation is the sum of all possible ways of reaching the detector.

a trajectory and the amplitude can be written as

A =
∑

path

A(path). (1)

This result reintroduces a part of classical physics in quantum mechanics and offers a help to our

intuition towards the understanding of quantum physics.

II. BROWNIAN MOTION

It is instructive to consider the problem of random walk where the path integral formalism

arises in an intuitively clear and obvious manner.

The probabilistic description of a classical particle is based on the probability density p(x, t)

and the probability current j(x, t), satisfying the continuity equation

∂tp = −∇j. (2)

Fick’s equation relates the current to the inhomogeneity of the probability density

j = −D∇p, (3)

in the absence of external forces, where D denotes the diffusion constant. The continuity equation

allows us to write

∂tp = D∆p. (4)
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This equation, called the diffusion or heat equation can formally be related to the Schrödinger

equation,

i~∂tψ = − ~
2

2m
∆ψ (5)

by the Wick rotation, ie. the analytic continuation to complex time, tSch ↔ −i~tdiff and the

replacement ~2

2m ↔ D.

The Green function of the diffusion equation, (4), which corresponds to the initial condition

p(x, ti) = δ(x − xi) is called the Green function of eq. (4) and will be denoted by G(x, tf ;xi, ti)

for tf > ti. It is the conditional probability density that the particle is found at x at the time tf

assuming that its location was xi at time ti: p(to ← from) = G(to; from). The solution of the

diffusion equation which corresponds to the generic initial condition p(x, ti) = pi(x) can be written

as

p(x, t) =

∫

d3yG(x, t;y, ti)pi(y). (6)

Te verify this claim we have to check two points:

1. Solution: The diffusion equation is linear hence this expression, a linear superposition of

solutions is a solution, too.

2. Initial condition: It satisfies the desired initial condition,

p(x, ti) =

∫

d3yG(x, ti;y, ti)pi(y)

=

∫

d3yδ(x− y)pi(y)

= pi(x). (7)

The conditional probability,

p(A|B) =
p(A ∩B)

p(B)
, (8)

gives p(A ∩B) = p(A|B)p(B), and

p(A ∩B) =
∑

j

p(A|Bj)p(Bj) (9)

B = ∪jBj, Bj∩Bj = ∅. The comparison of eqs. (6) and (9) where p(B) = 1 yields the interpretation

of the Green function G(x, ti;xi, ti) as the conditional probability that the particle moves from xi

at ti to x at t.
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The expression (6) solves the diffusion equation for an arbitrary initial condition hence the

equation

∂tG(x, t,y; ti) = D∆xG(x, t;y, ti) (10)

follows for the Green function. It is easy to verify that

G(x, tf ,y; ti) =
1

[4πD(tf − ti)]d/2
e
− (x−y)2

4D(tf−ti) (11)

satisfies eq. (10) in dimension d and the initial condition G(x, t,y; t) = δ(x − y) as t→ ti.

The particle must be somewhere at a given, fixed intermediate time ti < t′ < t during its motion

from xi to x. Therefore the probability of moving from xi to x can be written as

p(x, t) =

∫

d3zd3yG(x, t, ;z, t′)G(z, t′;y, t0)pi(y). (12)

The expression (6) of the left hand side, valid for arbitrary pi(y) yields the Chapman-Kolmogorov

equation,

G(x, t,xi; ti) =

∫

d3zG(x, t, ;z, t′)G(z, t′;xi, t0). (13)

By breaking the finite time of the propagation, t−ti into N+1 parts and applying the Chapman-

Kolmogorov equation N -times one finds

G(x, t;xi, ti) =

∫

d3z1 · · · d3zNG(x, t;zn, tn)G(zn, tn;zn−1, tn−1) · · ·

· · ·G(z2, t2;x1, t1)G(z1, t1;xi, ti)

=
1

(4πD∆t)3(N+1)/2

∫

d3z1 · · · d3zNe−
∆t
4D

∑N
n=0(

zn+1−zn

∆t
)2 , (14)

where tn = ti+n∆t, ∆t = 1/(N+1), z0 = xi and zN+1 = x. The right hand side can be considered

as a summation over paths, made by piece wise linear functions which becomes an integral over

paths in the continuum limit, N →∞, and can formally be written as

G(x, t;xi, ti) =

∫

D[x]e
− 1

4D

∫ t

ti
dt′ẋ2

, (15)

where the integration is over trajectories with initial and end points x(ti) = xi and x(t) = x,

respectively and divergent normalization factor of the second line of eqs. (14) is included in the

integral measure. Such an integration over trajectories is called Wiener process.

A word of caution about the continuous notation: Almost all trajectory of the Wiener process is

non-differentiable. In other word, the differentiable trajectories have vanishing weight in the Wiener

integral in the limit N → ∞. The heuristic argument goes by inspecting the finite difference of
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trajectories with ∆t-independent weight, they must have ∆xn = xn+1 − xn =
√
∆t according to

eq. (14), therefore v = ∆x/∆t = O
(
∆t−1/2

)
. The Wiener process is concentrated on fractals and

the velocity, ẋ, appearing in the continuous notation of (15) must be handled symbolically, e.g.

should be replaced by the discrete version, (14), as soon as it is used in a calculation.

III. PROPAGATOR

Let us consider a one dimensional non-relativistic particle described by the Hamiltonian

H =
p2

2m
+ U(x) (16)

with [x, p] = i~ and introduce the propagator or transition amplitude

〈xf |e−
i
~
Ht|xi〉 (17)

between coordinate eigenstates.

The amplitude (17) is a complicated function of the variables t, xi and xf . We simplify the

problem of finding it by computing it first for short time when it takes a simpler form and by

constructing the finite time transition amplitude from the short time one. This latter step is

accomplished by writing

〈xf |e−
i
~
Ht|xi〉 = 〈xf |

(

e−
i
~
H∆t

)N
|xi〉 (18)

with ∆t = t/N and inserting a resolution of the identity,

11 =

∫

dx|x〉〈x|, (19)

between each operator,

〈xf |e−
i
~
Ht|xi〉 =

N−1∏

j=1

∫

dxj〈xN |e−
i
~
H∆t|xN−1〉〈xN−1|e−

i
~
H∆t|xN−2〉 · · · 〈x1|e−

i
~
H∆t|x0〉, (20)

where x0 = xi and xN = xf . This relation which holds for any N becomes a path integral as

N →∞. In fact, any trajectory between the given initial and final point can be approximated by a

piece wise constant function when the length of the time interval ∆t when the function is constant

tends to zero.

