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Quantum mechanics is usually taught on four different levels:

1. Basic ideas, simple examples for a one dimensional particle, particle in spherical potential

2. More realistic, three dimensional cases with few particles

3. Several particles, relativistic effects (Quantum Field Theory)

4. Fundamental issues, challenges, paradoxes and interpretation of the quantum world

This lecture note belongs to level 2.

You should be warned when embarking level 1 to leave your expectations, intuitions behind and

start more or less from scratch to build up a view of physics. There is no other discipline thought

at Universities where one has to ask the students at the half of their university time to follow such

a strange attitude. Now, at level 2., you should keep the experience of your first encounter with

quantum mechanics, whatever confusing and unsatisfactory they were, this is the time to develop

further technical know-how.

But please keep your dissatisfaction about the subject in mind and remember it later to try to

improve our understanding and maneuverability in the quantum world. It is not clear how far we

are from a better understanding of quantum mechanics. We may miss only few elements or we

may even have to change completely our mathematics. But it is sure that we have to improve our

way we look at Nature. Until this happens, in lacking of better ideas, try to understand why don’t

you understand quantum mechanics.

I. PERTURBATION EXPANSION

The Hamiltonian, being a Hermitian operator, can always be brought into a diagonal form by

using an appropriate basis where the Schrödinger equation, and the dynamics of a quantum system

is trivial. But this simplicity is naturally misleading because the basis where the dynamics is simple

is usually highly non-trivial in terms of the usual observables.

A systematic approximation scheme, the perturbation expansion, is based on the assumption

that the Hamiltonian can be written as a sum of two hermitian operators, H = H0 + gH1, one is

stationary and easily diagonalizable and the other is assumed to be weak, a condition to be specified

later. We treat g as a small parameter and organize the solution of the Schrödinger equation as a

power series in g.
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A. Stationary perturbations

We assume first that H0 is non-degenerate, H1 is time independent and seek the spectrum and

the stationary states, H|ψn〉 = En|ψn〉. For this end we assume that the unknown eigenvector and

eigenvalues can be expanded in the small parameter,

|ψn〉 = |ψ(0)
n 〉+ g|ψ(1)

n 〉+ g2|ψ(2)
n 〉+ · · · ,

En = E(0)
n + gE(1)

n + g2E(2)
n + · · · , (1)

which gives, after inserting into the eigenvalue equation,

0 = g0
(

H0|ψ(0)
n 〉 − E(0)

n |ψ(0)
n 〉
)

+g
(

H0|ψ(1)
n 〉+H1|ψ(0)

n 〉 − E(1)
n |ψ(0)

n 〉 − E(0)
n |ψ(1)

n 〉
)

+g2
(

H0|ψ(2)
n 〉+H1|ψ(1)

n 〉 −E(2)
n |ψ(0)

n 〉 − E(1)
n |ψ(1)

n 〉 − E(0)
n |ψ(2)

n 〉
)

+ · · · , (2)

written orders one-by-one as

O
(
g0
)
: H0|ψ(0)

n 〉 = E(0)
n |ψ(0)

n 〉

O (g) : (H0 − E(0)
n )|ψ(1)

n 〉 = (E(1)
n −H1)|ψ(0)

n 〉

O
(
g2
)
: (H0 − E(0)

n )|ψ(2)
n 〉 = (E(1)

n −H1)|ψ(1)
n 〉+ E(2)

n |ψ(0)
n 〉

O
(

gk
)

: (H0 − E(0)
n )|ψ(k)

n 〉 = (E(1)
n −H1)|ψ(k−1)

n 〉+ · · ·+ E(k)
n |ψ(0)

n 〉. (3)

The zeroth-order equation shows that the vectors |ψ(0)
n 〉, the eigenvectors of a non-degenerate

Hermitian operator are orthogonal, 〈ψ(0)
m |ψ(0)

n 〉 = δmn.

It comes as a surprise that the higher order equations can not be solved in a unique manner. In

fact, to solve say the last equation for |ψ(k)
n 〉 one multiplies the equation by (H0−E(0)

n )−1. However

the latter operator has a non-trivial null-space (the null-space of an operator A is a linear subspace,

consistsing of the vectors turned into zero by the operator in question, A|0〉 = 0) where its inverse

does not exist. To overcome this difficulty observe that if the vector |ψ(k)
n 〉 represents a solution

of the k-th order eigenvalue equation then another solution can be found by adding to it a vector

from the null-spaces, |ψ(k)
n 〉 + c|ψ(0)

n 〉. We choose c = −〈ψ(0)
n |ψ(k)

n 〉, or equivalently we impose the

condition 〈ψ(0)
n |ψ(k)

n 〉 = δk,0, to render the solution unique and well defined.

This method of solving the equations fails if the spectrum is continuous. In that case one adds

an infinitesimal imaginary term to the free Hamiltonian, H0 → H0 + iǫ, with ǫ→ 0, c.f. eq. (364).

We consider the first two orders in some details:
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1. First order: One supposes the form |ψ(1)
n 〉 =

∑

k cn,k|ψ
(0)
k 〉 and the projection of the second

equation of (3) on 〈ψ(0)
k | gives

(E
(0)
k − E(0)

n )cn,k = E(1)
n δk,n −H1kn,

cn,k =







H1kn

E
(0)
n −E(0)

k

, k 6= n

0 k = n,

E(1)
n = H1nn, (4)

where H1mn = 〈ψ(0)
m |H1|ψ(0)

n 〉.

2. Second order: We now write |ψ(2)
n 〉 =

∑

k dn,k|ψ
(0)
k 〉 and project the third equation of (3) on

〈ψ(0)
k |,

(E
(0)
k −E(0)

n )dn,k = E(1)
n cn,k + E(2)

n δk,n −
∑

ℓ

H1kℓcn,ℓ (5)

The case k = n, using cn,n = 0 gives

E(2)
n =

∑

ℓ

|H1nℓ|2

E
(0)
n − E(0)

ℓ

(6)

and we find

dn,k =







− H1nnH1kn

(E
(0)
n −E(0)

k
)2

+ 1

E
(0)
n −E(0)

k

∑

ℓ
H1kℓH1ℓn

E
(0)
n −E(0)

ℓ

, k 6= n

0 k = n.

(7)

These corrections are small as long as

g〈ψ(0)
n |H1|ψ(0)

n 〉 ≪ E(0)
n

g|〈ψ(0)
k |H1|ψ(0)

n 〉| ≪ |E(0)
n − E

(0)
k |. (8)

The first equation indicates that perturbation should be smaller than H0 in the diagonal, a con-

ditions which is compatible with classical expectations. But the second inequality states an upper

bound for the off-diagonal matrix elements of the perturbation which, it is a genuine quantum

bound.

Is the perturbation expansion convergent? Though the inequalities (8) can be satisfied for

sufficiently small g the perturbation series are usually non-convergent due to the fast increasing

coefficients of the power series. Consider for instance an anharmonic oscillators, defined by the

Hamiltonian

H =
p2

2m
+
mω2

2
x2 +

g

4!
x4. (9)
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The basic assumption of perturbation expansion is that the eigenvalues and the eigenvectors are

analytical at g = 0. But this is usually not the case because analyticity shows up on a complex

plane rather than on a line. In fact, the power series (1) should be considered for complex g and

their converge domain is |g| < gc, gc being the convergence radius. In other words, if a series

is analytic at g = 0 then there is a neighborhood of g = 0 on the complex g-plane where it is

convergent. But the Hamiltonian is unbounded form below for negative coupling constant, g < 0

and the physics is radically different from the positive coupling constant case, whatever close a real

g is to zero. The perturbation series of quantum systems is at most asymptotic, meaning that the

error of the truncation of the series at the order n can be bounded by the n+1-th order contribution.

But a fundamental problem arises even in this case: Though the higher order contribution tend

to be smaller at the beginning but the successive orders become large after the order around 1/g.

Therefore there is a maximal accuracy in perturbation expansion and it is reached around the order

1/g.

B. Degenerate perturbation

The second condition of (8) is violated if the unperturbed Hamiltonian is degenerate. Let us

now suppose that we have an N -dimensional degeneracy, E
(0)
k = E

(0)
ℓ for 1 ≤ k, ℓ ≤ N |ψ(0)

k 〉.
The problem is that H0 is diagonal in any base, chosen within the degenerate subspace. But this

arbitrariness is not present anymore for g 6= 0, in other word the eigenvectors are not continuous

functions of g at g = 0. The continuity at g = 0 can be regained by using the appropriate basis

where the perturbation is diagonal. However this is a useful procedure only if the degenerate

subspace has low dimension.

We use therefore the unperturbed base, |ψ(0)
k 〉, where the perturbation is diagonal in the degen-

erate subspace,

H1 =

























H1 1,1 0 · · · 0

0 H1 2,2
...

...
. . . 0

0 0 · · · H1 N,N











B

B† H ′1















, (10)

and suppose for the sake of simplicity that H1 j,j 6= H1 k,k for j 6= k. We include the diagonal
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submatrix of eq. (10) into the unperturbed Hamiltonian,

H0 → H0 +

























H1 1,1 0 · · · 0

0 H1 2,2
...

...
. . . 0

0 0 · · · H1 N,N











0

0 0















, H1 →




0 B

B† H ′1



 , (11)

and the perturbation expansion is now well defined, having no degeneracy in the unperturbed

Hamiltonian. The eigenvalue a of a matrix A satisfies the eigenvalue condition A|ψ〉 = a|ψ〉 which
can be writen as (A−a11)|ψ〉 = 0 showing that the spectrum of A consists of the set of the solutions

of the characteristic equation det(A− a11) = 0. Hence the first order shift of the eigenvalue within

the degenerate subspace of the orignal H0 are determined by the characteristic equation

det[H1 kℓ − δk,ℓE(1)
k ] = 0. (12)

The solution is

E
(1)
k = H1 kk (13)

in the basis where the perturbation is diagonal. The higher orders give the corrections

|ψk〉 = |ψ(0)
k 〉+O (g)

Ek = E
(0)
k + gH1kk +O

(
g2
)

(14)

by the blocks B and H ′1.

The increased sensitivity of the eigenfunctions on perturbations when the unperturbed Hamil-

tonian becomes degenerate is a genuine quantum effect without analogy in classical physics. It

shows that weak interactions are important if the unperturbed Hamiltonian is exactly or even

approximately degenerate. To understand the dynamical role of the density of the excitation spec-

trum let us call a system rigid or soft when the typical level spacing above the ground state is

large or small, compared to the characteristic energy of its environment, e.g. the thermal energy.

The ground state of a soft system is easy to excite. Each excited state is orthogonal to the others

thus the interaction with its environment orthogonalizes quickly the state of a soft system. The

states of a rigid system change more slowly. The orthogonal states are completely different thus

a system with denser excitation spectrum is brought into a completely different state easier by its

interaction with the environment. Stated in terms of the observables, a soft system displays larger

fluctations than a rigid one as its interacts with its environment.
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Let us now consider for the sake of an example the interaction of a microscopic system with a

macroscopic one, say an atom inserted into a gas in which the interaction among the gas particles

is negligible. The particle of mass m, confined into an interval of size L has a typical level spacing

∆E ∼ ~
2/mL2 in the kinetic energy. Hence am ideal gas, occupying a larger volume, is softer and

a weak interaction can produce a stronger response from it. The perturbation expansion in the

atom-gas interaction ceases to be applicable if the typical ratios are not small,

gH1kn

~2

mL2

∼ 1054mL2gH1kn > 1 (15)

in CGS units where the m and L have to be expressed in units of gram and centimeter. Therefore

extremely weak couplings lead to nonperturbative interactions in macroscopic systems and the

interaction between a microscopic and a macroscopic systems is never weak. This is the mechanism

which generates the classical limit in quantum mechanics. The relaxation and the establishment

of equilibrium, basic assumptions in statistical physics, can be seen by degenerate perturbation

expansion in the interaction between blocks with local equilibrium in the thermodynamical limit,

as well.

C. Time dependent perturbations

We turn to the case when the perturbation is time dependent,

H = H0 + gH1(t), (16)

and the perturbation is localized in time as shown in Fig. 1. We furthermore assume that the

initial condition is

|ψ(t = −∞)〉 = |ψ(0)
n 〉, (17)

and seek the transition probability

Pn→k(t) = |〈ψ(0)
k |ψ(t)〉|2, (18)

generated by the interactions between two unperturbed, asymptotic stationary state |ψ(0)
n 〉 → |ψ(0)

k 〉
at time t.

We write the time dependent state as

|ψ(t)〉 =
∑

k

ck(t)|ψ(0)
k (t)〉 (19)
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t

H1

FIG. 1: Typical time dependence of the perturbation.

where the unperturbed state carries the time evolution, generated by H0,

i~∂t|ψ(0)
k (t)〉 = H0|ψ(0)

k (t)〉. (20)

It is advantageous to use the eigenstate,

H0|ψ(0)
k (0)〉 = E

(0)
k |ψ

(0)
k (0)〉, (21)

giving rise to time evolution

|ψ(0)
k (t)〉 = e−i

t
~
E

(0)
k |ψ(0)

k (0)〉. (22)

This is sometime called interaction representation because the time dependence of the total Hamil-

tonian is distributed in such a manner in the state (19) that the unperturbed state evolves with

H0 and the perturbation generates the time dependence for ck(t).