In order to turn the simple path integral expression (20) into something useful we need a simple

approximation for the short time transition amplitudes. There are O (N) of them multiplied
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together therefore it is enough to have O
(
N−1

)
= O (∆t) accuracy in obtaining them. The first

guess would be

〈x|e− i
~
H∆t|x′〉 ≈ 〈x|1− i

~
H∆t|x′〉

= 〈x|x′〉
(

1− i∆t

~

〈x|H|x′〉
〈x|x′〉

)

≈ 〈x|x′〉e
i
~
∆t 〈x|H|x′〉

〈x|x′〉 (21)

but the problem is the orthogonality of the basis vectors 〈x|x′〉 = δ(x − x′). In fact, the small

parameter in the expansion is ∆t/〈x|x′〉 which is diverging for x 6= x′. To avoid this problem we

use two overlapping basis in an alternating manner. In case of continuous space the choice of the

other, overlapping basis is rather natural. It will be a momentum basis, |p〉 with p|q〉 = q|q〉. The
corresponding resolution of the identity,

11 =

∫
dp

2π~
|p〉〈p|, (22)

inserted in Eqs. (21) yields

〈x|e− i
~
H∆t|x′〉 =

∫
dp

2π~
〈x|e− i

~
H∆t|p〉〈p|x′〉

≈
∫

dp

2π~
〈x|1− i

~
H∆t|p〉〈p|x′〉

=

∫
dp

2π~
〈x|p〉〈p|x′〉

(

1− i∆t

~

〈x|H|p〉
〈x|p〉

)

≈
∫

dp

2π~
e

i
~
p(x−x′)− i

~
∆tH(p,x) (23)

with

H(p, x) =
〈x|H|p〉
〈x|p〉 =

p2

2m
+ U(x). (24)

By replacing this expression into Eq. (20) we arrive at a path integral in phase space,

〈xf |e−
i
~
Ht|xi〉 = lim

N→∞

N−1∏

j=1

∫

dxj

N∏

k=1

∫
dpk
2π~

e
i
~
∆t

∑N
ℓ=1[pℓ

xℓ−xℓ−1
∆t

−H(pℓ,xℓ)], (25)

with x0 = xi and xN = xf which can be written in a condensed, formal notation as

〈xf |e−
i
~
Ht|xi〉 =

∫ x(t)=xf

x(0)=xi

D[x]

∫

D[p]e
i
~

∫

dτ [p(τ)ẋ(τ)−H(p(τ),x(τ))] (26)

by suppressing the regulator, ∆t. The integration over coordinate or momentum trajectories of

fixed or free initial and final points, respectively. We shall see that the continuous notation is as
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symbolic as for the Wiener measure, but notice here already that there is one more momentum

integral than coordinate integration in eq. (25), preventing the quantum mechanical formalism

to display canonical invariance which would follow only for canonical invariant integral measure,
∏

j

∫
dxjdpj .

The integrand in the exponent seems to be the Lagrangian of the analytical mechanics. However

rather than relying on this classical analogy the momentum integral has to be performed in the

quantum case. We start with Gauss’ formula,

∫ ∞

−∞
dxe−

a
2
x2 =

√

2π

a
, (27)

valid if for a > 0, yielding

∫ ∞

−∞
dxe−

a
2
x2+bx =

√

2π

a
e

b2

2a (28)

after writing the exponent of the integrand in the form −a
2 (x − b

a)
2 + b2

2a and carrying out the

change of integration variable, x→ x+ b
a . The integral

∫ ∞

−∞
dxei

a
2
x2+ibx (29)

with real a can be calculated by analytic continuation by assuming Im a > 0. The correct Riemann-

sheet of the square root is chosen by requiring Reai > 0, giving rise to the Fresnel integral,

∫ ∞

−∞
dxei

a
2
x2+ibx =

√

2π

|a|e
−i b2

2a
+isign(Re a)π

4 (30)

This result allows us to write the integral (25) as

〈xf |e−
i
~
Ht|xi〉 =

√
m

2πi~∆t
lim
N→∞

N−1∏

j=1

√
m

2πi~∆t

∫

dxje
i
~
∆t

∑N
ℓ=1[

m
2
(
xℓ−xℓ−1

∆t
)2−U(xℓ)] (31)

in coordinate space which reads in condensed notation

〈xf |e−
i
~
Ht|xi〉 =

∫ x(t)=xf

x(0)=xi

D[x]e
i
~
S[x] (32)

with

S[x] =

∫

dτL(x(τ), ẋ(τ)), L =
m

2
ẋ2 − U(x). (33)

The expressions (26) and (32) are easy to memorize but are formal because the functional integra-

tion measure is defined by a limiting procedure, spelled out in the more involved expressions (25)

and (31). The integration over the momentum recovers the Lagrangian (33) from the Hamiltonian
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(16). Such an agreement with the Legendre transformation of Classical Mechanics is restricted to

the Gaussian integration, i.e. Hamiltonians of the form (16), which are quadratic in the momentum

and contain the dependence in the coordinate as an additive term.

We consider now few trivial but important generalizations of eq. (32). First seek the solution

ψ(t, x) of the Schrödinger equation, corresponding to the initial condition, ψ(ti, x) = ψi(x) by

inserting a closing relation into

ψ(t, x) = 〈x|e− i
~
Ht|ψi〉 =

∫

dxi〈x|e−
i
~
Ht|xi〉〈xi|ψi〉, (34)

which we write as

ψ(t, x) =

∫

x(t)=xf

D[x]e
i
~
S[x]ψi(x(ti)) (35)

where the integration of the initial point is carried out with the weight, given by the wave function

of the initial state. Another generalization consists of the calculation of the matrix element

〈ψf |e−
i
~
Ht|ψi〉 =

∫

dxidxfψ
∗
f (xf )〈xf |e−

i
~
Ht|xi〉ψi(xi)

=

∫

D[x]e
i
~
S[x]ψ∗

f (x(tf ))ψi(x(ti)). (36)

Finally, we generalize the results for a particle moving in a d-dimensional space. The steps leading

to Eq. (25) can easily be repeated in this case leading to

〈xf |e−
i
~
Ht|xi〉 = lim

N→∞

N−1∏

j=1

∫

ddxj

N∏

k=1

∫
ddpk
(2π)d

e
i
~
∆t

∑N
ℓ=1[pℓ·

xℓ−xℓ−1
∆t

−H(pℓ,xℓ)] (37)

with

H =
p2

2m
+ U(x) (38)

which takes the form

〈xf |e−
i
~
Ht|xi〉 =

∫ x(t)=xf

x(0)=xi

D[x]

∫

D[p]e
i
~

∫

dτ [p(τ)ẋ(τ)−H(p(τ),x(τ))] (39)

in condensed notation. The Lagrangian path integral reads in d-dimensions as

〈xf |e−
i
~
Ht|xi〉 =

( m

2πi~∆t

) d
2

lim
N→∞

N−1∏

j=1

( m

2πi~∆t

) d
2

∫

ddxje
i
~
∆t

∑N
ℓ=1[

m
2
(
xℓ−xℓ−1

∆t
)2−U(xℓ)]

=

∫ x(t)=xf

x(0)=xi

D[x]e
i
~
S[x] (40)

with

S[x] =

∫

dtL(ẋ,x), L =
m

2
ẋ2 − U(x). (41)
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IV. DIRECT CALCULATION OF THE PATH INTEGRAL

A. Free particle

Let us start with the path integral for a one dimensional free particle with finite N ,

G0(xf , xi, t) =

√
m

2πi~∆t





N−1∏

j=1

√
m

2πi~∆t

∫

dxj



 e
im

2~∆t

∑N
ℓ=1(xℓ−xℓ−1)

2

=





N−1∏

j=1

∫

dxj





N∏

ℓ=1

f(xℓ − xℓ−1,∆t), (42)

where x0 = xi and xN = xf , ∆t = T/N and

f(x, t) =

√
m

2πi~t
e

im
2~t

x2 . (43)

We shall calculate this expression by a successive integration. For this end let us consider the single

integral

∫

dzf(x− z, t1)f(z − y, t2) = N

∫

dzei
a
2
z2+ibz+ic, (44)

with a = m
~

t1+t2
t1t2

, b = −m
~

yt1+xt2
t1t2

, c = m
2~ (

x2

t1
+ y2

t2
), and N = m

2πi~
√
t1t2

. The straightforward

application of the Fresnel integral yields

∫

dzf(x− z, t1)f(z − y, t2) = N

√

2πi

a
e−i

b2

2a
+ic

=

√
m

2πi~(t1 + t2)
e
im
2~

[

− (yt1+xt2)
2

t1t2(t1+t2)
+x2

t1
+ y2

t2

]