The Schrödinger equation

i~∂t|ψ(t)〉 = [H0 + gH1(t)]|ψ(t)〉 (23)

now reads as

i~
∑

k

(∂tck(t)|ψ(0)
k (t)〉+ ck(t)∂t|ψ(0)

k (t)〉) = [H0 + gH1(t)]|
∑

k

ck(t)|ψ(0)
k (t)〉. (24)

Since i~∂t|ψ(0)
k (t)〉 = H0|ψ(0)

k (t)〉 the projection of this equation on 〈ψ(0)
ℓ | gives

i~∂tcℓ(t) = g
∑

k

〈ψ(0)
ℓ (t)|H1(t)|ψ(0)

k (t)〉ck(t) = g
∑

k

H1ℓk(t)ck(t). (25)

We assume the power series

cℓ(t) =
∑

k

gkc
(k)
ℓ (t) (26)

and find

O
(
g0
)
: i~∂tc

(0)
ℓ (t) = 0,

O (gm) : i~∂tc
(m)
ℓ (t) =

∑

k

H1ℓk(t)c
(m−1)
k (t). (27)
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The solution, satisfying the initial condition c
(0)
k = δk,n is

ck(t) = δk,n
︸︷︷︸

c
(0)
k

− ig
~

∫ t

−∞
dt′H1kn(t

′)

︸ ︷︷ ︸

c
(1)
k

+O
(
g2
)
. (28)

We assume for the sake of simplicity the form H1(t) = f(t)H ′, where f(t) is a c-number function

and H ′ is an operator,

H1ℓk(t) = ei
t
~
E

(0)
ℓ 〈ψ(0)

ℓ (0)|H ′|ψ(0)
k (0)〉e−i t~E

(0)
k f(t) = H ′ℓke

iωℓktf(t) (29)

with ~ωℓk = E
(0)
ℓ − E

(0)
k and H ′ℓk = 〈ψ

(0)
ℓ (0)|H ′|ψ(0)

k (0)〉. The leading order solution (28),

ck(t) = δk,n −
igH ′kn

~

∫ t

−∞
dt′f(t′)eiωk,nt

′
+O

(
g2
)
, (30)

gives the transition probability

Pn(6=k)→k(t) = |ck(t)|2 =

∣
∣
∣
∣

gH ′kn
~

∣
∣
∣
∣

2 ∣∣
∣
∣

∫ t

−∞
dt′f(t′)eiωknt

′

∣
∣
∣
∣

2

+O
(
g3
)
. (31)

We consider now and important example, when a sinusoidal perturbation is turned on suddenly,

f(t) =







2 cos ωt, ω > 0 t > 0

0 t < 0,

. (32)

Such a perturbation is not of the type, shown in Fig. 1 but we can always assume that the external

perturbation is turned off after observation, f(t′) = 0 for t′ > t without changing the transition

amplitude to justify the use of unperturbed stationary states in Eqs. (17)-(18). The expression

(30) of the transition amplitude gives

ck = − igH
′
kn

~

∫ t

0
dt′eiωk,nt

′
(

eiωt
′
+ e−iωt

′
)

= −gH
′
kn

~

(

ei(ωk,n−ω)t − 1

ωk,n − ω
+
ei(ωk,n+ω)t − 1

ωk,n + ω

)

(33)

for k 6= n. The trigonometrical identity

eiφ − 1 = ei
φ

2

(

ei
φ

2 − e−iφ2
)

= 2iei
φ

2 sin
φ

2
, (34)

can be used to arrive at

ck = −
2igH ′k,n

~

(

e
i
2
(ωkn−ω)t sin ωkn−ω

2 t

ωkn − ω
+
e
i
2
(ωkn+ω)t sin ωkn+ω

2 t

ωkn + ω

)

. (35)
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photon

Ek

E n

(0)

(0)

(a)

photon

E
(0)

E
(0)
k

n

(b)

FIG. 2: (a): absorption: P−
n→k = P (n+ γ → k), (b): emission: P+

n→k = P (n→ k + γ)

Let us now look closer at the transition amplitude in case of a perturbation whose frequency

is in the vicinity of an unperturbed frequency difference, ω ≈ |ωkn|. The dominant part of the

transition is

P ≈







P+ ωkn > 0 (absorption),

P− ωkn < 0 (emission),

(36)

c.f. Fig. 2, where

P±n→k =
4g2|H ′k,n|2

~2(ωkn ∓ ω)2
sin2

1

2
(ωkn ∓ ω)t. (37)

The asymptotic expressions for small and large t are

t ≈ 0 : P±n→k = t2
|gH ′kn|2

~2

t→∞ : w±n→k =
P±n→k
t

=
2π|gH ′kn|2

~2
δ(ωkn ∓ ω) (38)

where the representation

δ(x) =
2

π
lim
η→∞

sin2 ηx2
ηx2

. (39)

of the Dirac-delta is used.

D. Non-exponential decay rate

One hears often that a radiactive nucleus decays with exponentially decreasing probaility in

time. Let us have a closer look on the time dependence of the decay of an unstable state. We

suppose that the system starts in the state |ψin〉 at t = 0. It is important to keep in mind that

|ψin〉 is not a stationary state of the Hamiltonian H. This state evolves as

|ψ(t)〉 = e−
i
~
Ht|ψin〉 (40)
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hence the probability to preserve the initial state at time t is

P0(t) = |A(t)|2 (41)

where the initial state persistence amplitude is

A(t) = 〈ψin|e−
i
~
Ht|ψin〉. (42)

The decay of the probability is usually not exponential and display short, intermediate and long

time regimes.

Short time regime: The expansion of the persistence amplitude for short time gives

A(t) = 1− it

~
〈ψin|H|ψin〉 −

t2

2~2
〈ψin|H2|ψin〉+O

(
t3
)

(43)

and

P0(t) = 1 +
t2

~2
〈ψin|H|ψin〉2 −

t2

~2
〈ψin|H2|ψin〉+O

(
t3
)

= 1− t2

t2Z
+O

(
t3
)
, (44)

cf. the first equation in (38), where the Zeno time is defined by

tZ =
~

√

〈ψin|(H − 〈ψin|H|ψin〉)2|ψin〉
. (45)

Therefore the decay probability is parabolic for short time.

Intermediate time regime: One can easily find the source of the deviation from the expected

exponential decay law. For this end we introduce the projection operator on the initial state,

L = |ψin〉〈ψin| with 〈ψin|ψin〉 = 1, and on its transverse subspace, T = 11− L, and write the state

at time t as

|ψ(t)〉 = (L+ T
︸ ︷︷ ︸

11

)e−
i
~
Ht|ψin〉

= |ψin〉A(t) + |φ(t)〉, (46)

where the orthogonality

〈ψin|φ(t)〉 = 0 (47)

holds by construction. The vector |φ(t)〉 stands clearly for the decay product. Applying the time

evolution operator e−
i
~
Ht′ on eq. (46) and projecting it onto 〈ψin| we find

A(t+ t′) = A(t)A(t′) + 〈ψin|e−
i
~
Ht′ |φ(t)〉. (48)
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The last term is non-vanishing if the decay product at time t does not remain orthogonal to the

initial state, in other words when the decay product, φ(t)〉, evolves back to the undecayed state. Eq.

(48) displays an interference pattern in the persistence amplitude: The system is in the undecayed

state at time t+t′ either when it is undecayed at time t or when it has already decayed at time t but

gets re-exited. In the absence of the latter process the functional equation A(t+ t′) = A(t)A(t′) has

only a two-parameter family of solution within the set of continuous functions, A(t) = A(0)e−t/τ ,

and the decay is exponential. The evolution of the decay product back to the undecayed state is

responsible for the deviation from the exponential decay. The perturbative result, Eqs. (38) are

consistent with these features.

It it worthwhile noting that the time evolution, generated by a Hermitian Hamiltonian always

regenerates the undecayed state at least partially. In fact, the relation H† = H shows that the

leading order contribution to the transition probability, (37), is symmetric with respect to n ↔ k

and P+ ↔ P−, the exchanges of the initial and final states. Genuine irreversibility, non-unitary

time evolution is needed to recover the experimentally well established exponential decays. For

this end one has to take into account the environment of the quantum systems, a complication not

addressed here.

We may gain another view of this problem by inspecting the dependence of the decay on the

structure of the initial state, in particular the spread of its energy. Let us write the initial state as

|ψin〉 =
∑

n

|n〉〈n|ψin〉, (49)

where H|n〉 = En|n〉. The persistence amplitude is of the form

A(t) =
∑

n

|〈n|ψin〉|2e−
i
~
Ent. (50)

We write this sum as an integral over the energy, weighted by the spectral function,

A(t) =

∫

dEρ(E)e−
i
~
Et, (51)

where

ρ(E) =
∑

n

|〈n|ψin〉|2δ(E − En). (52)

The persistence amplitude A(t) and the spectral weight ρ(E) are related by Fourier transformation

and satisfy an “uncertainty relation“, their width are inversely proportional. There is no universal

decay law, however a partial resummation of the perturbation series in QED leads to the natural
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line width of atomic spectra, a Lorentzian spectral weight

ρ(E) =
∆E

π[(E − E0)2 +∆E2]
, (53)

and yields exponential decay,

A(t) = e−i
E0
~
te−

∆E
~
|t|. (54)

Long time regime: The decay is slower than exponential for long time. This is due to the

boundedness of the Hamiltonian from below, ρ(E) = 0 for E < E0. In fact, such a shrunk of the

support of ρ(E) = 0 generates a spread of its Fourier transform, A(t).

E. Quantum Zeno-effect

Zeno (b. Elea, 488BC) argued that Achilles can not pass a tortoise since whenever he reaches

the location of tortoise the animal has already moved further. There is a quantum version of the

Zeno effect, an closed unstable system never decays if continuously observed.

The quantum Zeno effect is at short time, in the parabolic decay regime. Let us suppose

that we observe the system n times, distributed uniformly in time t, at times j∆t, ∆t = t/n,

j = 1, . . . , n. The Schrödinger equation is local in time hence the eventual decay of the system,

observed periodically, is generated independently at each observation. Therefore the probability of

not having decay at time t is

P0(t) = Pn0 (∆t), (55)

what we can write as

P0(t) =

[

1−
(

t

ntZ

)2

+O
(
n−3

)

]n

= e
n ln[1−( t

ntZ
)2+O(n−3)] → 1 (56)

where Eq. (44) was used in the first equation and the limit n → ∞ was carried at the end.

The continuously monitored radioactive atom does not decay, the undecayed state is completely

regenerated by the collapse of the wave function, following the frequent observations: The wave

function has no time to spread the latter being an O
(
∆t2

)
effect.

F. Time-energy uncertainty principle

The algebraic derivation of the uncertainty principle starts with the commutation relation

[A,B] = iC, A, B and C being observables. We first shift the observables as A0 = A − 〈A〉
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where the expectation value is 〈A〉 = TrρA and ρ denotes the density matrix, cf. Appendix A.

The uncertainty of the observable A is defined as ∆A2 = 〈A2
0〉 = 〈A2〉 − 〈A〉2. Then the inequality

〈OO†〉 = TrρOO† ≥ 0 is used for O = A0 + ixB0 for real x,

〈OO†〉 = 〈A2
0〉 − ix〈[A0, B0]〉+ x2〈B2

0〉 ≥ 0. (57)

The inequality holds at the minimum, x = xmin = − 〈C〉
2〈B2

0〉
, where [A0, B0] = iC hence

∆A∆B ≥ 1

2
|〈C〉|. (58)

There is another, qualitative argument for the Heisenberg uncertainty principle, ∆x∆p ≥ ~

2 ,

based on the Fourier transformation. It goes by comparing the absolute magnitude of wave function

of a Gaussian wave packet,

ψ(x) =

∫
dk

2π
eikx−

k2

2σ2 =

√
2π

σ
e−

σ2x2

2 (59)

in coordinate and momentum space and defining the width, the uncertainty of the Gaussian e−
x2

2∆x2

by ∆x.

The latter, more intuitive argument can be generalized for time and energy, as well, ∆t∆E ≥ ~

2

without algebraic derivation because the time remains a c-number in quantum mechanics. But

there is nevertheless an intuitive argument to support such kind of uncertainty principle. Let us

start with the inequality

∆A∆H ≥ 1

2
|〈[A,H]〉|, (60)

for a time independent observable A and the Hamiltonian H, written as

∆A∆H ≥ ~

2

∣
∣
∣
∣

d

dt
〈A〉
∣
∣
∣
∣
, (61)

due to

d

dt
〈ψ(t)|A|ψ(t)〉 = i~〈ψ(t)|[A,H]|ψ(t)〉. (62)

Therefore we can interpret

τA =
∆A

| ddt〈A〉|
(63)

as the characteristic time scale of the expectation value of A, representing the inequality (60) as

τA∆H ≥
~

2
. (64)
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Such a reciprocal uncertainty can be understood qualitatively in the following manner. The mea-

surement of the energy of a stationary state consists of the determination of the period length of

an oscillatory phase and it is obvious that the knowledge of the period length of function is more

precise if the function is known over a longer interval.

The transition probability (37) provides another support of the time-energy uncertainty relation.

The point is that as we move away from the resonance the transition probability is vanishing first

at

|ω ± ωk,n| =
2π

t
. (65)

In other words, the estimate of the energy levels of the system by analyzing the transition proba-

bility at time t comes with an error ∆E, satisfying

∆Et ≈ 2π~. (66)

G. Fermi’s golden rule

It happens frequently that the system makes transition between a state in the continuous part

of the spectrum and a discrete state, eg. absorption of energy from the radiation field, followed

by the ionization an atom or molecule. It is assumed that the final states in the continuum differ

macroscopically and are decohered. As a result the interference term among them is negligible and

the transition probability can be written as an integral over the continuous spectrum,

Pcont.←discr. =

∫

dEg(E)
|gHcont.,discr.|2

~2

4 sin2 1
2(ωcont.,discr. ± ω)t

(ωcont.,discr. ± ω)2
, (67)

over the where g(E) is the spectral density function, giving the number of state in an energy

interval [E,E+∆E], as dN = dEg(E). The change of integration variable, β = 1
2(ωcont.,discr.±ω)t,

dβ = dE t
2~ leads to the integral

Pcont.←discr. =
2t

~

∫

dβg(E)|gHcont.,discr.|2
sin2 β

β2
. (68)

This integral can be approximated by assuming that the time t is large enough to keep the density

of state, g(E), approximately constant when the energy E is changed by the order of magnitude

∆E = ~/t. The result is Fermi’s golden rule.

Pcont.←discr. ≈ t
2π

~
g(E)|gHcont.,discr.|2, (69)

since
∫ ∞

−∞
dβ

sin2 β

β2
= π. (70)
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II. ROTATIONS

The implementation of the rich details of a three-dimensional dynamics requires the introduction

of new, more sophisticated tools compared to one-dimensional systems. Some of the new issues are

related to rotations hence we now turn to a detailed, technical discussion of the we way rotations

are realized in the Hilbert space of states.

We start with translation, being more simple and already containing several aspects of the

problem. The lesson, learned there, will help to embark the more complex issues of rotations.

A. Translations

1. Translation are carried out in classical physics at the level of the coordinates as

r → T (a)r = r + a. (71)

2. Functions defined in space, like (probability)distribution functions transforms as

f(r)→ f ′(r′) = f(r′ − a). (72)

3. Translation are represented in the Hilbert space by operators, acting on the wave function,

ψ(r)→ U(T (a))ψ(r) = ψ(r − a). (73)

4. Note that for each translation T (a) we find now an operator, U(T (a)). The mapping T (a)→
U(T (a)) is called representation of translation if it preserves the algebraic structure, namely

U(T (a))U(T (b))ψ(r) = ψ(r − a− b) = U(T (a+ b))ψ(r) (74)

5. Translations preserve the scalar product,
∫

dxψ∗(x− a)φ(x− a) =

∫

dxψ∗(x)φ(x) (75)

thus the operator U(T ) is unitary, U(T )U †(T ) = 11, we speak of a unitary representation of

translation.