= f(x− y, t1 + t2), (45)

in other words, the integrand f(x, t) is self reproducing during the integration. This property can

be used to successively integrate in (42) with the result

G0(xf , xi, t) = f(xf − xi, t) =
√

m

2πi~t
e

im
2~t

(xf−xi)2 . (46)

To check the result we calculate the free propagator in the operator formalism, too. The time

evolution operator is diagonal in momentum space,

e−
i
~
Ht =

∫
dp

2π~
|p〉e− i

~

p2

2m
t〈p|, (47)
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and the propagator, its matrix element in the coordinate basis, is

〈xf |e−
i
~
Ht|xi〉 =

∫
dp

2π~
〈xf |p〉e−

i
~

p2

2m
t〈p|xi〉

=

∫
dp

2π~
e−

i
~

p2

2m
t+ i

~
p(xf−xi)

=

√
m

2πi~t
e

im
2t~

(xf−xi)2 . (48)

As a useful exercise let us calculate the spread of the wave packet

ψi(x) =
e−

x2

2∆x2

√

∆x
√
2
, (49)

without using the momentum representation,

ψ(t, x) =
1

√

∆x
√
2

√
m

2πi~t

∫

dye
im
2t~

(x−y)2− y2

2∆x2 (50)

what we write in the form

ψ(t, x) = N

∫

dye−
a
2
y2+by+c (51)

with N =
√

m
2
√
2πi~t∆x

, a = 1
∆x2
− imt~ , b = −imt~x and c = i m2t~x

2. The Gaussian integral gives

ψ(t, x) = N

√

2π

a
e

b2

2a
+c

= N

√

2π

a
e
−

m2

t2~2
2

1
∆x2

+im
t~

1
∆x4

+ m2

t2~2

x2+c

= N

√

2π

a
e
− m2∆x2

2(t2~2+m2∆x4)
x2
e
−i m3∆x4

2t~(t2~2+m2∆x4)
x2+c

, (52)

a wave packet of width

∆x(t) =
√

t2v2 +∆x2, (53)

with v = ~

m∆x .

B. Stationary phase (semiclassical) approximation

The semiclassical approximation of the path integral consists of the approximation by assuming

that the action changes fast in units of ~. A simple integral

I =

∫

dxe
i
~
S(x) (54)
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can be approximated in the limit ~ → 0 by restraining the domain of integration to the regions

where the exponent of the integrand changes slowly, x ∼ x0, S′(x0) = 0. Let us suppose that there

is a single point x0 where this equation is satisfied and write

I =

∫

dxe
i
~
S(x0)+

i
~
(x−x0)S′(x0)+

i
2~

(x−x0)2S′′(x0)+O((x−x0)3)

= e
i
~
S(x0)

∫

dye
i
2~
y2S′′(x0)+

i
~
O(y3)

= e
i
~
S(x0)

√

2π~

|S′′(x0)|
eisign(ReS

′′(x0))
π
4 (1 +O

(
~
3
)
). (55)

In case of several locally constant regions, S′(xj) = 0, j = 1 . . . N we sum over thes regions,

I =
N∑

j=1

e
i
~
S(xj)

√

2π~

|S′′(xj)|
eisign(ReS

′′(xj))
π
4 (1 +O

(
~
3
)
). (56)

This approximation can easily be extended to the path integral,

A =

∫ x(tf )=xf

x(ti)=xi

D[x]e
i
~
S[x] (57)

where the dominant contribution comes from the domain of integration where the phase of the

integrand changes the slowest manner with the trajectories, around the classical trajectory,

δS[x]

δx(t) |x=xcl
= 0. (58)

By expanding the exponent around the classical trajectory we find

A =

∫ x(tf )=xf

x(ti)=xi

D[x]e
i
~
S[xcl]+

i
~

∫

dt[x(t)−xcl(t)] δS[x]
δx(t)

+ i
2~

∫

dtdt′[x(t)−xcl(t)] δ2S[x]

δx(t)δx(t′)
[x(t′)−xcl(t′)]+O((x−xcl)3)

= e
i
~
S[xcl]

∫ y(tf )=0

y(ti)=0
D[y]e

i
2~

∫

dtdt′y(t) δ2S[x]

δx(t)δx(t′)
y(t′)+ i

~
O(y3)

. (59)

Since y ∼
√
~ the O

(
y3
)
term can be neglected in the formal limit ~ → 0 whee the path integral

is reduced to the product of a phase factor, containing the classical action and a path integral of a

quadratic action with vanishing initial and and points. This limit corresponds to the semiclassical

limit when the initial and the final point of the propagation, xi and xf , respectively, are held fixed.

C. Quadratic potential

We consider a particle with the Lagrangian

L =
m

2
ẋ2 − mω2(t)

2
x2, (60)
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as the next example. The integral we seek in this case for finite N is

IN =
( m

2πi~∆t

)N+1
2

N∏

j=1

∫

dyje
i
~

∑N+1
ℓ=1

[

m
2∆t

(yℓ−yℓ−1)
2−∆t

mω2
ℓ−1
2

y2ℓ−1

]

(61)

with y0 = yN = 0, ∆t = T/N and ωℓ = ω(∆tℓ). We shall use the vector notation,

~y = (y0, y1, . . . , yℓ) for the trajectory and write

IN =
( m

2πi~∆t

)(N+1)/2
∫

dNye
i
2
~yAN~y

tr
, (62)

where

AN =
m

~∆t


















1 −1 0 . . . 0 0

−1 2 −1 . . . 0 0

0 −1 2 . . . 0 0

. . .

0 0 0 . . . 2 −1
0 0 0 . . . −1 1


















− m∆t

~


















ω2
0 0 0 . . . 0 0

0 ω2
1 0 . . . 0 0

0 0 ω2
2 . . . 0 0

. . .

0 0 0 . . . ω2
ℓ−1 0

0 0 0 . . . 0 ω2
ℓ


















. (63)

The matrix AN can be brought into a diagonal form by a suitable basis transformation and the

Fresnel integral yields in the basis where it is diagonal

IN =
( m

2πi~∆t

)N+1
2

N∏

j=1

√

2πi

λj

=

√
m

2πi~∆t

N∏

j=1

√
m

~∆tλj
, (64)

where λj denotes the eigenvalues. We have λj > 0 for sufficient small ∆t since the second derivative

of the kinetic energy is a negative semi-definite operator. We write this expression as

IN =

√
m

2πi~∆t

1
√

det ~∆t
m AN

(65)

and introduce the notation

DN = det
~∆t

m
AN = det



































1 −1 0 . . . 0 0

−1 2 −1 . . . 0 0

0 −1 2 . . . 0 0

. . .

0 0 0 . . . 2 −1
0 0 0 . . . −1 1


















−∆t2


















ω2
0 0 0 . . . 0 0

0 ω2
1 0 . . . 0 0

0 0 ω2
2 . . . 0 0

. . .

0 0 0 . . . ω2
N−1 0

0 0 0 . . . 0 ω2
N



































.

(66)
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It is easy to verify the recursive relation

Dn+1 = (2−∆t2ω2
n+1)Dn −Dn−1. (67)

The corresponding initial conditions are D0 = 0 and D1 = 1−∆t2ω2
0. We define in this manner a

function φ(n∆t) = ∆tDn which satisfy the equation

φ̈(t) = −ω2(t)φ(t), (68)

together with the initial conditions φ(ti) = 0, φ̇(ti) = 1. The solution of this initial condition

problem, φ(t, ti) gives

lim
N→∞

IN =

∫ y(tf )=0

y(ti)=0
D[y]e

i
~

∫ tf
ti

dtL(y(t),ẏ(t))

=

√
m

2πi~φ(tf , ti)
. (69)

This result allows us to find the path integral with the quadratic Lagrangian, (60),

∫ x(tf )=xf

x(ti)=xi

D[x]e
i
~

∫ tf
ti

dtL(x(t),ẋ(t))
=

√
m

2πi~φ(tf , ti)
e

i
~

∫ tf
ti

dtL(xcl(t),ẋcl(t)), (70)

where the classical trajectory, xcl(t) solves the equation of motion

ẍcl(t) = −ω2(t)xcl(t), (71)

together with the boundary conditions xcl(ti) = xi and xcl(tf ) = xf .