6. Infinitesimal translations are of the form

r → r + δr

ψ(r) → ψ(r)− δr∇ψ(r) = ψ(r) − i

~
δr ~Gψ(r) (76)

and ~G = ~

i∇ = p is called the generator of translations.
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7. Finite translations are represented by U(a) = e−
i
~
ap on analytical functions according to

Taylor expansion,

ψ(r) → ψ(r − a) =

∞∑

n=0

(−a∇)n

n!
ψ(r) = e−a∇ψ(r) = e−

i
~
apψ(r). (77)

B. Rotations

1. Rotations act on the coordinates as

r → Rn(α)r (78)

is given by a 3x3 orthogonal matrix where n stands for the axis of the rotation and α denotes

the angle of the rotation, R−1n (α) = Rn(−α) = Rtr
n(α), e.g.

Rz(α) =








cosα − sinα 0

sinα cosα 0

0 0 1








(79)

It is easy to find a relation among rotation matrices with different rotation axes, say Ru(α)

and Rv(α). If the rotation A which connects the two axes, v = Au, then the the equation

Rv(α) = ARu(α)A
−1 (80)

follows. In fact, the right hand side, being the product or rotational matrices is itself a

rotation. As such, it has one eigenvector with eigenvalue 1, the axis or rotation. The relation

ARu(α)A
−1v = ARu(α)u = Au = v establishes that this axis is v. The argument α is the

same on both sides because the matrices A and A−1 perform a basis transformation which

does not change the angle of rotation. Since the z axis is usually chosen as quantization axis

eq. (80) is frequently used as Rn(α) = ARz(α)A
−1 with n = Az.

2. Functions defined in the space transform as

f(r)→ U(R)f(r) = f(R−1r). (81)

3. The rotation changes the quantum state as

ψ(r)→ U(R)ψ(r) = ψ(R−1r). (82)
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4. The algebraic structure of the rotation group is preserved,

U(R)U(R′)ψ(r) = U(R)ψ(R′−1r)

= ψ(R′−1R−1r)

= ψ((RR′)−1r)

= U(RR′)ψ(r), (83)

therefore the operator U(R) represent the rotation group in the space of states, U(R)U(R′) =

U(RR′).

5. The scalar product is conserved,
∫

dxψ∗(Rx)φ(Rx) =
∫

dxψ∗(x)φ(x), (84)

rendering the representation unitary, U(R)U †(R) = 11.

6. Infinitesimal rotations act as

r → r + ǫn× r

ψ(r) → ψ(r) − (ǫn× r)∇ψ(r) = ψ(r)− ǫn(r ×∇)ψ(r) = ψ(r)− i

~
ǫnLψ(r), (85)

and the angular momentum L is the generator of rotations.

7. Finite rotations can be constructed by considering the one dimensional subgroup of the

rotational group, rotations around a fixed axis, {Rn(α)}. The generator is n · L therefore

U(Rn(α)) = e−
i
~
αnL. (86)

8. The angular momentum is a vector operator, it can be transformed under rotations as a

vector and as an operator and the two transformations agree. To see this we consider the

3× 3 rotation matrix A, transforming the coordinate system basis vectors nj = A−1ej and

write

U(Rnj (α)) = U(A−1Rej(α)A)

= U(A−1)U(Rej (α))U(A)

= U(A−1)e−
i
~
αejLU(A)

=

∞∑

n=0

(− i
~
α)n

n!
U(A−1)(ejL)nU(A)

=
∞∑

n=0

(− i
~
α)n

n!
[U(A−1)ejLU(A)]n

= e−
i
~
αU(A−1)ejLU(A). (87)
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Another way to write this operator is

U(Rnj (α)) = e−
i
~
αnjL

= e−
i
~
αejAL (88)

since nj = A−1ej = ejA. The comparison of the two expressions yields the equation

AL = U †(A)LU(A), (89)

whose left and right side reflects the vector and operator transformation rules under rotations.

C. Euler angles

Rotations are parametrized in Eq. (78) by their axis, n and the angle of rotation, α. Another

parametrization is given in terms of Euler angles:

Rn(α) = Rz′′(α)Ry′(θ)Rz(φ) (90)

where the rotation axis,

n =








sin θ cosφ

sin θ sinφ

cos θ







, (91)

is given in polar coordinates,

y′ = Rz(φ)y (92)

is the unit vector of the y direction after the rotation Rz(φ) and

z′′ = Ry′(θ)Rz(φ)z = Ry′(θ)z (93)

is the unit vector, pointing in the z axis after the rotation Ry′(θ)Rz(φ). One can find another,

more useful way of expressing this rotation by means of fixed axes,

Rz′′(α)Ry′(θ)Rz(φ) = Ry′(θ)Rz(α)R
−1
y′ (θ)

︸ ︷︷ ︸

R
z′′ (α)

Ry′(θ)Rz(φ)

= Rz(φ)Ry(θ)R
−1
z (φ)

︸ ︷︷ ︸

R
y′(θ)

Rz(α)Rz(φ)

= Rz(φ)Ry(θ)Rz(α). (94)
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FIG. 3: The successive rotations ofRz′′(Θ3)Ry′(Θ2)Rz(Θ1). (https://sites.google.com/site/surilvshah/eajs)

D. Summary of the angular momentum algebra

The orbital angular momentum,

L = r × p (95)

satisfies the commutation relations

[La, Lb] = i~
∑

c

ǫabcLc. (96)

The operators {Lz,L2} represent a maximal set of commuting operators and their eigenvalues can

be used to label the basis vectors,

Lz|ℓ,m〉 = ~m|ℓ,m〉, L2|ℓ,m〉 = ~
2ℓ(ℓ+ 1)|ℓ,m〉, (97)

where ℓ = 0, 1, · · · and m ∈ {−ℓ,−ℓ + 1, · · · , ℓ − 1, ℓ}, cf. Fig. 4. One introduces the ladder

operators L± = Lx ± iLy with commutation relation

[Lz, L±] = ±~L±, [L+, L−] = 2~Lz (98)

which can be used to prove the relation

L±|ℓ,m〉 = ~

√

ℓ(ℓ+ 1)−m(m± 1)|ℓ,m± 1〉. (99)

The quantum number ℓ is not changed by the angular momentum operators, hence they are

block diagonal in ℓ, 〈ℓ,m|La|ℓ′,m′〉 = δℓ,ℓ′Fa(ℓ,m,m
′). There might naturally by other quantum

numbers labeling the basis vectors. What is important is that rotations can change the quantum

number m only. The other, non-rotational quantum numbers will be suppressed in the rest of this

chapter.
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FIG. 4: The spectrum of L2 and Lz.

E. Rotational multiplets

Let us take a state |ℓ,m〉 and apply a rotation,

e−
i
~
αnL|ℓ,m〉 =

∞∑

n=0

(− i
~
α)n

n!
(nL)n|ℓ,m〉

=

∞∑

n=0

(− i
~
α)n

n!

(

nzLz +
1

2
n+L− +

1

2
n−L+

)n

|ℓ,m〉 (100)

where n± = nx ± iny. According to eqs. (97)-(99) we can write

e−
i
~
αnL|ℓ,m〉 =

ℓ∑

−ℓ≤m′

cm′(α,n)|ℓ,m′〉 (101)

and all coefficients are non-vanishing if n± 6= 0. The linear space, Hℓ, span by the vectors (100) is

called rotational multiplet and possesses the following properties:

1. The set of vectors |ℓ,m〉, −ℓ ≤ m ≤ ℓ is a basis in Hℓ.

2. Hℓ is closed with respect to rotations, e−
i
~
αnLHℓ ⊂ Hℓ.

3. Hℓ is irreducible with respect to rotations.

A linear H space is called reducible with respect to rotations if it can be split into the direct sum

of two subspaces, H = H1 ⊕ H2 where each component is closed, e−
i
~
αnLHj ⊂ Hj , j = 1, 2, and

non-trivial, 1 ≤ dimHj . The irreducibility of a rotational multiplet follows from the action of L±,

given by eq. (99), by noting that the rotation (100) necessarily generates all basis vectors |ℓ,m′〉,
of the multiplet for n± 6= 0. A space is irreducible when it is not reducible. Property 3. states

that the rotational multiplet Hℓ is the smallest subspace which is contains the state |ℓ,m0〉 with a

given m0 and is closed with respect to rotations.
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F. Wigner’s D matrix

The block diagonality in L is important because it makes the multiplets closed with respect to

rotations and allows the description of rotations within each multiplet Hℓ separately. The action

of rotations within a multiplet is described by Wigner’s D matrix.

To find the D matrices we start with a resolution of one,

∑

ℓ′,m′

|ℓ′,m′〉〈ℓ′,m′| = 11, (102)

in the space of states, representing rotations. The basis vectors might be labeled by other quantum

numbers, as well, which are not related to rotations and one should in principle sum over them,

too. Since such a rotational invariant quantum number does not change the argument, followed

below, its presence is neglected, i.e. it is assumed that each rotational multiplet occurs only once

in the linear space of states. The resolution of the identity, (102), yields the expression

U(R)|ℓ,m〉 =
∑

ℓ′,m′

|ℓ′,m〉〈ℓ′,m′|U(R)|ℓ,m〉

=
∑

m′

|ℓ,m′〉D(ℓ)
m′,m(R), (103)

for the action of a rotation on a basis vector in terms of the D matrix

D(ℓ)
m′,m(R) = 〈ℓ,m′|U(R)|ℓ,m〉. (104)

The representation by Euler angles leads to a factorized form,

D(ℓ)
m′,m(R(α, β, γ)) = D(ℓ)

m′,m(Rz(α)Ry(β))Rz(γ))

=
∑

m1,m2

D(ℓ)
m′,m1

(Rz(α))D(ℓ)
m1 ,m2

(Ry(β))D(ℓ)
m2,m(Rz(γ))

= e−iαm
′−iγmd(ℓ)m′,m(β) (105)

where the equation

〈ℓ,m′|e−iα~ Lz |ℓ,m〉 = D(ℓ)
m′,m(Rz(α)) = δm′,me

−iαm (106)

was used in the last equation and

d
(ℓ)
m′,m(β) = 〈ℓ,m′|e−i

β

~
Ly |ℓ,m〉 (107)

is called reduced d-matrix.
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Let us consider the case of spin half where the generators, the Pauli matrices are defined by

〈1
2
,m′|L|1

2
,m〉 = ~

2
σ =

~

2










0 1

1 0



 ,




0 −i
i 0



 ,




1 0

0 −1










. (108)

There are two important relations, satisfied by them,

σaσb = δa,b + i
∑

c

ǫabcσc (109)

and

σyσσy = −σ∗, (110)

they are sufficient to handle the algebra of Pauli matrices. A simple way to write (109) is to

contract the indices with two vectors, (uσ) · (vσ) = 11uv + i(u× v)σ.

Finite rotation can be described by the Pauli matrices in a specially simple manner due to the

generalized Euler relation

eiαnσ = 11 + iαnσ +
(iα)2

2!
(nσ)2 +

(iα)3

3!
(nσ)3 +

(iα)4

4!
(nσ)4 + · · ·

= 11 + iαnσ + 11
(iα)2

2!
n2 +

(iα)3

3!
n2nσ + 11

(iα)4

4!
n4 + · · ·

= 11
1

2

(
eiα + e−iα

)
+

nσ

2

(
eiα − e−iα

)

= 11 cosα+ inσ sinα. (111)

This gives the following simple expression for the reduced d matrix:

d
( 1
2
)

m′,m(β) = 〈1
2
,m′|e−i

βσy

2 |1
2
,m〉 =

(

11 cos
β

2
− iσy sin

β

2

)

m′,m

,

d(
1
2
)(β) =




cos β2 − sin β

2

sin β
2 cos β2



 . (112)

G. Invariant integration over rotations

The use of the polar coordinate system in the description of a particle in a spherical potential

offers a simple separation of the degrees of freedom, related to rotations and radial motion: the

polar angles follow free rotations and the radius is subject to the radial dynamical laws. In case of

an N -particle system, N ≥ 2, one can separate three collective coordinates, say the Euler angles

of the rotation, connecting the laboratory and the body fixed coordinate systems, the inertial

tensor being diagonal in the latter. These angles follow free rotations and the remaining 3(N − 1)
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degrees of freedom describe translational motion. Our strategy to solve a dynamical problem

is to extract as much information as possible from the free rotational aspects of the dynamics,

allowing to concentrate our strength to the solution of the more difficult radial or translational

dynamics. The coordinate space to describe the rotations is SO(3) where we use the Euler angles

as coordinates. However the construction of translation invariant states is highly non-trivial in

curve linear coordinate system, c.f. appendix B. In order to assure that the wave function of a

rotational invariant state is constant, a minimal requirement for a reasonable description of the

rotational dynamics, we have to use an appropriate, invariant Haar measure in the group space.

Let us start with a single particle where the radial component of the wave function, χ(θ, φ) =

χ(n(θ, φ)), is defined on the unit sphere whose point are given by the unit vector

n(θ, φ) =








sin θ cosφ

sin θ sinφ

cos θ







. (113)

The wave function χ(θ, φ) = 〈θ, φ|ψ〉 is defined by the help of the orthogonal coordinate eigenstates

with normalization

〈θ′, φ′|θ, φ〉 = δ(θ − θ′)δ(φ − φ′)
s2(θ, φ)

, (114)

where s2(θ, φ) = sin θ = dΣ/dθdφ is the surface density of the unit sphere. In fact, the key equation,

the resolution of one,

11 =

∫

dΣ|θ, φ〉〈θ, φ| =
∫

dθdφs2(θ, φ)|θ, φ〉〈θ, φ|, (115)

is assured by (114),

〈θ′, φ′|11|θ, φ〉 = δ(θ − θ′)δ(φ− φ′)
s2(θ, φ)

. (116)

The wave function of the spherical symmetric state,

|0〉 = 1√
4π

∫

d cos θdφ|θ, φ〉, (117)

constructed by the rotational invariant integral measure, dΣ = d cos θdφ, is χ(θ, φ) = 〈θ, φ|0〉 =
1/
√
4π.

The rotational dynamics takes place in the SO(3) group space for several particles. (One may

start with the same group space for a single particle, as well, but on has to keep in mind that we

talk about spinless particle and the non-trivial rotations of the point particle located on the z axis
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are reduced to Rz(φ)Ry(θ)Rz(χ)→ Rz(φ)Ry(θ).) We use the Euler angles as coordinates and seek

the normalization in the scalar product

〈φ′, θ′, χ′|φ, θ, χ〉 = δ(φ − φ′)δ(θ − θ′)δ(χ − χ′)
s3(φ, θ, χ)

, (118)

where s3(φ, θ, χ) = sin θ = dV/dφdθdχ is the volume density of SO(3), defined in a rotational

invariant manner, by imposing

∫

V
dφdθdχs3(φ, θ, χ) =

∫

RV
dφdθdχs3(φ, θ, χ), (119)

where the integration on the left (right) hand side is over an arbitrary volume V (V rotated by an

arbitrary R ∈ SO(3)). This condition can be written for an arbitrary function over SO(3) as

∫

dRf(R) =

∫

d(R′R)f(R) =
∫

dRf(R′−1R), (120)

with dR = dφdθdχs3(φ, θ, χ). The integral measures satisfying (120) are called invariant Haar

measures and can differ in a normalization constant only.

To find out the normalization s3(φ, θ, χ) consider the state

|0〉 =
∫

dRU(R)|z〉 =
∫

dR|Rz〉. (121)

which is rotational invariant,

U(R′)|u〉 =
∫

dRU(R′)U(R)|u〉 =
∫

dRU(R′R)|u〉 =
∫

dR|R′Ru〉 = |u〉. (122)

For the choice u = z (121) simplifies to

|0〉 =

∫

dφdθdχs3(φ, θ, χ)|R(φ, θ, 0)z〉

=

∫

dφdθdχs3(φ, θ, χ)|n(φ, θ)〉 (123)

since Rz(χ)z = z and R(φ, θ, χ)z = n(φ, θ). This state is rotational invariant for
∫
dχs3(φ, θ, χ) =

s2(φ, θ) = sin θ. Since the invariant measure must be the same for R and R−1, R−1(φ, θ, χ) =

Rtr(φ, θ, χ) = R(−χ,−θ,−φ) we can take s3(φ, θ, χ) = sin θ, a choice which is unique up to a

constant multiplicative factor, giving rise to dR = dφd cos θdχ. The total surface and volume,

using these integral measures are

∫

S2

dΣ =

∫ 1

−1
dc

∫ π

−π
dφ = 4π,

∫

SO(3)
dR =

∫ 1

−1
dc

∫ π

−π
dφ

∫ π

−π
dχ = 8π2. (124)
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H. Spherical harmonics

Rotations leave r fixed and change θ and φ only in polar coordinate system. Hence the wave

function of a basis vector |ℓ,m〉,

Y ℓ
m(n) = 〈n|ℓ,m〉, (125)

called spherical harmonics, can be considered as a function of θ and φ only. We shall show that

spherical harmonics are solely determined by the structure of the rotation group.

Spherical harmonics can be defined by the the matrix elements of Eqs. (97),

LzY
ℓ
m(n) = 〈n|Lz|ℓ,m〉 = ~m〈n|ℓ,m〉 = ~mY ℓ

m(n),

L±Y
ℓ
m(n) = 〈n|L±|ℓ,m〉

= ~

√

ℓ(ℓ+ 1)−m(m± 1)〈n||ℓ,m± 1〉

= ~

√

ℓ(ℓ+ 1)−m(m± 1)Y ℓ
m±1(n). (126)

Spherical harmonics, being the eigenvectors of hermitian operators form a basis on the unit sphere.

Conversely, a set of functions on the unit sphere satisfying eqs. (126) are the spherical harmonics

up to a constant. The absolute magnitude of this constant is fixed by the normalization

1 =

∫

d2n|Y ℓ
m(n)|2, (127)

where the integration is over the unit sphere, n2 = 1.

The relation between the Euler angles and the polar angles is given by the equation

n =








sin θ cosφ

sin θ sinφ

cos θ








= R(φ, θ, χ)z (128)

with z = (0, 0, 1) and χ left arbitrary. The similar rotation in the space of states,

|n〉 = U(R(φ, θ, χ))|z〉, (129)

can be rewritten by inserting the resolution of unity (102) as

|n〉 =
∑

ℓ,m

U(R(φ, θ, χ))|ℓ,m〉 ⊗ 〈ℓ,m|z〉. (130)

the projection of this equation on a basis vector 〈ℓ,m′| gives

〈ℓ,m′|n〉 = Y ℓ∗
m′(n) =

∑

m

D(ℓ)
m′,m(R(φ, θ, χ))〈ℓ,m|z〉. (131)



29

To find the last factor we consider the matrix element

〈ℓ,m|U(Rz(φ))|z〉 =
∑

ℓ′,m′

〈ℓ,m|U(Rz(φ))|ℓ′,m′〉〈ℓ′,m′|z〉

=
∑

m′

D(ℓ)
m,m′(Rz(φ))〈ℓ,m′|z〉

= e−imφ〈ℓ,m|z〉. (132)

The vector z is left invariant by rotations around the z axis thus the φ-dependence must be absent,

giving

〈ℓ,m|z〉 = δm,0cℓ. (133)

As of the normalization, we write

1 = 〈ℓ, 0|ℓ, 0〉, (134)

as an integral over the solid angle,

1 =

∫

S2

dn〈ℓ, 0|n〉〈n|ℓ, 0〉 (135)

or in terms of rotations

1 =
1

2π

∫

SO(3)
dR〈ℓ, 0|U(R)|z〉〈z|U †(R)|ℓ, 0〉 (136)

since the integration weight over S2 and SO(3) are identical, s2(φ, θ, χ) = s3(φ, θ, χ) = sin θ and

the integrand is χ-independent. We now insert the resolution of unity (102) beside the bra and ket

z,

1 =
1

2π

∑

ℓ,ℓ′,m,m′

∫

SO(3)
dR〈ℓ, 0|U(R)|ℓ′,m′〉〈ℓ′,m′|z〉〈z|ℓ,m〉〈ℓ,m|U †(R)|ℓ, 0〉. (137)

and use the projection (133) to find

1 =
〈ℓ, 0|z〉|2

2π

∫

SO(3)
dR|D(ℓ)

0,0(R)|2
︸ ︷︷ ︸

8π2

2ℓ+1

(138)

and, assuming that cℓ is real and positive,

cℓ =

√

2ℓ+ 1

4π
. (139)

By inserting this into Eq. (131) we find

Y ℓ
m(n) = 〈n|ℓ,m〉 =

√

2ℓ+ 1

4π
D(ℓ)∗
m,0(R(φ, θ, χ)) =

√

2ℓ+ 1

4π
eimφd

(ℓ)∗
m,0(θ). (140)
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Example: Let us construct the spherical harmonics for ℓ = 1. These three functions are defined

on the unit sphere and transform into each other during rotations in an irreducible manner. The

three components of the vector r = (x, y, z) obviously satisfy these requirements and all what

is left to find is their linear combinations which correspond to the base |1,m〉. We start with

the observation that the rotations around the z-axes leave the vector z invariant and Lzz = 0

according to Eqs. (85). The comparison of this result with the first equation of (126) shows that

Y 1
0 (n) = cz/r, c =

√

3/4π being a normalization factor. To find the remaining functions we use

the second equation of (126),

Y 1
±1(n) =

1√
2~
L±Y

1
0 (n), (141)

written as

Y 1
±1(n) =

c√
2~r

[ypz − zpy ± i(zpx − xpz)]z, (142)

yielding

Y 1
1 (n) = −

√

3

8π

x+ iy

r
= −

√

3

8π
sin θeiφ

Y 1
0 (n) =

√

3

4π

z

r
=

√

3

4π
cos θ

Y 1
−1(n) =

√

3

8π

x− iy
r

=

√

3

8π
sin θe−iφ. (143)

III. ADDITION OF ANGULAR MOMENTUM

When a system of several particles is considered the quantities, characterizing the individual

particles may or may not add up. For instance, the energy is additive for non-interacting particles

only, the momentum and angular momentum remain additive in the presence of interactions, as

well, in non-relativistic dynamics. But a non-linear function of additive quantities, such as L2 is

not additive anymore, rendering the construction of rotational multiplets a non-trivial problem for

several particles. We shall consider first additive quantum numbers, such as the momentum p or

angular momentum L for two non-interacting particles, followed by the non-additive L2.

A. Additive observables and quantum numbers

Let us consider a system of two non-interactive particles in a state, described by the wave

function ψ(r1, r2). We show first that the generators of translations and rotations, the momentum
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and angular momentum are additive operators for a system of several particles. After that we

address the issue of a non-additive observable, namely the length square of angular momentum.

1. Momentum

Momentum, the generator of translations, can be read off by performing an infinitesimal trans-

lation r → r + ǫ. The equation

δψ(r1, r2) = −
i

~
ǫPψ(r1, r2)

defines the total momentum, cf. Eq. (76). The expression

δψ(r1, r2) = ψ(r1 − ǫ, r2 − ǫ)− ψ(r1, r2)

= − i
~
ǫ(p1 + p2)ψ(r1, r2), (144)

of the change of the wave function under infinitesimal translation yields the form

P = p1 + p2 (145)

of the total momentum. The additivity of the momentum operator implies the additivity of the

eigenvalues of p in an obvious manner.

2. Angular momentum

An infinitesimal rotation around the z axis, corresponding to the coordinate transformation

r =








r sin θ cosφ

r sin θ sinφ

r cos θ







→








r sin θ cos(φ+ ǫ)

r sin θ sin(φ+ ǫ)

r cos θ








(146)

induces the change

δψ(r1, r2) = − i
~
ǫLzψ(r1, r2)

= −ǫ(∂φ1 + ∂φ2)ψ(r1, r2)

= − i
~
ǫ(L1z + L2z)ψ(r1, r2). (147)



32

It is an obvious generalization of this result that the rotation Rn(ǫ) is generated by n(L1 + L2).

Hence the angular momentum is additive, L = L1 +L2 and satisfies the commutation relations

[La, Lb] = [L1a + L2a, L1b + L2b]

= i~
∑

c

ǫa,b,c(L1c + L2c)

= i~
∑

c

ǫa,b,cLc. (148)

Note that the additivity of the components of the angular momentum is not sufficient to de-

termine the quantum number ℓ of the total angular momentum because L2 = L2
1 + L2

2 + 2L1L1

is not additive. This is similar in classical mechanics, as well, where a non-linear function of an

additive quantity is naturally non-additive. The determination of the spectrum of such a non-linear

combination is non-trivial in the quantum case. For instance, two vectors of classical physics, L1

and L2 produce the sum, L = L1 +L2, in such a manner that

(√

L2
1 −

√

L2
2

)2

≤ L2 ≤
(√

L2
1 +

√

L2
2

)2

. (149)

Is there a similar inequality in the quantum case? Furthermore, the construction of any vector,

satisfying his inequality is obvious in classical physics. How can we find different states, allowed

by the corresponding inequality in the quantum case?

B. System of two particles

Let us consider now two particles in the states |φ1〉 and |φ2〉, respectively, with angular momen-

tum quantum numbers ℓ1 and ℓ2, |φ1〉 ∈ Hℓ1 , |φ2〉 ∈ Hℓ2 . Rotations, applied on the system of two

particles, e−
i
~
αnL|φ1〉 ⊗ |φ2〉 generate a representatino of rotations in the space H = Hℓ1 ⊗ Hℓ2 .

The spectrum of L2 = (L1 + L2)
2, {ℓ1, ℓ2, . . . , ℓn}, will be determined by breaking up H into the

direct sum of rotational multiplets H = Hℓ1 ⊕ Hℓ2 ⊕ · · · ⊕ Hℓn . One can prove that the unitary

representations can always be broken up into the sum of irreducible representations.

There are two different bases one may use in H. The decoupled basis is defined by the vectors

|ℓ1, ℓ2,m1,m2〉 = |ℓ1,m1〉 ⊗ |ℓ2,m2〉, − ℓj ≤ mj ≤ ℓj. (150)

Since the quantum numbers m1 and m2 are independent we have dimH = (2ℓ1 +1)(2ℓ2 +1). The

vectors of the coupled basis, |L,M〉, are labeled by the quantum numbers of the total angular
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FIG. 5: Decoupled basis: The spectrum of (L1)z and (L2)z for ℓ1 = 6, ℓ2 = 2.

momentum L,

L2|L,M〉 = ~
2L(L+ 1)|L,M〉,

Lz|L,M〉 = ~M |L,M〉, (151)

and can be constructed as follows.

We start with the decoupled basis vector |ℓ1, ℓ2, ℓ1, ℓ2〉. Since the components of the angular

momentum is additive we have M = ℓ1 + ℓ2. Actually this vector has the maximal value of

M = Mmax = ℓ1 + ℓ2 in H. Since H is closed with respect to rotations this vector must be in a

multiplet as a coupled basis vector, |Mmax,Mmax〉 ∈ HMmax and H = HMmax ⊕ H′, where both

members of the direct sum are closed with respect to rotations. Since there is no other vector with

the same value of M we know that H contains only one such a multiplet. Thought not obvious at

the very beginning, this multiplet might have occurred several times in H. The continuation of the

argument is simpler to follow in Figs. 5 and 6 where the basis vectors are represented by crosses.

Let us now apply the ladder operator L− = L1− + L2− to the decoupled basis vector we have

just found and define another element of the multiplet HMmax by the equation

|Mmax,Mmax − 1〉 = 1

~
√
2Mmax

L−|Mmax,Mmax〉. (152)

The subspace with M = Mmax − 1 is two dimensional and the unit vector |ψ〉, orthogonal to

|Mmax,Mmax − 1〉 can be chosen as a further coupled basis vector within H′. Since H′ is closed

with respect to rotations this basis vector must be in a multiplet. There is no further orthogonal

states with the same M quantum number therefore |ψ〉 = |Mmax − 1,Mmax − 1〉 ∈ HMmax−1 ⊂ H′

which comes with multiplicity one in H′. We have so far identified two multiplets and found

H = HMmax ⊕HMmax−1 ⊕H′′, where H′′ is closed with respect to rotations.

The repeated application of this procedure, starting always with a decoupled basis vector with

one unit lower M quantum number leads to the identification of multiplets HL with Lmin =
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FIG. 6: Coupled basis: The spectrum of Lz for ℓ1 = 6, ℓ2 = 2.

|ℓ1 − ℓ2| ≤ L ≤ Lmax = ℓ1 + ℓ2 which occur once only,

H = H|ℓ1−ℓ2| ⊕ · · · ⊕ Hℓ1+ℓ2 , (153)

a result summarized symbolically as

ℓ1 ⊗ ℓ2 = |ℓ1 − ℓ2| ⊕ |ℓ1 − ℓ2|+ 1⊕ · · · ⊕ ℓ1 + ℓ2 − 1⊕ ℓ1 + ℓ2. (154)

The “sum rule”,

dimH = (2ℓ1 + 1)(2ℓ2 + 1) =
∑

|ℓ1−ℓ2|≤ℓ≤ℓ1+ℓ2
(2ℓ+ 1), (155)

confirms the observation that each multiplet appears once only. The single occurrence of each

multiplet in the sum of two angular momentum gives rise to the resolution of the identity

11 =
∑

m1,m2

|ℓ1, ℓ2,m1,m2〉〈ℓ1, ℓ2,m1,m2| =
∑

L,M

|L,M〉〈L,M | (156)

in H.
The simplicity of having each multiplet occurring once in the sum is expected on semi-classical

grounds, as well. When two angular momentum vectors are added in quantum mechanics then

the different ways of rearranging the total angular momentum quantum number, L, represent

the different relative orientations of the angular momentum vectors. The matrix elements of the
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right hand side of eq. (96) can be proven to become negligible within a multiplet with angular

momentum ℓ→∞ and the classical behavior is recovered in that limit. What happens in classical

mechanics? When two angular momentum vectors are added then for each relative orientation of

the vectors, parametrized by the angle between the two vectors, there is a well defined length for

the sum. This is not the case anymore if three or more vectors are added.