As a simple example we consider the case of the harmonic oscillator, ω(t) = ω, where

S[xcl] =

∫ tf

ti

dtL(xcl(t), ẋcl(t)) =
mω

2 sinωT

[
(x2f + x2i ) cos ωT − 2xixf

]
, (72)

with T = tf − ti and φ(t, ti) = sinωT
ω , giving the exact result

∫ x(tf )=xf

x(ti)=xi

D[x]e
i
~

∫ tf
ti

dt
[

m
2
ẋ2−mω2

2
x2

]

=

√
mω

2πi~ sinωT
e

i
~

mω
2 sinωT [(x

2
f
+x2i ) cosωT−2xixf ]. (73)

V. MATRIX ELEMENTS

So far we have considered the direct calculation of the transition amplitude within the path

integral formalism. But there are cases when the calculation of the path integral with the given

action is too difficult and we resort to a perturbation series instead. We need the matrix element of

more general expressions, obtained by inserting different operators into the time evolution operator,

for instance

〈xf |e−
i
~
H(t−t′)F (x)e−

i
~
Ht′ |xi〉. (74)
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Such a matrix element can be obtained within the path integral formalism in a natural manner.

In fact, we have

〈xf |e−
i
~
H(t−t′)F (x)e−

i
~
Ht′ |xi〉 =

∫

dx′1dx
′
2〈xf |e−

i
~
H(t−t′)|x′1〉 〈x′1|F (x)|x′2〉

︸ ︷︷ ︸

δ(x′1−x′2)F (x′1)

〈x′2|e−
i
~
Ht′ |xi〉

=

∫

dx′〈xf |e−
i
~
H(t−t′)|x′〉F (x′)〈x′|e− i

~
Ht′ |xi〉

=

∫

dx′
∫ x(t)=xf

x(t′)=x′
D[x]e

i
~

∫

dtL(x(t),ẋ(t))F (x′)
∫ x(t′)=x′

x(0)=xi

D[x]e
i
~

∫

dtL(x(t),ẋ(t))

=

∫ x(t)=xf

x(0)=xi

D[x]e
i
~

∫

dtL(x(t),ẋ(t))F (x(t′) (75)

where it was used in the last equation that the integration over trajectories from x(0) = xi to

x(t′) = x′ and from x(t′) = x′ to x(t) = xf together with the integration over x′ is equivalent with

the integration over trajectories from x(0) = xi to x(t) = xf . The generalization of this procedure

for n insertions is

〈xf |e−
i
~
H(t−tn)Fn(x)e

− i
~
H(tn−tn−1)Fn−1(x)e

− i
~
H(tn−1−tn−2) · · · e− i

~
H(t2−t1)F1(x)e

− i
~
Ht1 |xi〉

=

∫ x(t)=xf

x(0)=xi

D[x]e
i
~
S[x]

n∏

j=1

Fj(x(tj)) (76)

with ti ≤ tj ≤ tf . It is useful to rewrite these equations by introducing a dummy time variable for

the time-independent Hamiltonian, H = H(t) and for the observable x(t) and by using the time

ordered product of Appendix C in the Schrödinger representation,

〈xf |T [e−
i
~

∫ tf
0 dt′H(t′)

n∏

j=1

Fj(x(tj)]|xi〉 =
∫ x(t)=xf

x(0)=xi

D[x]e
i
~
S[x]

n∏

j=1

Fj(x(tj)). (77)

A slight extension to arbitrary matrix elements, 〈xf | → 〈ψf |, |xi〉 → |ψi〉, can easily be found by

convolution,

〈ψf |T [e−
i
~

∫ tf
0 dt′H(t′)

n∏

j=1

Fj(x(tj)]|ψi〉

=

∫

dxidxfψ
∗
f (xf )〈xf |T [e−

i
~

∫ tf
0 dt′H(t′)

n∏

j=1

Fj(x(tj))]|xi〉ψi(xi)

=

∫

dxidxfψ
∗
f (xf )ψi(xi)

∫ x(t)=xf

x(0)=xi

D[x]e
i
~
S[x]

n∏

j=1

Fj(x(tj)) (78)

The generalization of (78) for analytic functionals

F [x(t)] =
∞∑

n=0

1

n!

n∏

j=1

∫

dtjfn(t1, . . . , tn)x(t1) · · · x(tj), (79)
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in terms of the generating functional

Z[j] =

∫

D[x]e
i
~
S[x]+ i

~

∫

dtx(t)j(t) (80)

is

〈ψf |T [e−
i
~

∫ tf
0 dt′H(t′)

n∏

j=1

F [x(t)]]|ψi〉 =

∫

D[x]e
i
~
S[x]F [x(t)]

= F

[

δ

δ i
~
j(t)

]

Z[j]|j=0. (81)

The proof follows by noting that the factor xn(t) is generated by acting with the differential

operator (~i )
nδn/δx(t)n.

Matrix elements of observables composed by the coordinate and the momentum can be calcu-

lated in a similar manner, by the use of the generating functional

Z[j, k] = lim
N→∞

N−1∏

j=1

∫

dxj

N∏

k=1

∫
dpk
2π

e
i∆t
~

∑N
ℓ=1[pℓ

xℓ−xℓ−1
∆t

− p2
ℓ

2m
−U(xℓ)+xℓjℓ+pℓkℓ]

=

∫ x(t)=xf

x(0)=xi

D[x]D[p]e
i
~

∫

dt[x(t)ẋ(t)−H(p(t),x(t))+x(t)j(t)+p(t)k(t)] , (82)

which can be written after integrating out the momentum as

Z[j, k] =

√
m

2πi~∆t
lim
N→∞

N−1∏

j=1

√
m

2πi~∆t

∫

dxje
∑N

ℓ=1[
im

2∆t~
(xℓ−xℓ−1+∆tkℓ)

2− i∆t
~
U(xℓ)+xℓjℓ]

=

∫

D[x]e
i
~

∫

dτ [m
2
ẋ2(τ)+m

2
k2(τ)+mẋ(τ)k(τ)−U(x(τ))+x(τ)j(τ)]. (83)

The insertion of the mixed observable F [p(t), x(t′)] is found as

∫ x(t)=xf

x(0)=xi

D[x]e
i
~

∫

dtL(x(t),ẋ(t))F [x(t), p(t′)] = F

[
~

i

δ

δj(t)
,
~

i

δ

δk(t′)

]

Z[j, k]|j=k=0

= 〈xf |e−
i
~
HtT [F [x̂H(t), p̂H(t

′)]|xi〉. (84)

VI. EXPECTATION VALUES

Usually one needs an expectation value rather than transition an amplitude. It is not difficult

to generalize the expressions for the expectation value 〈ψ(t)|A|ψ(t)〉 between the ground state,

|ψ(t) = |0〉 with vanishing energy, H|0〉 = 0. The time dependence of the operator F [x(t)] in (78)

can be retained by using the Heisenberg representation c.f. Appendix C to define the expectation
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value