The matrix elements of the unitary transformation, connecting the coupled and the decoupled

basis,

(ℓ1, ℓ2,m1,m2|L,M) = 〈ℓ1, ℓ2,m1,m2|L,M〉, (157)

are called Clebsch-Gordan coefficients and give rise to the expression

|L,M〉 =
∑

m1,m2

|ℓ1, ℓ2,m1,m2〉(ℓ1, ℓ2,m1,m2|L,M) (158)

of the coupled base where the resolution of the identity (156) was used. The additivity of Lz yields

the property

(ℓ1, ℓ2,m1,m2|L,M) = δm1+m2,M (ℓ1, ℓ2,m1,M −m1|L,M). (159)

One can choose the phase of the basis vectors |ℓ,m〉 in such a manner that Clebsch-Gordan coeffi-

cients become real. The procedure, followed above can be extended for the half integer case.

Examples:

1. 1
2⊗ 1

2 = 0⊕1: Let us now work out the Clebsch-Gordan coefficients for the simplest example,

the addition of two spin half, ℓ1 = ℓ2 =
1
2 . The equation

|1,±1〉 = | ± 1

2
,±1

2
〉 (160)

gives (12 ,
1
2 ,±1

2 ,±1
2 |1,±1) = 1. The remaining, third basis vector of the L = 1 multiplet is

found by the help of the ladder operator,

|1, 0〉 =
1√
2~
L−|1, 1〉

=
1

2
√
2
[σ1x + σ2x − i(σ1y + σ2y)]|

1

2
,
1

2
〉

=
1√
2








0 0

1 0





1

+




0 0

1 0





2



 |1
2
,
1

2
〉

=
1√
2

(

|1
2
,−1

2
〉+ | − 1

2
,
1

2
〉
)

, (161)
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yielding (12 ,
1
2 ,±1

2 ,∓1
2 |1, 0) = 1√

2
. Note that all basis vectors of the multiplet are symmetric

with respect to the exchange of the two particles. Finally, the fourth basis vector, orthogonal

to the already found three is an antisymmetric combination gives

|0, 0〉 = 1√
2

(

|1
2
,−1

2
〉 − | − 1

2
,
1

2
〉
)

(162)

and (12 ,
1
2 ,±1

2 ,∓1
2 |1, 0) = ± 1√

2
.

2. d(1): The addition of two spin half can be used to find the reduced d-matrix for spin one.

We start with the decoupled basis

d
(1)
(m′

1,m
′
2),(m1,m2)

(β) = 〈m′1,m′2|e−i
β
2
(σ1y+σ2y)|m1,m2〉 = d

( 1
2
)

m′
1,m2

(β)d
( 1
2
)

m′
1 ,m2

(β) (163)

and construct

d
(1)
m′,m(β) = 〈1,m′|e−i

β

~
Ly |1,m〉, (164)

by the help of the Eqs. (160)-(162) for the coupled basis,

d
(1)
m′m

=











d++d++
1√
2
(d++d+− + d+−d++) d+−d+−

1√
2
(d++d−+ + d−+d++)

1
2
(d++d−− + d+−d−+ + d−+d+− + d−−d++)

1√
2
(d+−d−− + d−−d+−)

d−+d−+
1√
2
(d++d+− + d+−d++) d−−d−−











(165)

where dmm′ = d
( 1
2
)

m,m′(β). The explicit expression (112) gives finally

d
(1)
m′,m(β) =








cos2 β2 − 1√
2
sin β sin2 β2

1√
2
sinβ cos β − 1√

2
sin β

sin2 β2 − 1√
2
sin β cos2 β2







. (166)

3. 1⊗n: What happens when we assemble n particles of spin one? The decoupled basis vectors,

|m1, . . . ,mn〉 = |1,m1〉 ⊗ · · · ⊗ |1,mn〉, (167)

have the wave function,

〈r1, . . . , rn|m1, . . . ,mn〉 = 〈r1|1,m1〉 · · · 〈rn|1,mn〉, (168)

and we choose the single particle wave functions

〈r|1,m〉 = rY 1
m(

r

r
), (169)

where the spherical harmonics are given by eq. (143). This choice makes the wave functions

homogeneous polynomials of the coordinates of order n. One finds angular momentum
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multiplets with 0 ≤ ℓ ≤ n with different multiplicities, we shall consider the simplest case,

ℓ = n, only. The multiplet Hℓ (ℓ = n from now on) enters with multiplicity one as in the

case of Chapter IIIB because there is a single state with M = ℓ, namely |1, . . . , 1〉. The

remaining 2ℓ states of Hℓ can be obtained by applying L− = L1− + · · · + Lℓ− on |1, . . . , 1〉,

|ℓ,m〉 = 1

Nm
Lℓ−m− |1, . . . , 1〉, (170)

with

Nm =
ℓ∏

m′=m+1

~

√

ℓ(ℓ+ 1)−m′(m′ − 1), (171)

up to a phase factor.

The structure of the wave functions of the states in Hℓ leads to a useful expression for the

spherical harmonics. To find it we consider the single particle with wave functions

ψm1,...,mℓ(r) = 〈r|1,m1〉 · · · 〈r|1,mℓ〉. (172)

This wave function is obtained by collapsing the different coordinates of (168) to a common

value, r1 = · · · = rℓ = r, hence the transformation properties under rotations which influence

each coordinate in a similar manner, in particular the angular momentum, remain the same.

Therefore, the wave functions

ψℓ,m(r) =
1

Nm
Lℓ−m− ψ1,...,1(r), − ℓ ≤ m ≤ ℓ (173)

form a basis for the multiplet Hℓ within the state of space of this single particle. The angular

momentum operator, L removes a coordinate and multiplies by another and preserve the

form of the wave functions, namely being a homogeneous polynomial of the coordinates of

order ℓ. The wave function ψℓ,m(r) is the sum of terms

ℓ!

p!q!r!2r
2q/2+r(x+ iy)p(

√
2z)q(x− iy)r, p+ q + r = ℓ, p− r = m (174)

up to a common normalization factor. In fact, the combinatorial prefactor denotes the

number of possibilities of partitioning ℓ indistinguishable objects into three subsets of size p,

q and r. The factors (
√
2)q and (

√
2)2r are generated by the coefficient

√

ℓ(ℓ+ 1)−m(m− 1)

on the right hand side of eq. (99) as L− acts q+2r times. The operator L− has to act twice on

the same factor, 〈r|1,mj〉, to reach mj = −1 and the order of the two L− does not matter.

But each order is counted ℓ!. Such a double counting is removed by the factor 2r in the
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denominator. The condition p− r = m follows from the additivity of Lz. The normalization

and the phase conventions, leading to real Clebsch-Gordan coefficients correspond to

Y (ℓ)
m (θ, φ) =

1

rℓ

√

2ℓ+ 1

4π
(ℓ+m)!(ℓ−m)!

∑

p+q+r=ℓ,p−r=m

1

p!q!r!

(

−x+ iy

2

)p

zq
(
x− iy

2

)r

.(175)

IV. SELECTION RULES

The structure of the rotational group alone restricts the matrix elements of certain operators,

calculated between states with well defined angular momentum. Such a simplification is of great

importance in the study of involved composite systems. Operators displaying this simplification

are called tensor operators and the simplicity of the matrix elements stems from the orthogonality

relations and the Wigner-Eckart theorem.

A. Tensor operators

Tensor operator set, {T (ℓ)
m }, −ℓ ≤ m ≤ ℓ, transforms as operator acting in the Hilbert space

and as tensor, basis vectors of an irreducible multiplet in the linear space of operators,

U †(R)T (ℓ)
m U(R) =

∑

m′

T
(ℓ)
m′Dℓm′,m(R

−1)

=
∑

m′

Dℓ∗m,m′(R)T
(ℓ)
m′ , (176)

cf. eq. (89). Tensor operators transform under rotations in two different ways. One the one hand,

they are operators and the representation of rotations in the Hilbert space transform them. On

the other hand, they are tensors and rotations act on their tensor indices. This equation states

that these two ways of rotation are equivalent for tensor operators. We can turn this equation into

an invariance property,

∑

m′

U †(R)T (ℓ)
m′ U(R)Dℓm′,m(R) = T (ℓ)

m . (177)

Example: Let us consider the spherical harmonics, transforming under rotations as

Y ℓ
m(Rn) = U(R−1)Y ℓ

m(n)

= 〈n|U(R−1)|ℓ,m〉 =
∑

m′

Y ℓ
m′(n)D

(ℓ)
m′,m(R

−1), (178)

where a resolution of the identity is inserted after the bra 〈n| in the second line. Such a trans-

formation rule suggests that the operator, Y ℓ
m(Â), obtained by the help of a vector operator,
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RÂ = U †(R)ÂU(R), is a tensor operator. In fact,

Y ℓ
m(RA) =

∑

m′

Y ℓ
m′(Â)D

(ℓ)
m′,m(R

−1)

= Y ℓ
m(U

†(R)ÂU(R))

= U †(R)Y ℓ
m(Â)U(R) (179)

B. Orthogonality relations

The orthogonality theorem, stating that the set of matrix elements of all irreducible represen-

tations of a group form a complete orthogonal basis for functions on the group, plays a central

role in the theory of representation of groups. Rather than presenting a general proof we follow a

short-cut, needed to use this theorem for rotations.

We have seen that the spherical harmonics, defined by
√

2ℓ+ 1

4π
d
(ℓ)∗
m,m′(θ)e

imφ (180)

with m′ = 0, represent a basis on the unit sphere with the integral measure dφd(cos θ). One can

generalize this result for m′ 6= 0 by showing that those functions are linearly independent and

satisfy the same eigenvalue conditions with the operators L2 and Lz. Therefore the D matrix

elements,

D(ℓ)
m′,m(R(φ, θ, χ) = 〈ℓ,m′|U(Rz(φ)U(Ry(θ)U(Rz(χ)|ℓ,m〉

= e−im
′φ−imχd(ℓ)m′,m(θ), (181)

give a basis for the rotation group SO(3) = {R(φ, θ, χ)} with the integral measure dR =

dφd(cos θ)dχ because the factor e−imχ provides a basis for the dependence on χ.

Hence the equation, expressing the orthogonality of different basis vectors,

∫

dRD(ℓ1)∗
m′

1,m1
(R)D(ℓ2)

m′
2,m2

(R) =
8π2

2ℓ1 + 1
δℓ1,ℓ2δm′

1,m
′
2
δm1,m2 , (182)

follows where the normalization is obtained from (138). The completeness implies the representa-

tions

f(φ, θ, χ) =
∑

ℓ,m,m′

fℓ,m,m′D(ℓ)
m,m′(R(φ, θ, χ)) (183)

where

fℓ,m,m′ =
2ℓ1 + 1

8π2

∫ π

−π
dφ

∫ 1

−1
d(cos θ)

∫ π

−π
dχD(ℓ)∗

m,m′((φ, θ, χ))f(φ, θ, χ) (184)
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|L,M> U|L,M>

C.G. C.G.

U

U

1 1 1 12 22|l ,m >|l ,m  > U|l ,m >|l ,m  >2

FIG. 7: Two ways of performing rotations on a decoupled basis element.

for square integrable functions over SO(3).

We now work out an inportant consequence of the orthogonality relation for the addition of

angular momentum. The basis transformation from the decoupled to the coupled basis is not only

unitary but orthogonal because the Clebsch-Gordan coefficient are real. Therefore the transforma-

tion

|L,M〉 =
∑

m1,m2

|ℓ1,m1〉 ⊗ |ℓ2,m2〉(ℓ1, ℓ2,m1,m2|L,M) (185)

can be inverted with the result

|ℓ1,m1〉 ⊗ |ℓ2,m2〉 =
∑

L,M

|L,M〉(ℓ1, ℓ2,m1,m2|L,M). (186)

We can write rotations on the decoupled basis on two different manners by following the two

different paths of Fig. 7. By applying the rotation on each factor of the direct product basis vector

we have

U(R)|ℓ1,m1〉 ⊗ |ℓ2,m2〉 =
∑

m′
1,m

′
2

|ℓ1,m′1〉 ⊗ |ℓ2,m′2〉D(ℓ1)
m′

1,m1
(R)D(ℓ2)

m′
2,m2

(R). (187)

The use of Eq. (186) gives

U(R)|ℓ1,m1〉 ⊗ |ℓ2,m2〉 =
∑

L,M,M ′

|L,M ′〉D(L)
M ′,M(R)(ℓ1, ℓ2,m1,m2|L,M) (188)

where the right hand side can be rewritten by the help of the decoupled basis vectors as

U(R)|ℓ1,m1〉 ⊗ |ℓ2,m2〉 =
∑

L,M,M ′,m′
1,m

′
2

|ℓ1,m′1〉 ⊗ |ℓ2,m′2〉(ℓ1, ℓ2,m′1,m′2|L,M ′)

D(L)
M ′,M(R)(ℓ1, ℓ2,m1,m2|L,M). (189)

Comparing this result with (187) we find

D(ℓ1)
m′

1,m1
(R)D(ℓ2)

m′
2,m2

(R) =
∑

L,M,M ′

(ℓ1, ℓ2,m
′
1,m

′
2|L,M ′)D(L)

M ′,M (R)(ℓ1, ℓ2,m1,m2|L,M)

=
∑

L,M,M ′

〈ℓ1, ℓ2,m′1,m′2|L,M ′〉D(L)
M ′,M (R)〈L,M |ℓ1, ℓ2,m1,m2〉. (190)
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The usual bracket formalism is used in the second equation because it indicates in an obvious

manner that we have here the same rotation in the coupled and the decoupled bases.