〈0|T [
n∏

j=1

Fj(x(tj)]|0〉H

= 〈0|e i
~
HtnFn(x)e

− i
~
Htne

i
~
Htn−1Fn−1(x)e

− i
~
Htn−1 · · · e i

~
Ht1F1(x)e

− i
~
Ht1 |0〉S

= 〈0|e i
~
HtnFn(x)e

− i
~
H(tn−tn−1)Fn−1(x)e

− i
~
H(tn−1−tn−2) · · · e− i

~
H(t2−t1)F1(x)e

− i
~
Ht1 |0〉S . (85)

Next we use the stability of the ground state during the time evolution,

e−
i
~
Ht|0〉 = |0〉, (86)

to insert an “invisible” factor e−
i
~
Ht beside the bra,

〈0|T [
n∏

j=1

Fj(x(tj)]|0〉H

= 〈0|e− i
~
H(t−tn)Fn(x)e

− i
~
H(tn−tn−1)Fn−1(x)e

− i
~
H(tn−1−tn−2) · · · e− i

~
H(t2−t1)F1(x)e

− i
~
Ht1 |0〉S(87)

to find

〈0|T [
n∏

j=1

Fj(x(tj)]|0〉H = 〈0|T [e− i
~

∫ tf
0 dt′H(t′)

n∏

j=1

Fj(x(tj)]|0〉S

=

∫

D[x]e
i
~
S[x]

n∏

j=1

Fj(x(tj) (88)

where the convolution with the ground state wave function is suppressed for better lisibility.

The argument above, introduced by Feynman, relates the ground expectation values transition

amplitude between the ground state with operator insertions and provides the starting point for

the perturbation expansion. In number of cases one is interested in expectation values between

non-sationary state where eq. (86) does not apply. The expectation values of an observable A at

time t can be written in the form

〈A(t)〉 = 〈ψi|e
i
~
HtAe−

i
~
Ht|ψi〉

= Tr[e−
i
~
Htρ(ti)e

i
~
HtA] = Tr[ρS(t)AS ]

= Tr[ρ(ti)e
i
~
HtAe−

i
~
Ht] = Tr[ρHAH(t)] (89)

for a general initial state, defined by the density matrix, e.g. ρi = |ψi〉〈ψi| fo the initial pure state

|ψi〉.
The path integral expressions for (89) can easily be derived. First we give the path integral

formulas for the density matrix for a given time t. There will be two path integrals, one for the
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bra and the other is for the ket of the initial density matrix,

ρ(x+, x−, t) =
∫

dx+i dx
−
i

∫ x+(t)=x+

x+(0)=xi

D[x+]

∫ x−(t)=x−

x−(0)=xi

D[x−]e
i
~
S[x+]− i

~
S[−]ρi(x

+
i , x

−
i ) (90)

giving the density matrix at time t. The expectation values (89) for A = F (x) can be obtained by

means of the generating functional

Z[j+, j−] =
∫

D[x+]D[x−]e
i
~
S[x+]− i

~
S[x−]+ i

~

∫

dt[x+(t)j+(t)+x−(t)j−(t)] (91)

where the convolution with the density matrix is suppressed. In fact, the insertion the operator in

question into either time axis yields

〈F (x(t))〉 = Tr[ρHF (xH(t))] = F

[
~

i

δ

δj±(t)

]

Z[j+, j−]|j±=0. (92)

The equation is valid for both signs for Hermitian operators F (x). There is no difficulty in extending

these formulas for observables containing the coordinate and the momentum at arbitrary time,

〈F [x(t), p(t′)]〉 = Tr[ρHT [xH(t), pH(t
′)]] = F

[
~

i

δ

δj±(t)
,
~

i

δ

δk±(t′)

]

Z[j+, k+, j−, k−]|j±=k±=0.

(93)

VII. PERTURBATION EXPANSION

The importance of the path integral integral formalism should be clear by now, it can be use

to obtain matrix elements and expectation values. But its usefulness is not clear because the

path integral has only been calculated for noninteracting particles. When the interaction, the non-

Gaussian part of the action is weak compared to the quadratic part then one expects perturbation

expansion be applicable. It is actually much more simple than in the operator formalism because

we face only c-numbers in the path integrals. We split the action into a free quadratic term and

the rest which is assumed to contain only a weak anharmonic potential U(x),

S = S0 +

∫

dtU(x(t)), (94)

we have

〈ψf |e−
i
~
Ht|ψi〉 =

∫

D[x]e
i
~
S0[x]− i

~

∫

dt′U(x(t′)) (95)

=

∞∑

n=0

(−i)n
n!~n

n∏

j=1

∫

dtj

∫

D[x]e
i
~
S0[x]

n∏

j=1

U(x(tj))



19

which can be written as

〈ψf |e−
i
~
Ht|ψi〉 =

∞∑

n=0

(−i)n
n!~n

n∏

j=1

∫

dtj〈ψf |T [e−
i
~

∫

dt′H0(t′)
n∏

j=1

U(x(tj))]|ψi〉. (96)

The last equation shows that the propagation in the presence of a potential can be viewed as a

sequence of interactions with the potential separated by free propagation.

Another, more compact expression of the perturbation series can be given by the help of the

free generator functional

Z0[j] =

∫

D[x]e
i
~
S0[x]+

i
~

∫

dtx(t)j(t), (97)

which allows us to write (95) as

〈ψf |e−
i
~
Ht|ψi〉 =

∞∑

n=0

(−i)n
n!~n

n∏

j=1

∫

dtj

n∏

j=1

U

(

δ

δ i
~
j(tj)

)

Z0[j]|j=0

= e
− i

~
U( δ

δ i
~
j(tj)

)
Z0[j]|j=0. (98)

This form of the perturbation expansion can easier be visualized by Feynman diagrams.

VIII. PROPAGATION ALONG FRACTAL TRAJECTORIES

A classical particle moves along a trajectory with analytic dependence on the time as long

as the potential is analytic. This is different in Quantum Mechanics. The reason is that the

spacial separation |x− y| scales with the square root of the time of the propagation,
√
t in the free

propagator

〈x|et i~
2m

∂2t |y〉 =
√

m

2πi~t
e

im
2~t

(x−y)2 , (99)

yielding diverging velocity, |x − y|/t ≈ 1/
√
t Another way to see this is to note that the typical

trajectories satisfy |x − y| ≈
√

∆t~/m in the path integral (31). In fact, the contributions of the

trajectories with (x−y)2 ≫ ∆t~/m are suppressed by the rapidly oscillating phase of the integrand

and the trajectories with (x−y)2 ≪ ∆t~/m have small entropy. But the most detailed result comes

from Eq. (31) in the limit t→∞ when the dependence of the numerical values of the path integral

on the final point xf is negligible. We can then shift the integration variables xℓ → xℓ+xℓ+1 which

decouples them and give

〈∆x2〉 ≈ i∆t~
m
〈1〉. (100)
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This result expresses the fact that fine the time resolution becomes longer the trajectory appears.

The rescaling ∆t→ λ∆t induces the rescaling

L =
∑√

∆x2 → 1√
λ

∑√
∆x2 = λ−1/2L (101)

of the length of the trajectory, a scaling law characteristic of fractals.