We finally multiply this equation by D(L)∗
M ′,M (R) and carry out the integration over the rotational

group to find

∫

dRD(L)∗
M ′,M (R)D(ℓ1)

m′
1,m1

(R)D(ℓ2)
m′

2,m2
(R) =

8π2

2L+ 1
(ℓ1, ℓ2,m

′
1,m

′
2|L,M ′)(ℓ1, ℓ2,m1,m2|L,M), (191)

where Eq. (182) has been used to simplify the right hand side. This equation, called orthogonality

relation for Clebsch-Gordan coefficients, expresses the addition of angular momenta, corresponding

to the two indices of the D matrix, the projection of |ℓ1,m1〉 ⊗ |ℓ2,m2〉 and 〈ℓ1,m′1|⊗〉ℓ2,m′2| on
〈L,M | and |L,M ′〉, respectively. We see no complex conjugation on the Clebsch-Gordan coefficient,

corresponding to the left indices because (ℓ1, ℓ2,m
′
1,m

′
2|L,M ′) is real.

C. Wigner-Eckart theorem

To obtain a useful parametrization of the matrix elements of tensor operators we split the

quantum numbers, labeling our basis vectors into rotational and non-rotational classes. The former

includes ℓ andm and the remaining quantum numbers belong to the latter, denoted by n. Therefore

a generic matrix element of a tensor operator is

M = 〈n1, ℓ1,m1|T (ℓ)
m |n2, ℓ2,m2〉. (192)

We use the identity (177) to writeM as

M =
∑

m′

〈n1, ℓ1,m1|U †(R)T (ℓ)
m′ U(R)|n2, ℓ2,m2〉Dℓm′,m(R)

=
∑

m′
1m

′
2m

′

〈n1, ℓ1,m1|U †(R) |n1, ℓ1,m′1〉〈n1, ℓ1,m′1|
︸ ︷︷ ︸

11

T
(ℓ)
m′ |n2, ℓ2,m′2〉〈n2, ℓ2,m′2|
︸ ︷︷ ︸

11

U(R)|n2, ℓ2,m2〉

×Dℓm′,m(R). (193)

An integration over rotations eliminates the R-dependence,

M
∫

dR =
∑

m′
1,m

′
2,m

′

〈n1, ℓ1,m′1|T (ℓ)
m′ |n2, ℓ2,m′2〉

∫

dRD(ℓ1)∗
m′

1,m1
(R)D(ℓ)

m′,m(R)D
(ℓ2)
m′

2,m2
(R), (194)

and the orthogonality relation (191) results

M
∫

dR =
8π2

2ℓ1 + 1
(ℓ, ℓ2,m,m2|ℓ1,m1)

∑

m′
1,m

′
2,m

′

(ℓ, ℓ2,m
′,m′2|ℓ1,m′1)〈n1, ℓ1,m′1|T (ℓ)

m′ |n2, ℓ2,m′2〉.

(195)
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The Wigner-Eckart theorem,

M = (ℓ, ℓ2,m,m2|ℓ1,m1)≪ n1, ℓ1|T (ℓ)|n2, ℓ2 ≫, (196)

expresses the matrix elements of a tensor operator in a factorized form. One factor, the Clebsch-

Gordan coefficient, reflects the structure of the rotation group because it depends on rotational

quantum numbers only, and represents the kinematic feature of the matrix element in question.

The other factor, the so called reduced matrix element,

≪ n1, ℓ1|T (ℓ)|n2, ℓ2 ≫=
1

2ℓ1 + 1

∑

m′
1,m

′
2,m

′

(ℓ, ℓ2,m
′,m′2|ℓ1,m′1)〈n1, ℓ1,m′1|T

(ℓ)
m′ |n2, ℓ2,m′2〉, (197)

contains the dynamical aspects of the matrix element as indicated by the dependence on the non-

rotational quantum numbers n1 and n2.

If the Clebsch-Gordan coefficient in (196) is vanishing then whole matrix element is canceled.

When this happens in the calculation of transitional amplitude then such a cancellation is called

selection rule, a kinematic consideration restricts the possible outcome.

Examples:

1. Tensor operator with ℓ = 0: The triviality of the Clebsch-Gordan coefficients

(ℓ2, 0,m2, 0|ℓ1,m1) = δℓ1,ℓ2δm1,m2 (198)

gives the factorization

〈n1, ℓ1,m1|T (0)
m |n2, ℓ2,m2〉 = δℓ1,ℓ2δm1,m2 ≪ n1, ℓ1|T (0)|n2, ℓ2 ≫ . (199)

Such a factorization actually appears in the calculation of the matrix elements of spherical

symmetric functions in problems with rotational invariant potential, such as the Hydrogen

atom,

〈n1, ℓ1,m1|rp|n2, ℓ2,m2〉 =
∫

dφ

∫

d(cos θ)Y ℓ1∗
m1

(θ, φ)Y ℓ2
m2

(θ, φ)

︸ ︷︷ ︸

(ℓ2,0,m2,0|ℓ1,m1)

∫

drr2+pη∗n1,ℓ1(r)ηn2,ℓ2(r)

︸ ︷︷ ︸

≪n1,ℓ1|rp|n2,ℓ2≫

.

(200)

2. Tensor operator with ℓ = 1: The results (??)-(??) can be generalized to the angular momen-

tum operator which give ℓ = 1 tensor operators, namely,

T
(1)
0 = Lz, T

(1)
±1 = ∓ 1√

2
L±, (201)
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and the Wigner-Eckart theorem gives

〈n1, ℓ1,m1|Lm|n2, ℓ2,m2〉 = (1, ℓ2,m,m2|ℓ1,m1)≪ n1, ℓ1|L|n2, ℓ2 ≫ . (202)

This relation can be used to obtain the reduced matrix elements in a simple manner, by

considering the case

〈n1, ℓ1, ℓ1|L0|n2, ℓ2, ℓ2〉 = (1, ℓ2, 0, ℓ2|ℓ1, ℓ1)≪ n1, ℓ1|L|n2, ℓ2 ≫ . (203)

In fact, we have

〈n1, ℓ1,m|L0|n2, ℓ2,m〉 = ~mδn1,n2δℓ1,ℓ2 (204)

and the Clebsh-Gordan coefficient,

(1, ℓ1, 0, ℓ1|ℓ1, ℓ1) =
√

ℓ1
ℓ1 + 1

(205)

can be used to find the reduced matrix element

≪ n1, ℓ1|L|n2, ℓ2 ≫= δn1,n2δℓ1,ℓ2~
√

ℓ(ℓ+ 1). (206)

V. SYMMETRIES IN QUANTUM MECHANICS

Yet another chapter dealing with symmetries is needed to address realistic problems in atomic

physics, namely to clarify the impact of symmetries on the dynamics and to include discrete

symmetry transformation, in particular space and time inversions. We start with a more careful

definition of the symmetry and mention its important consequences on the dynamics, followed by

an extension of the class of symmetry transformations. The Chapter is closed by discussing space

and time inversion symmetries.

A. Representation of symmetries

Symmetry transformation of a classical system is easier to define in the phase space where the

equation of motion is of a first order differential equation in time. The state of motion of the system

is described by a point in the phase space, c = (x, p) and a transformation, c→ s(c), acting on the

canonical variables is a symmetry if it maps a trajectory c(t) of the system into another one. This

condition can be expressed in a simple manner if the initial condition c(ti) = ci, imposed at t = ti
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kept explicitly in the corresponding solution of the equation of motion, c(t; ci), ie. c(ti; ci) = ci.

Now, the transformation c→ s(c) is a symmetry if

c(t; s(ci)) = s(c(t; ci)). (207)

The system is evolved in quantum mechanics in a linear space by a first order equation of

motion, i~∂t|ψ〉 = H|ψ〉, as

|ψ(t)〉 = e−
i
~
(t−ti)H |ψ(ti)〉 (208)

and the symmetry transformations s are acting within the linear space of state, |ψ〉 → S|ψ〉 is a

symmetry if

1. Solution of the equation of motion is mapped into solution,

S|ψ(t)〉 = e−
i
~
(t−ti)HS|ψ(ti)〉, (209)

which is equivalent with the condition

[S,H] = 0. (210)

2. Observable quantities are preserved by S. It will be mentioned below that the preservation

of the transition probability P (|ψ〉 ← |ψ〉) = |〈φ|ψ〉|2 requires that S be unitary or anti-

unitary operator. This feature, the preservation of the absolute magnitude of the scalar

product, is specially important. It gives a justification of the construction of the coupled

basis, followed in Chapter IIIB, because it assures that basis vectors are mapped into basis

vectors. This point allows us to generalize the procedure for any symmetry and stating

that the multiplets of a symmetry, the linear subspaces which are closed with respect to the

symmetry operations, can always be broken up into the direct sum of irreducible multiplets.

The following properties of the way, symmetries are realized in quantum mechanics play an

important role in applications.

� The set of symmetry transformations forms a group. One has to check four features to

prove this statement. (i) The identity, S = 11 is always a symmetry, (ii) When two symmetry

transformations are applied one after the other then the result is again a symmetry. (iii)

The property (S1S2)S3 = S1(S2S3) is obvious. (iv) Both unitary and anti-unitary operators

possess an inverse.
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� A symmetry transformation indicates a degeneracy of the Hamiltonian. In fact, let us

consider an eigenstate H|ψ〉 = E|ψ〉. This state is degenerate with its image with respect to

the symmetry transformation since

HS|ψ〉 = SH|ψ〉 = ES|ψ〉. (211)

An important example is the case of rotational invariant Hamiltonian, [L,H] = 0 where

the symmetry with respect to the rotations, S = e−
i
~
αnL, makes the rotational multiplets

degenerate.

� Each subspace of an energy eigenvalue, either degenerate or not, is closed with respect

to symmetry operation. The reasoning is given by eqs. (211), too. Hence we have a

representation of the symmetry group for each eigenvalues of the Hamiltonian.

� A unitary symmetry generates a conservation law. In fact, let us start the motion from

an initial state which is an eigenstate of the symmetry transformation, S|ψ(ti)〉 = λ|ψ(ti)〉,
then the state remains an eigenstate, corresponding to the same eigenvalue since

S|ψ(t)〉 = Se−
i
~
(t−ti)H |ψ(ti)〉 = e−

i
~
(t−ti)HS|ψ(ti)〉 = λ|ψ(t)〉. (212)

Note an important difference between the classical and quantum case. On the one hand,

Noether theorem assures that continuous symmetries generate conserved quantities without

giving any role to discrete symmetries, on the other hand, both continuous and discrete

symmetries lead to conservation laws in quantum mechanics.

B. Unitary and anti-unitary symmetries

It is an important condition against symmetry transformation that observables should be pre-

served. This condition brings in a surprising element because the correspondence between physical

states and vectors in the space of states is not unique. The one-dimensional linear subspace z|ψ〉,
span by the vector |ψ〉 belongs to the same physical state. Even if we use normalized vectors eiα|ψ〉
representing the same state, the physics states are realized by a ray-representation in quantum

mechanics. This circumstance is important in discussing symmetries because the image of a sym-

metry transformation is well defined up to a phase, namely a symmetry transformation |ψ〉 → S|ψ〉
can always be generalized to S|ψ〉 → |ψ̃〉 = eiαψS|ψ〉 where αψ is a suitable defined phase. Thus

the requirement 〈ψ|φ〉 = 〈ψ̃|φ̃〉 can be relaxed to 〈ψ|φ〉 = |〈ψ̃|φ̃〉|.
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To accommodate such a weaker condition we generalize the idea of operators in the following

manner. An operator S is called linear or anti-linear if

S(a|φ〉+ b|ψ〉) = aS|φ〉+ bS|ψ〉, (213)

or

S(a|φ〉 + b|ψ〉) = a∗S|φ〉+ b∗S|ψ〉, (214)

respectively. The linear operator U is unitary if it is linear and

|ψ〉 → U |ψ〉 = |ψ̃〉, 〈ψ|φ〉 = 〈ψ̃|φ̃〉. (215)

An anti-unitary operator A is an anti-linear operator and it satisfies

|ψ〉 → A|ψ〉 = |ψ̃〉, 〈ψ|φ〉 = 〈ψ̃|φ̃〉∗. (216)

An important theorem, due to E. Wigner, assures that one can always choose the phases {αn} in
such a manner that a symmetry transformation is always either unitary or anti-unitary.

Dirac’s bracket formalism is prepared to deal with linear operators and produces inconsistencies

when anti-linear operators appear. We mention here three unusual properties of the simplest anti-

linear operator, the complex conjugation, K, Kc|ψ〉 = c∗K|ψ〉.

1. There are restrictions in the bracket formalism when anti-linear operators are allowed.

(a) K is basis dependent. This comes about because we may use real wave functions for

the description of any basis, for instance ψj = δj,j0 or ψx0(x) = δ(x − x0), in a linear

space with discrete or continuous spectrum, respectively. In other words,

K
∑

n

cn|ψn〉 =
∑

n

c∗n|ψn〉, (217)

K does nothing with the basis vectors in which it is defined.

Let us now use another basis set, {|φj〉}, related to the previous one as |ψn〉 =
∑

j unj|φj〉, where we find

K
∑

jn

cnunj|φj〉 =
∑

jn

c∗nu
∗
nj |φj〉. (218)

The complex conjugation does not stop after cn in this basis and gives a result which

agrees with (217) for real unj only.
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(b) K acts always to right, never to left and K† is ill defined. This problem comes from

the inconsistency of the bracket formalism when it deals with anti-linear operators,

〈ψ|K→a|φ〉 = a∗〈ψ|K|φ〉 6= 〈ψ|←Ka|φ〉 = a〈ψ|K|φ〉, (219)

where the arrow shows the direction K is acting. As a result the hermitian conjugate,

〈ψ|K|φ〉 = 〈φ|K†|ψ〉∗, can not be introduced neither.

2. Symmetries, realized by anti-linear operators do not lead to conserved quantities. In fact,

let us suppose that an anti-linear operator A corresponds to a symmetry, [A,H] = 0 and the

initial condition is an eigenvector if the symmetry transformation, A|ψ(ti)〉 = λ|ψ(ti)〉. The
solution of the Schrödinger equation is not an eigenvector since

A|ψ(t)〉 = Ae−
i
~
(t−ti)H |ψ(ti)〉 = e

i
~
(t−ti)HA|ψ(ti)〉 6= λ|ψ(t)〉. (220)

There is a useful representation of anti-unitary operators, they can be written as A = UK,

the product of a unitary operator U ,U †U = 11 and complex conjugation. The product A = UK

is obviously anti-linear, what is left to check is anti-unitarity. For this end consider the states

|φ〉 = ∑

n an|n〉, |ψ〉 =
∑

n bn|n〉, written in a basis with real wave functions, K|n〉 = |n〉. The

scalar product 〈φ|ψ〉 transforms

〈φ̃|ψ̃〉 = (UK
∑

m

am|m〉)†UK
∑

n

bn|n〉

= (
∑

m

a∗mU |m〉)†
∑

n

b∗nU |n〉

=
∑

mn

amb
∗
n〈m|U †U |n〉

= (
∑

mn

a∗mbn〈n|m〉)∗

= 〈φ|ψ〉∗ (221)

indeed as required by (216). The representation A = UK can be used to construct basis inde-

pendent anti-unitary operator. All we have to do is to use a unitary operator U which is basis

dependent in such a manner that it compensates the basis dependence of K.

C. Space inversion

The space inversion is the simplest to define in coordinate basis, P |x〉 = eiα| − x〉. It is a

unitary transformation because the scalar product is preserved, 〈x|y〉 = 〈−x| − y〉. It is a useful
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convention to choose the phases of the basis states {|x〉} in such a manner that δ = 0, giving

P 2 = 11, P = P−1 = P †.

It is easy to find out the transformation of the canonical variables under space inversion. The

relation

〈φ|P †xP |ψ〉 = −〈φ|x|ψ〉 (222)

gives the operator equation

P †xP = −x. (223)

The transformation rule for the momentum can be found by requiring the invariance of the canonical

commutation relation under space inversion,

P † |xj , pk]P = −[xj , P †pkP ] = i~δj,k, (224)

giving

P †pP = −p. (225)

As a result we find another useful transformation rule,

P †LP = L. (226)

The wave function transform as

Pψ(x) = 〈x|P |ψ〉 = 〈x|P †|ψ〉 = 〈−x|ψ〉 = ψ(−x), (227)

and we find the same result in momentum space,

Pψ(p) = ψ(−p), (228)

too.

The eigenstate of space inversion posses well defined parity, P |ψ〉 = πψ|ψ〉, π2ψ = 1, πψ = ±1.
The wave function of states with parity 1 or −1 is even or odd, respectively. One can introduce

space inversion parity for operators, as well, P †OP = πOO. It is important to know the parity of

the electromagnetic field. To find these parities one may start by noting that the parity of the four-

current, jµ = (cρ, j) is πρ = −πj = 1 and the interaction Lagrangian, ejµAµ with Aµ = (φ,−A),

is space inversion invariant, giving πφ = −πA = −πE = πB = 1.
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The spherical harmonics, given by eq. (175) transform as

PY (ℓ)
m (n) = Y (ℓ)

m (−n) = (−1)ℓY (ℓ)
m (n), (229)

and we have in general

P |ℓ,m〉 = (−1)ℓ|ℓ,m〉. (230)

Note that in a system of two particles the parity, π|ℓ,m〉 = (−1)ℓ1+ℓ2 may or may not be identical

with (−1)L.
We mention a simple theorem, stating that the non-degenerate eigenstate of a space inversion

invariant Hamiltonian H|ψ〉 = E|ψ〉 possesses well defined parity. The proof uses the projection

operator, P± = 1
2(11±P ), onto the subspace of parity π = ±1. The inversion symmetry, [P,H] = 0,

gives HP±|ψ〉 = EP±|ψ〉 and the theorem follows by remarking only that one of the subspace can

contain a non-degenerate eigenvector. As an application, one may mention the case of a double

well potential, U(x) = −ax2 + bx2, with a, b > 0. The theorem states that despite the potential

barrier between the minimas each stationary state in this potential have even or odd wave function.

Permanent electric dipole moments present a non-trivial use of space inversion symmetry. The

electric dipole of a multi-particle system is

d =
∑

n

enrn, (231)

where en and rn denote the charge and the coordinate of the n-th particle. The dipole moment is

permanent if it is non-vanishing in the absence of external electric field. The dipole operator has

−1 parity its expectation value changes sign under space inversion,

〈ψ|d|ψ〉 = 〈ψ|P †PdP †P |ψ〉 = −〈ψ|P †dP |ψ〉. (232)

If the state |ψ〉 is a non-degenerate eigenstate of the space inversion invariant Hamiltonian then

it has a well defined parity, πψ, furthermore we have

〈ψ|d|ψ〉 = −〈ψ|P †dP |ψ〉 = −π2ψ〈ψ|d|ψ〉 = −〈ψ|d|ψ〉, (233)

making the permanent electric dipole vanishing. If the state |ψ〉 is degenerate then permanent

electric dipole is possible, as observed in the n = 2, fourfold degenerate state of the hydrogen

atom.
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D. Time inversion

To every solution of a dynamical system corresponds another one, obtained by sending the

time in opposite direction. Time reversal of classical mechanics consists of the the transformation

x(t) → x(−t) or (x, p) → (x,−p) of the trajectories or canonical variables, respectively. Though

time inversion deals with the time evolution of the system nevertheless it can be stated in terms

of the transformation of the canonical variable at a given time because the equation of motion is

of first order in the phase space.

The time reversal, T |ψ(t)〉 = |ψ(t)T 〉, is anti-linear in quantum mechanics because the

Schrödinger equation, i~∂t|ψ〉 = H|ψ〉, reads for the time reversed system as

i~∂tT |ψ〉 = −HT |ψ〉 = −TH|ψ〉 = −T i~∂t|ψ〉, (234)

where it is assumed that the Hamiltonian is time independent, [T,H] = 0.

The determination of the transformation rule of observables under time reversal is facilitated

by the relation

〈φ|O|ψ〉 = 〈ψT |TO†T−1|φT 〉, (235)

holding for any linear operator O. The proof of this equation is simplified by introducing the state

|χ〉 = O†|φ〉,

〈φ|O|ψ〉 = 〈χ|ψ〉

= 〈ψT |χT 〉

= 〈ψT |TO†|φ〉

= 〈ψT |TO†T−1T |φ〉

= 〈ψT |TO†T−1|φT 〉. (236)

The coordinate is time independent.

T−1xT = x, (237)

hence we have 〈φT |x|ψT 〉 = 〈φ|x|ψ〉, and

x̂T |y〉 = T x̂|y〉 = yT |y〉, (238)

leading to

T |x〉 = eiγ(x)|x〉. (239)
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We shall use time inversion which is based on the coordinate representation, meaning γ(x) = 0. The

transformation rule for the momentum is inferred from the invariance of the canonical commutation

relation under time reversal. The commutation relation, applied to an arbitrary state,

[xj , pk] |ψ〉 = i~δj,k|ψ〉, (240)

implies

T [xj , pk]T
−1T |ψ〉 =

[
xj, T pkT

−1]T |ψ〉 = −i~δj,kT |ψ〉 (241)

which gives

T−1pT = −p. (242)

The transformed momentum eigenstate satisfies the equations

p̂T |p′〉 = −T p̂|p′〉 = −p′T |p′〉, (243)

resulting in

T |p〉 = eiκ(p)| − p〉. (244)

The transformation rules (237) and (242) give the transformation rule

T−1LT = −L (245)

for angular momentum.

The wave function transform as

Tψ(x) = 〈x|T |ψ〉

=

∫

d3y〈x|T |y〉〈y|ψ〉

=

∫

d3y〈x|y〉〈y|ψ〉∗

= ψ(x)∗ (246)

in the coordinate representation. The application of this rule to ψp(x) = 〈x|p〉 = e
i
~
xp yields the

transformation

Tψp(x) = Te
i
~
xp = e−

i
~
xp = ψ−p(x), (247)

which in turn gives

T |p〉 = T

∫

d3x|x〉〈x|p〉 =
∫

d3x|x〉〈x|p〉∗ =
∫

d3x|x〉〈x| − p〉 = | − p〉, (248)
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and κ(p) = 0 in (244). The momentum space wave function transforms as

Tψ(p) = 〈p|T |ψ〉

=

∫
d3p′

(2π~)3
〈p|T |p′〉〈p′|ψ〉

=

∫
d3p′

(2π~)3
〈p| − p′〉ψ(p′)∗

= ψ(−p)∗ (249)

The transformation rule of the spherical harmonics, (175),

TY (ℓ)
m (n) = (−1)mY (ℓ)

−m(n), (250)

gives

T |ℓ,m〉 = (−1)m|ℓ,−m〉. (251)

One can introduce time reversal parity for states, T |ψ〉 = τψ|ψ〉, and operators, T−1OT = τOO.

Since applying time reversal twice one regains the original time direction and the same physical

state we have

T 2|ψ〉 = e2iγ |ψ〉, (252)

and τψ = eiγ . As noted above, this parity is not conserved. As of the electromagnetic field is

concerned, τρ = −τj = 1 leads to τφ = −τA = τE = −τB = 1.

It is easy to find the theorem, analogues to the case of space inversion. The non-degenerate

eigenstate, H|ψ〉 = E|ψ〉, of the time reversal invariant Hamiltonian, [T,H] = 0 has a space

independent phase. To prove this we start with the equations

HT |ψ〉 = TH|ψ〉 = ET |ψ〉, (253)

yielding T |ψ〉 = eiδ |ψ〉. Comparing this result with the transformation rule (246) we find for the

wave function parametrized as ψ(x) = ρ(x)eiχ(x)

χ(x) = −δ
2
. (254)

An important lesson is to be learned from the application of time inversion on the spin operator

S = ~σ/2. According to eq. (245) we find

T−1σT = −σ (255)
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which gives for T = UK

U †σx
z
U = −σx

z
, U †σyU = σy. (256)

This equation can be satisfied by the choice U = eiθσy when eq. (110) is used. The usual convention

is

U = −iσy = e−i
π
2
σy = e−

i
~
πSy = U(Ry(π)) (257)

which gives

T 2 = U(Ry(2π)). (258)

This is a highly non-trivial and important result, relating time reversal and rotations. The appli-

cation of T 2 on a state |J,Σ〉 with well defined angular total momentum,

T 2|J,Σ〉 = U(Ry(2π))|J,Σ〉 = (−1)2J |J,Σ〉 = ±|J,Σ〉, (259)

shows that the application of two time reversal and rotation by 2π produces a multiplicative factor,

1 or −1 within the subspace of integer or half-integer angular momentum.

We are now in the position to show an important theorem for half integer spin states with time

reversal invariant dynamics, [T,H] = 0. Let us take an eigenstate of the Hamiltonian, |ψ〉. The

state T |ψ〉 has the same eigenvalue and let us now ask the question if these two vectors correspond

to the same physical state. Let us suppose for the moment that the answer is affirmative and they

correspond to the same state, T |ψ〉 = eiα|ψ〉. Another time reversal gives

T 2|ψ〉 = Teiα|ψ〉 = e−iαT |ψ〉 = e−iαe+iα|ψ〉 = |ψ〉, (260)

a condition which is compatible with integer angular momentum only. For particles with half

integer angular momentum the states |ψ〉 and T |ψ〉 are different and degenerate. Such a Kramers

degeneracy is usually a trivial spin up, spin down reduplication of the electron states. But the

theorem becomes highly non-trivial for inhomogeneous electric field. For instance, odd or even

umber of electrons had fundamentally different spectrum in an arbitrary external electric field

which is time reversal even and the degeneracy for odd number of electron persists for arbitrary

electric field but can be broken by a magnetic field.

Three space coordinates and the time are joined to form a four dimensional manifold in relativity

and suggest some kind of similarity between space and time. But this similarity is rather limited,

the time usually plays a distinguished role in physics. It has different signature as the space
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coordinates in the Minkowski geometry, it is oriented as witnessed by irreversibility, it remains a c-

number, passive parameter in quantum mechanics where the coordinates are traded into operators.

Here we see another point where time creates exceptions, it makes us looking for an extension of

Dirac’s bracket formalism.

VI. RELATIVISTIC CORRECTIONS TO THE HYDROGEN ATOM

A. Scale dependence of physical laws

The relativistic corrections to the dynamics of the hydrogen atom represent a nice manifestation

of an interesting feature of the physical laws, namely that any observation depends on the scale

involved.

Scales refer in physics to dimensional quantities. What is the meaning of dimensions? What

is the difference between say
√
2 and the diameter 20cm of a ball? The former is an element of

the set of real numbers. The latter expresses a ratio between the size of the ball and the unit of

length, a convention. Hence dimensional quantities always express a ratio of properties of physical

objects and chosen units.

A measuring process always contains dimensional parameters, for instance the mass or size

of the apparatus and the time of the measurement. When these parameters are modified then

the measurement involves different physical quantities, different set of elementary constituents,

briefly it covers different physics. Therefore the result of the observation changes, c.f. Fig. 8

where the emergent phenomenas are indicated as the function of the spatial resolution of the

observations. The understanding and the reproduction of such a scale dependence is the goal of

the renormalization group method, developed approximately fifty years ago in high energy and

statistical physics. Our concepts are based on our experiences, conveyed to us by our senses and

are formed in our childhood when our brains plasticity is still high. We play with macroscopic toys

in that time and our concept cover few orders of magnitudes around our natural scale, around say

a meter. This is the reason we need the formal concepts of mathematics to navigate among the

results, produced by our “extended senses”, the microscopes and telescopes. Both the quantitative

numerical values and the qualitative laws depend on the scale of the observations. This is why our

intuition, based on macroscopic physics, is completely lost when the resolution of the observation

reaches a scale somewhere between a cell and molecule, where the quantum world opens up.

It is fair to say that there are no constants physical values and what are called “constants” in
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FIG. 8: Few relevant length scales and the fundamental interactions as the function of length.

V

FIG. 9: A ball, moving in a fluid. The realistic fluid is viscous and its flow patter is turbulent, leading to

more fluid moving with the ball.

physics and engineering are actually (slowly) changing functions of observation scales with possible

long plateau. The Bureau of Standard exists just to monitor and maintain the special environment,

needed to keep certain physical quantities fixed. Consider for instance the mass of a ball which

is well defined for an isolated body but the situation changes as soon as the environment is taken

into account. In fact, a ball, shown in Fig. 9 moving with velocity v with respect to a fluid,

has an ill defined mass since certain fluid molecules are dragged along the motion and there is no

clear separation between the molecules, belonging to the ball and the fluid. A possible strategy to

define the mass is to measure the energy, assumed to be the sum of the ball and the fluid energy,

Etot(v) = Eball(v) + Efl, and write Eball =
m(v)
2 v2, yielding m(v) = d2Etot(v)

dv2
. This quantity is

“running”, i.e. depends on the scale parameter, v, of the experimental setup. A similar analysis

reveals the scale-dependence of other physical “constants”.

A more realistic example is a system of electrons, described for the sake of simplicity by QED,

a theory containing two parameters, the electron mass, m and charge, e. The dependence of these

parameters can be represented by a curve, the renormalized trajectory, in the parameter space of

the theory as depicted in Fig. 10.
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FIG. 10: The electron mass and the charge as the function of the resolution in the space-time in QED.
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FIG. 11: The renormalized trajectory of the Theory of Everything.