We can now see better the formal feature of the expressions (26) and (32): the velocity ẋ

appearing in them is diverging and ill defined! The quadratic terms p2 or ẋ2 alone in the exponents

of Eqs. (32) or (26), respectively, would be enough to smoothen out the trajectories and to render

ẋ finite by the oscillating phase of the integrand. But these quadratic expressions are multiplied

by ∆t. This factor reduces the impact of the kinetic energy and we loose one power of ∆t in the

denominator of 〈ẋ2〉.
The propagation along fractals is not a mathematical artifact, rather it represents a central part

of Quantum Mechanics. Its suppression cancels Heisenberg commutation relation. We shall check

this by calculating the matrix elements of the operator [x, p]

〈[x, p]〉 = 〈xf |T [[p, x]e−
i
~

∫ t

0
dτH(τ)]|xi〉

= 〈xf |T [(xℓ+1pℓ+1 − pℓ+1xℓ)e
− i

~

∫ t
0 dτH(τ)]|xi〉, (102)

where the index ℓ corresponds to the time the commutator is inserted in the matrix element and

the time ordering is used to arrive at the desired order of the coordinate and momentum operators.

The infinitesimal propagator (23) shows that the first term on the right hand side of Eq. (102) is

indeed the matrix element of xp. We find

〈[x, p]〉 =
(
~

i

)2( δ

δjℓ+1

δ

δkℓ+1
− δ

δjℓ

δ

δkℓ+1

)

Z[j, k]|j=k=0 (103)

by means of the generating functional Eq. (83). One differentiation with respect to ikℓ/~ brings

down the factor m(xℓ − xℓ−1)/∆t as expected from classical mechanics and we find the familiar

looking result

〈[x, p]〉 = 〈xℓ+1m
xℓ+1 − xℓ

∆t
− xℓm

xℓ+1 − xℓ
∆t

〉

=
m

∆t
〈(xℓ+1 − xℓ)2〉

≈ i~〈1〉. (104)

Note that a smearing of the singularity of the fractals, the replacement of the scaling law (100) by

〈∆x2〉 ≈ i∆t
1+ǫ

~

m
〈1〉, (105)
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with ǫ > 0 leads to

〈[x, p]〉 ≈ i~〈1〉∆tǫ → 0, (106)

and the loss of the canonical commutation relation. In other words, the scaling law, (100), is

an essential part of quantum mechanics, its slightest weakening reduces quantum mechanics to

classical physics.

IX. EXTERNAL ELECTROMAGNETIC FIELD

In the presence of an external vector potential A the path integral (40) is changed into

〈xf |e−
i
~
Ht|xi〉 =

( m

2πi~∆t

) d
2

lim
N→∞

N−1∏

j=1

( m

2πi~∆t

) d
2

∫

ddxj

×e i
~
∆t

∑N
ℓ=1[

m
2
(
xℓ−xℓ−1

∆t
)2−U(xℓ)+

e
c

xℓ−xℓ−1
∆t

·A(
xℓ+xℓ−1

2
)]

=

∫ x(t)=xf

x(0)=xi

D[x]e
i
~

∫

dτL(x(τ),ẋ(τ)) (107)

where

L =
m

2
ẋ2 − U(x) +

e

c
ẋ ·A(x). (108)

The compact, cutoff independent notation is even more misleading than in the absence of external

vector potential due to the need of the mid-point prescription, appearing explicitly in the first

equation of (107). To see the origin of this unexpected complication we assume that the vector

potential is actually evaluated at an intermediate point

x = (1− η)xℓ + ηxℓ−1 (109)

in the Eq. (107) and follow an inverse argument in proving the path integral formulas. Let us

denote the value of the path integral (107) by ψ(xf , t) and find its equation of motion. The

propagator (17) reads for time dependent Hamiltonian as

〈xf |T [e−
i
~

∫

dτH(τ)]|xi〉 (110)

and the equation of motion should be the Schrödinger equation. The strategy is similar than the

direct construction of the path integral: an infinitesimal change of time. The increase t→ t+∆t
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corresponds one more integration in the regulated path integral, therefore we have

ψ(x, t +∆t) =
( m

2πi∆t~

)3/2
∫

ddx′

exp

[
im

2~∆t
(x− x′)2 − i

~
∆tU(x+ η(x′ − x))

+
ie

c~
(x− x′) ·A(x+ η(x′ − x))

]

ψ(x′, t). (111)

The integral is dominated by the contributions x′ ≈ x for small ∆t due to the rapidly oscillating

phase of the integrand and we make an expansion for small y = x− x′,

ψ(x, t +∆t) =
( m

2πi∆t~

)3/2
∫

ddy exp

[
imy2

2~∆t
− i

~
∆tU +

ie

c~
y ·A

+
i

~
∆tηy · ∂U − ieη

c~
yjyk∂kAj + · · ·

]

×
[

1− y · ∂ +
1

2
(y · ∂)2 + · · ·

]

ψ(x, t) (112)

where the U = U(x) and A = A(x). The nest step is the expansion of the integrand,

ψ(x, t+∆t) =
( m

2πi∆t~

)3/2
∫

ddye
im

2~∆t
yj(δjk− 2∆teη

mc
∂kAj)yk

[

1− i∆t

~
U +

ie

c~
y ·A− e2

2c2~2
(y ·A)2 +

i∆tη

~
y · ∂U + · · ·

]

×
[

1− y · ∂ +
1

2
(y · ∂)2 + · · ·

]

ψ(x, t)

=
( m

2πi∆t~

)3/2
∫

ddye
im

2~∆t
yj(δjk− 2∆teη

mc
∂kAj)yk

[

1− y · ∂ +
1

2
(y · ∂)2 − i∆t

~
U +

ie

c~
y ·A− ie

c~
(y ·A)(y · ∂)

− e2

2c2~2
(y ·A)2 +

i∆tη

~
y · ∂U + · · ·

]

ψ(x, t). (113)

Finally, the Gaussian integration can easily be carried out,

ψ(x, t+∆t) =
1√
detB

[

1 +
i~∆t

2m
∂ ·B−1 · ∂ − i∆t

~
U +

∆te

mc
A ·B−1 · ∂

− i∆te
2

2mc2~
A ·B−1 ·A+ · · ·

]

ψ(x, t), (114)

where

Bjk = δjk −
2∆teη

mc
∂kAj . (115)
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The expansion of B in ∆t further simplifies the result,

ψ(x, t+∆t) =

(

1 +
∆teη

mc
∂ ·A

)[

1 +
i~∆t

2m
∂ ·B−1 · ∂ − i∆t

~
U

+
∆te

mc
A · B−1 · ∂ − i∆te2

2mc2~
A ·B−1 ·A+ · · ·

]

ψ(x, t)

=

[

1 +
∆teη

mc
∂ ·A+

i~∆t

2m
∆− i∆t

~
U +

∆te

mc
A · ∂

− i∆te
2

2mc2~
A ·A+ · · ·

]

ψ(x, t). (116)

The equation of motion is

i~∂tψ(x, t) =

[
i~eη

mc
∂ ·A− ~

2

2m
∆+ U +

i~e

mc
A · ∂ +

e2

2mc2
A2

]

ψ(x, t) (117)

=

[

1

2m

(
~

i
∂ − e

c
A(x)

)2

+ U(x) +
i~e(η − 1

2)

mc
∂ ·A(x)

]

ψ(x, t)

where the cutoff is removed, ∆t → 0. The lesson of this calculation is that contrary to the naive

expectation the η-dependence survives the removal of the cutoff and we must use the mid-point

prescription, η = 1/2 in order to recover the standard Schrödinger equation. This unexpected

effect, namely that the details at time scale ∆t remain visible at finite time after the limit ∆t→ 0

has been taken is called quantum anomaly.

X. ÎTO INTEGRAL

The surprising persistence of the η-dependence found in the previous section is the result of the

fractal nature of the typical trajectories in the path integral. We shall show this by identifying a

characteristic feature of ordinary time integrals occurring within the path integral.

The usual properties, such as the rule of change of variable, of a Riemann integral is usually

derived by replacing the integral with a sum and by performing appropriate limit. These rules

may change if the functions in question are not regular. Let us consider the following change of

variable:
∫ tf

ti

dtẋ(t)
df(x)

dx
=

∫ xf

xi

dx
df(x)

dx
= f(xf )− f(xi), (118)

valid for continuously differentiable functions x(t) and f(x).

What happens if x(t) is a fractal, in particular, a typical trajectory in the path integral? To

find the answer we perform the calculation at small but finite ∆t. We start with the safe identity

f(xf )− f(xi) =
N∑

j=1

[f(xj)− f(xj−1)], (119)
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where x0 = xi and xN = xf . In the next step we check the sensitivity of the right hand side on the

choice of the point where the integrand is evaluated. For this end we introduce the η parameter

by defining the point of evaluation

x
(η)
j−1 = (1− η)xj + ηxj−1, (120)

the notation fj = f(x
(η)
j ), ∆j = xj − xj−1 and write for Eq. (119)

f(xf )− f(xi) ≈
N∑

j=1

[(

f(x
(η)
j−1) + η∆j

df(x
(η)
j−1)

dx
+
η2

2
∆2
j

d2f(x
(η)
j−1)

dx2

)

−
(

f(x
(η)
j−1) + (η − 1)∆j

df(x
(η)
j−1)

dx
+

(η − 1)2

2
∆2
j

d2f(x
(η)
j−1)

dx2

)]

=
N∑

j=1

[

∆jf
′(x(η)j−1) +

(

η − 1

2

)

∆2
jf

′′(x(η)j−1)

]

. (121)

The scaling law, (100), yields

f(xf )− f(xi) =
∫ xf

xi

dx
df(x)

dx
+

(

η − 1

2

)
i~

m

∫ xf

xi

dt
d2f(x)

dx2
, (122)

a modification of partial integration rule. The functions are assumed to be sufficiently regular and

differentiable in standard integral and differential calculus. But the transformation of integrals for

fractals (100) requires to keep one order of magnitude more in the finite difference, ∆t or ∆x and

the result is a modification of the usual rules, like (122).

XI. QUANTIZATION RULES IN POLAR COORDINATES

The fact that the path integral is dominated by nowhere differentiable, fractal trajectories

requires the modification of certain rules of standard analysis. This explains the circumstance

that the quantum mechanics does not display canonical invariance as its classical counterpart, in

particular, its rules depend on the choice of coordinate system. We demonstrate this feature by

working out the naive rules of quantization in polar coordinates.

These rules for a free particle in the usual coordinate systems are the following: One starts with

the Lagrangian

L0 =
m

2
ẋ2, (123)

defines the momentum

p =
∂L

∂ẋ
, (124)
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and construct the Hamiltonian,

H0 = ẋp− L0, (125)

expressed in terms of the momentum

H0 =
p2

2m
. (126)

The canonical commutation relations,

[xj , pk] = i~δj,k, (127)

give rise to the representation pj =
~

i ∂xj and the Hamiltonian

H0 = −
~
2

2m
∇2, (128)

which possesses translational and rotational symmetry,

[H0,p] = [H0,L] = 0, (129)

where the momentum p and angular momentum L generates translations and rotations, respec-

tively.

One uses the parametrization

x =







r sin θ cosφ

r sin θ sinφ

r cos θ

(130)

in polar coordinates where the free Lagrangian

L̃0 =
m

2
(ṙ2 + r2θ̇2 + r2 sin2 θφ̇2) (131)

yields the momenta

pr =
δL0

δṙ
= mṙ,

pθ =
δL0

δθ̇
= mr2θ̇,

pφ =
δL0

δφ̇
= mr2 sin2 θφ̇. (132)

The Hamiltonian is therefore of the form

H̃0 = prṙ + pθθ̇ + pφφ̇− L

=
p2r
2m

+
p2θ

2mr2
+

p2φ

2mr2 sin2 θ
. (133)
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The corresponding operators are determined by the canonical commutation relations,

[r, pr] = [θ, pθ] = [φ, pφ] = i~ (134)

with the solution

pr =
~

i

∂

∂r
, pθ =

~

i

∂

∂θ
, pφ =

~

i

∂

∂φ
. (135)

These operators lead to the Hamilton operator

H̃0 = −
~
2

2m

[

∂2r +
1

r2

(

∂2θ +
1

sin2 θ
∂2φ

)]

. (136)

It is not difficult to see that this operator does not possess the usual symmetries, namely [H̃0,p] 6= 0,

[H̃0,L] 6= 0.

The correct Hamiltonian is obtained by means of the Laplace-Beltrami operator,

H0 = −
~
2

2m

[
1

r2
∂r(r

2∂r) +
1

r2

(
1

sin θ
∂θ(sin θ∂θ) +

1

sin2 θ
∂2φ

)]

, (137)

which differs from H̃0,

H0 = H̃0 + i
~

2m

(
2

r
pr + cot θpθ

)

(138)

The difference, an O (~) term, is called Îto potential because the derivation of the Hamilton func-

tion, defined by the exponent of the phase space path integral, produces the result (138) and shows

that the Îto potential arises from the scaling law (100).

Appendix A: Bracket formalism

The bracket formalismis of Dirac is very well suited to the need of linear algebra and quantum

mechanics in particular. It consists of thefollowing two steps:

1. The scalar products, (φ,ψ) and (φ,Aψ) where A is an operator are written as 〈φ|ψ〉 and
〈φ|A|ψ〉, respectively.

2. The symbols bra, 〈φ|, and ket, |ψ〉 are used independently. (This is the main point, the

previous one faciliates this use only.) The ket denotes a vector, an element of a linear space,

|ψ〉 ∈ H and the bra stands for a linear functional over the vector field, 〈φ| : H → C. The

bras and kets form two equivalent linear spaces, namely there is an invertible linear map,

connecting them if H is a Hilbert space.
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The advantages of the bracket formalism can be seen in the following rules:

1. Projector onto the vector |ψ〉:

P|ψ〉 =
|ψ〉〈ψ|
〈ψ|ψ〉 . (A1)

2. Closing relation of a basis {|n〉}:

11 =
∑

n

|n〉〈n|. (A2)

In the case of a continuous spectrum the sum is replaced by an integral.

3. Projection of a vector |ψ〉 onto a basis {|n〉}:

|ψ〉 = 11|ψ〉 =
∑

n

|n〉〈n|ψ〉. (A3)

4. One formally defines the eigenstates of the coordinate and the momentum operators, x̂ and

p̂, respectively, as x̂|x〉 = x|x〉, p̂|p〉 = p|p〉 and impose the closing relations,

11 =

∫

dx|x〉〈x| =
∫

dp

2π~
|p〉〈p|. (A4)

The convention of the normalization of the state |p〉, leading to the denominator in the

second integral is motivated below by the Fourier theorem.

5. The wave function of the state |ψ〉 is defined as ψ(x) = 〈x|ψ〉. The closing relation gives

ψ(x) = 〈x|ψ〉 = 〈x|11|ψ〉 =
∫

dy〈x|y〉〈y|ψ〉 =
∫

dy〈x|y〉ψ(y) (A5)

implies 〈x|y〉 = δ(x− y).

6. The wave function of the image of the state |ψ〉 after the action of the operator A is

[Aψ](x) = 〈x|A|ψ〉. (A6)

eg. 〈x|p̂|p〉 = ~

i∇〈x|p〉 = p〈x|p〉 → ψp(x) = 〈x|p〉 = ce
i
~
xp.

7. Wave function in momentum space is given by ψ̃(p) = 〈p|ψ〉. The closing relation gives in

this case

ψ̃(p) = 〈p|ψ〉 = 〈p|11|ψ〉 =
∫

dq

2π~
〈p|q〉〈q|ψ〉, (A7)

leading to 〈p|q〉 = 2π~δ(p − q).
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8. Fourier theorem for the wave function,

ψ̃(p) =

∫

dxe−
i
~
pxψ(x), ψ(x) =

∫
dp

2π~
e

i
~
pxψ̃(p) (A8)

can be written by means of the closing relations and c = 1 as

ψ̃(p) = 〈p|ψ〉 = 〈p|11|ψ〉 =
∫

dx〈p|x〉〈x|ψ〉 =
∫

dxe−
i
~
pxψ(x),

ψ(x) = 〈x|ψ〉 = 〈x|11|ψ〉 =
∫

dp〈x|p〉〈p|ψ〉 =
∫

dp

2π~
e

i
~
pxψ̃(p) (A9)

The linear space, obtained by extending the original Hilbert space with the basis vectors |x〉
and |p〉 is called a rigged Hilbert space.

Appendix B: Functional derivative

The functionals are defined by mens of lattice discretization. A continuous function f(t) defined

in the interval ti < t < tf is approximated by the values {fj = f(tj)}, tj = ti+j∆t, ∆t = (tf−ti)/N ,

j = 1, . . . , N of a piecewise constant function for large but finite N . The functional derivatives of

the functional

F [f ] =

∫ tf

ti

dtf(t)g(t) = ∆t

N∑

j=1

fjgj (B1)

are defined by

δnF [f ]

δf(τ1) · · · δf(τn)
=

1

∆tn
∂nF [f ]

∂f1 · · · ∂fn
, (B2)

where tj−1 ≤ τj < tj. The singular prefactor 1/∆tn is needed to assure the identity

δF [f ]

δf(t)
= g(t). (B3)

The generalization of the Taylor expansion for multi-variable functions,

f(x+ ǫ) =
∞∑

n=0

(ǫ · ∂)n
n!

f(x) (B4)

is the functional Taylor expansion reads as

F [x+ ǫ] =

∞∑

n=0

1

n!

(∫ tf

ti

dtǫ(t)
δ

δx(t)

)n

F [x]. (B5)

Appendix C: Representations of time dependence

Sometime it is useful to make time-dependent basis transformation in representing the time

dependence. One usually encounter the following three cases:
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1. Schrödinger representation

The traditional way to represent the time dependence, generated by a time-independen Hamil-

tonian H, is letting the states to follow the time-dependence prescribed by Schrödinger’s equation

i~∂t|ψ(t)〉S = H|ψ(t)〉S , (C1)

leading to

|ψ(t)〉S = e−
i
~
(t−ti)H |ψ(ti)〉S . (C2)

The time is treated as a number, without replacing it with an operator. Hence the time-dependence

is trivial for the observables and we can restrict our attention the time-independent operators,

i~∂tAS = 0. The different representations will agree at the initial time, ti.

2. Heisenberg representation

The classical fields acquire non-trivial time-dependence in field theory. the quantum generaliza-

tion, quantum field theory, contains field operators with non-trivial time-dependence. This makes

is necessary to reformulate the time dependence in terms of opeartors. The simplest possibility is

to perform a time-dependent basisi transformation in te Schrödingr picture which stops the states,

|Ψ(t)〉H = e
i
~
(t−ti)H |Ψ(t)〉S . (C3)

The transformaiotn of the opeerators is inferred by requiring that the matrix elements are identical

in the two representations,

〈ψ(t)|SAS |ψ(t)〉S = 〈ψ(ti)|e
i
~
(t−ti)H

︸ ︷︷ ︸

〈ψ(t)|S

AS e
− i

~
(t−ti)H |ψ(ti)〉

︸ ︷︷ ︸

|ψ(t)〉S

= 〈ψ(ti)| e
i
~
(t−ti)HASe

− i
~
(t−ti)H

︸ ︷︷ ︸

A(t)H

|ψ(ti)〉,

(C4)

which induces the transformation

AH(t) = e
i
~
(t−ti)HASe

− i
~
(t−ti)H . (C5)

Therefore, the operators satisfy the Heisenberg equation of motion,

i~∂tAH(t) = [AH ,H], (C6)

with the initial conditions AH(ti) = AS .
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3. Interaction representation

The perturbation expansion can be applied for the Hamiltonian H = H0 +H1 where H0 and

H1 represent the free, easily diagonalizable dominant part and the small, complicated interaction

part, respectively. The perturbation expansion for the Heisenberg equation is rather cumbersome

a reasonable compromise between the two preceding representations to place the time dependence,

generated by the simple part of the Hamiltonian into the operators and leave the complicated but

supposedly small part of the time dependence for the states where the usual Rayleigh-Schrödinger

perturbation expansion is relatively simple.

For this end we define

|Ψ(t)〉i = e
i
~
(t−ti)H0 |Ψ(t)〉S (C7)

which induces the transformation

Ai(t) = e
i
~
(t−ti)H0ASe

− i
~
(t−ti)H0 (C8)

for the operators. The state vector satisfies the equation of motion

i~∂t|Ψ(t)〉i = −H0|Ψ(t)〉i + e
i
~
(t−ti)H0(H0 +H1)|Ψ(t)〉S

= −H0|Ψ(t)〉i + e
i
~
(t−ti)H0(H0 +H1)e

− i
~
(t−ti)H0e

i
~
(t−ti)H0 |Ψ(t)〉S

= H1i(t)|Ψ(t)〉i (C9)

is indeed a Schrödinger equation involving the interaction only. The operators follow the free

Heisenberg equation,

i~∂tAi(t) = [Ai,H0]. (C10)

4. Schrödinger equation with time dependent Hamiltonian

The interaction representation requires the solution of Schrödinger’s equation with time depen-

dent Hamiltonian,

i~∂t|Ψ(t)〉 = H(t)|Ψ(t)〉. (C11)

To obtain it in a closed form one introduces the time-ordered product, a modified multiplication

rule for operators depending on the time. For a chain of operators A1(t1), · · · , An(tn) the time
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ordered product is defined by acting with the operators in the order of ascending time values. For

two operators we have

T [A(tA)B(tB)] = Θ(tA − tB)A(tA)B(tB) + Θ(tB − tA)B(tB)A(tA), (C12)

where

Θ(t) =







1 t > 1,

1
2 t = 0,

0 t < 0.

(C13)

The solution of Schrödinger’s equation is

|Ψ(t)〉 = U(t, ti)|Ψ(ti)〉 (C14)

where

U(t, ti) = T [e
− i

~

∫ t
ti
dt′H(t′)

]. (C15)

To prove this result it is sufficient to show that the time evolution operator U(t2, t1) satisfies the

equation of motion

i~∂tU(t, ti) = H(t)U(t, ti). (C16)

This can easily be done by writing

i~∂tU(t, ti) = i∂tT [e
− i

~

∫ t
ti
dt′H(t′)

]

= i~∂t

∞∑

n=0

(− i
~
)n

n!

∫ t

ti

dt1 · · ·
∫ t

ti

dtnT [H(t1) · · ·H(tn)], (C17)

and noting that the derivative ∂t generates n-times the same integrand,

i~∂tU(t, ti) = ~

∞∑

n=0

n(− i
~
)n

n!

∫ t

ti

dt2 · · ·
∫ t

ti

dtnT [H(t)H(t1) · · ·H(tn−1)]

= H(t)
∞∑

n=1

(− i
~
)n−1

(n− 1)!

∫ t

ti

dt1 · · ·
∫ t

ti

dtn−1T [H(t1) · · ·H(tn−1)]

= H(t)U(t, ti). (C18)