It is instructive to try to imagine the Theory Of Everything whose parameters cover all “con-

stants”, used in physics. Its renormalized trajectory is a curve in this high dimensional space.

There are special theories, called renormalizable theories, which in the limit of very fine resolution

produce scale independent observables. These are indicated by circles in Fig. 11 and the renor-

malized trajectory, the observed values of the “physical constants”, visit them as the resolution

changes. The renormalized trajectory provides us a “guided tour of physics“ and defines the ef-

fective theories which are valid in certain limited scale windows. The search of the Theory Of

Everything, perhaps the most attractive problem in physics, remains a remote possibility for us,

being able to cover phenomenas in finite scale windows. But even if it were found, the possible

chaotic feature of the renormalized trajectory would render the its knowledge irrelevant at our

scales.
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B. Hierarchy of scales in QED

The strength of the electromagnetic interaction can be characterized by the dimensionless cou-

pling constant

α =
e2

~c
≈ 1

137
(261)

which can be used to order the relativistic effects in the hydrogen atom as well since

v2

c2
≈ ~

2

m2a20c
2
=

e4

~2c2
= α2. (262)

The smallness of this coupling strength leads the the emergence of a hierarchy of the length scales

in quantum electrodynamics. In fact, starting with the scale of atomic physics, a0, the perturbation

expansion expressions contain the length scales rn = a0α
n with n = 1, 2, ....

1. n = 0: The first scale, the longest length scale is the Bohr radius, a0 ≈ 0.053nm which is

the order of magnitude of the size of a hydrogen atom. The spectrum, seen at such a space

resolution is the O
(
c0
)
non-relativistic energy levels.

2. n = 1: The second length scales is the Compton wavelength,

λC =
~

mc
≈ 3.86 · 10−11cm = 386fm. (263)

being independent of the electric charge, e, it belongs to the dynamics of the electron without

taking into account its coupling to the electromagnetic field. The Compton wavelength

belongs to the spatial extension of a maximally localized particle. In fact, the characteristic

length of the wave function of a particle, localized in a region of size ℓ, is ℓ and the electron

has the kinetic energy

E = c
√

m2c2 + p2 ≈ c
√

m2c2 +
~2

ℓ2
, (264)

in this state. This energy is sufficient to create an particle-anti particle pair and delocalize

it if ℓ / λC . When we attempt to localize a charged particle within a region of extension

smaller than the Compton wavelength then the generated anti-particles escape and render

the usual, first quantized formalism of quantum mechanics where the number of particle is

fixed, inappropriate. The emergent anti-particle radiation can be described by using the

second quantized formalism of quantum field theory.
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3. n = 2: The third scale is the classical electron radius, rc, the order of magnitude of the

electron-proton separation where the Coulomb energy is sufficient to create electron-positron

pairs. It is defined by

e2

rc
= mc2, (265)

giving

rc =
e2

mc2
≈ 2.8fm. (266)

This scale does not contain ~ therefore it belongs to the realm of classical physics. To

understand the physical relevance of this scale consider an imaginary world without quantum

mechanics. The electrodynamics of point charges has a single intrinsic length scale, rc. The

careful solution of the theory reveals that the electromagnetic interactions, known to us are

dominant at length scales longer than rc only and singularities and acausalities show up at

distances shorter than rc. The physical process which becomes stronger as we approach the

scale rc from longer distance is the interaction of the charge with the electromagnetic field,

generated by itself, the Abraham-Lorentz force. Naturally, being deeply in the quantum

domain the corresponding classical phenomenon is embedded into quantum processes in our

world.

4. n = 3: One finds yet another scale, an accidental degeneracy of the spectrum of the hydrogen

atom in the total angular momentum after having taken into account the leading order

relativistic corrections is spited by the Lamb shift and this interaction takes place at scale

ℓL =
e4

mc3~
≈ 0.02fm (267)

Further, higher order, shorter length scales are more difficult to identify because they belong to

involved, multi-particle effects.

C. Unperturbed, non-relativistic dynamics

The non-relativistic discussions is based on the separation of the center of mass motion, by

writing the Hamiltonian as Hnr = Hcm +Hr, with

Hcm =
P 2

2M
,

Hr =
p2

2m
− e2

r
, (268)
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where P = pe + pp is the total momentum, M = me +mp stands for the total mass, p = pe − pp

and r = re − rp denote the relative momentum and coordinate, respectively and

1

m
=

1

me
+

1

mp
≈ 1

me
. (269)

The eigenstates of Hr can be written in the factorized form

ψn,ℓ,m,se,sp(r, θ, φ, σ,Σ) = ηn,ℓ(r)Y
ℓ
m(θ, φ)χse(σ)χsp(Σ), (270)

where the radial dynamics determines ηn,ℓ(r), the rotational symmetric potential leads to the

directional dependence, given by the spherical harmonics Y ℓ
m(θ, φ) and χse(σ) and χsp(Σ) denote

the electron and proton spin wave functions, respectively. The energy eigenvalue of such a state is

En,ℓ,m,s = −
R

n2
, (271)

with ℓ = 0, . . . , n − 1 and −ℓ ≤ m ≤ ℓ, where R = ~
2

2ma20
≈ 13.6eV denotes the Rydberg constant

and a0 stands for the Bohr radius, a0 = ~2

me2
≈ 0.53A. The (2Sp + 1)(2Se + 1)n2 = 4n2-fold

degeneracy of the energy levels is the result of an accidental degeneracy, the independence of the

energy of the angular momentum and the spin independence of the Coulomb interaction.

The spectrum and the stationary states of the hydrogen atom, mentioned above, are appropriate

when used with the resolution in space-time, comparable with the Bohr radius. The shorter distance

scale structure of the wave function is modified by the relativistic corrections to the kinetic energy,

by the creation of virtual electron-positron pairs and byt the induction of magnetic field.

The relativistic transformation rules are different for the coordinates and the spin vectors, lead-

ing to a non-trivial coupling of the spins and r. The coupling of the electron spin and orbital

angular momentum destroys the symmetry with respect to the independent rotations of the elec-

tron coordinate r and spin s, leaving the simultaneous rotation of the total angular momentum,

J = L + s as a symmetry generator. These effect can easily be sorted out experimentally be-

cause the sensitivity of the spectrum on the perturbation in the subspaces where the unperturbed

Hamiltonian is degenerate.

D. Fine structure

The operators, reflecting the relativistic effects of the electron should be symmetric with respect

to three-rotations and space inversion. This requirement restricts them to r2, p2, rp and L2 as

far as the orbital motion is concerned. The electron spin appear in the rotational invariant form

in the combinations Sr, Sp and S · L the last being the only one which is invariant under space

inversion, too.
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FIG. 12: Elementary processes in QED, contributing to the spread of the charge distribution by vacuum

polarization.

1. Relativistic corrections to the kinetic energy

1. Origin: The relativistic corrections to the kinetic energy,

E = c
√

m2c2 + p2 = mc2 +
p2

2m
− p4

8m3c2
+O

((v

c

)6
)

(272)

modify the stationary states of a free particle.

2. Form: The energy spectrum of a free particle is

H0 =
p2

2m
− p4

8m3c2
=

p2

2m
+Hm. (273)

3. Magnitude: The order of magnitude of the shift of the spectrum is

|Hm|
p2

2m

≈ v2

c2
= α2 (274)

2. Darwin term

1. Origin: A point charge is surrounded by a cloud of virtual electron-positron pairs, reflecting

the vacuum polarization of the Dirac-see, in close analogy with the polarization of a classical

dielectric material. Such a spread of the elementary charge distribution can be followed in

QED, a typical Feynman graph being shown in Fig. 12.

2. Form: Let us suppose that a point charge distribution, ρ(r) = δ(r) is smeared to ρ(r),
∫
drρ(r) = 1, by elementary processes in QED. This amounts to a dressing of the Coulomb
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potential, UC(r)→ U(r) = UC(r) + UD(r), where UC(r) =
e2

r and

U(r) =

∫

dr′ρ(r′)UC(r + r′)

=

∫

dr′ρ(r′)

[

UC(r) + r′∇UC(r) +
1

2
r′jr
′
k∂j∂kUC(r) + · · ·

]

= UC(r) +
1

6
∇

2UC(r)

∫

dr′r
′2ρ(r′)

︸ ︷︷ ︸
3
4
λ2
C

= UC(r) + UD(r). (275)

The explicit form of the Darwin term is HD = −UD, where

UD(r) =
1

8
λ2C∇

2UC(r) = −
1

2
πe2λ2Cδ(r) = −

π~2e2

2m2c2
δ(r). (276)

3. Magnitude: The estimate

〈UD〉 =
π~2e2

2m2c2
|ψ(0)|2
︸ ︷︷ ︸

≈ 1

a30

≈ e2~2

m2c2
m3e6

~6
= mc2

e8

~4c4
= mc2α4, (277)

together with

〈H0〉 ≈ R =
~
2

2ma20
=

~
2

2m

m2e4

~4
=
me4

2~2
=

1

2
mc2α2 (278)

yields

|〈HD〉|
〈H0〉

≈ α2. (279)

3. Spin-orbit coupling

1. Origin: The spin and the angular momentum represent a magnetic moment and a magnetic

field, respectively in this case.

Let us start by recalling the interaction energy,

Hi = −mB, (280)

between a magnetic moment m and the classical magnetic field B. To find the magnetic

moment, induced by the motion of charge in quantum mechanics we consider the classical

Lagrangian of the charge, in the presence of an external electromagnetic field. The interaction
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is described by the term − e
cj
µAµ, including the current jµ = (nc, nẋ) where n denotes the

density and the vector potential Aµ = (φ,A) hence the total Lagrangian is

L =
m

2
ẋ2 − eφ(t,x) + e

c
ẋA(t,x). (281)

The momentum,

p =
∂L(ẋ,x)

∂ẋ

= mẋ+
e

c
A(t,x), (282)

is used to find the Hamiltonian,

H = pẋ− L

=
(p− e

cA)2

2m
+ eφ, (283)

with p = ~

i∇.

While the interaction of a classical charge with the electromagnetic field can be described

by the gauge invariant electric and magnetic fields, E and B, respectively the possibility of

interference requires a more detailed scheme in quantum mechanics. In fact, a charge follows

a closed orbit, a circle in homogeneous magnetic field and it enters into an interference with

itself. The need of keeping track of the phase factor, governing such an interference, requires

the coupling to the magnetic field, appearing in the Lagrangian (281).

Let us assume a homogeneous magnetic field for the sake of simplicity, φ = 0, A = −1
2r×B

and the Hamiltonian,

H =
p2

2m
− e

2mc
(pA+Ap) +

e2

2mc2
A2

=
p2

2m
− e

mc
Ap+ i

e~

2mc
∇A+

e2

2mc2
A2

=
p2

2m
+

e

2mc
(r ×B)p +

e2

2mc2
A2

=
p2

2m
− e

2mc
LB +

e2

2mc2
A2 (284)

shows that the magnetic moment, due to the angular momentum is m = e
2mcL.

One expects a similar relation between the spin and the magnetic moment, as well. But the

relativistic extension of the Schrödinger equation, the Dirac equation introduces a further

factor 2 in these expressions. One can understand this by the help of a simpler equation,

proposed by Pauli in 1927, the replacement, P = p− e
cA→ σP in the kinetic energy

H =
P 2

2m
→ (σP )2

2m
(285)
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FIG. 13: (a): The electric field of a stationary current in the co-moving coordinate system with the charges.

(b): The induced magnetic field in the laboratory frame.

A year later Dirac came forward with his relativistic equation of motion which reproduces

Pauli’s equation and introduces further O
(
p4/m3c2

)
corrections. The Hamiltonian (285)

can be written as

H =
{σj , σk}{P j , P k}+ [σj , σk][P j , P k]

8m
. (286)

The property (109) of the Pauli matrices yields {σj , σk} = 2δjk, [σj , σk] = 2iǫjkℓσℓ which

together with the relation [∇j + f j,∇k + fk] = ∇jfk −∇kf j give

(σP )2

2m
=

P 2

2m
− ~e

2mc
ǫjkℓ∇jAkσℓ

=
P 2

2m
−mB (287)

where the spin magnetic moment is m = ~e
2mcσ is customary written in terms of the Bohr

magneton, e~
2mc and the spin gyromagnetic factor g = 2 as m = gµB

S
~
. The important

consequence of this result is that the magnetic moment arising from the motion of the

electron and its spin is

m = µB
L+ gS

~
= µB

J + (g − 1)S

~
6= µB

J

~
(288)

where J = L+ S.

But what is the magnetic field in the hydrogen atom? The naive answer to this question,

stating that the magnetic field due to the proton at rest is vanishing holds in the reference

frame attached to the proton. It is more appropriate to ask this question in the reference

frame where the electron is at rest at a given time. The point is that the Lorentz boost,

connecting these two reference frames mixes the temporal end spatial components of the

vector potential Aµ which induces a mixing of the electric and magnetic fields. In particular,
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FIG. 14: Origin of the spin-orbit force.

an electric field E produces a magnetic field

B = −1

c
v ×E (289)

when seen from a reference frame, moving with velocity v with respect to the electric field,

cf. Fig. 13. Therefore the Coulomb field of the proton induces a magnetic field when seen

from the instantaneous reference frame where the electron is at rest.

2. Form: The interaction Hamiltonian (280), corresponding to the Coulomb field

E(r) = −er∂r
e

r
=

e

r2
er (290)

turns out

Hso = −msB = 2µB
s

~

v ×E

c

= −~e2

m2
· 1

~c2
s(p× r)

1

r
∂r

1

r

=
e2

m2c2
sL

1

r
∂r

1

r
. (291)

3. Magnitude:

〈Hso〉
〈UC〉

≈
e2~2

m2c2a30
e2

a0

=
e4

~2c2
= α2 (292)

E. Hyperfine structure

The proton moves in the electromagnetic field, generated by the electron. The former has

been taken into account in the fine structure, discussed above which gives rise an effect which is

suppressed by me/mp ∼ 0.51MeV/938MeV ∼ 1/2000, called hyperfine structure.
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1. Origin: The spin and the orbital momentum of the electron generates a magnetic field which

interacts with the proton spin.

2. Form: The interaction energy (280) is

Hhf = − 1

c2

{
e

meR3
Lmp +

1

R3
[3(men)(mpn)−memp] +

8π

3
mempδ

(3)(R)

}

(293)

where the electron and proton magnetic moments are

me = 2
e~

2me

sn

~
,

mp = gp
e~

2mn

sn

~
, (294)

where the proton magnetic moment, gp ≈ 5.585, is far from 2 due to the internal quark

structure.

3. Magnitude:

〈Hhf 〉 ≈
e2~2

mempc2a30
≈ 〈Hso〉

me

mp
. (295)

F. Splitting of the fine structure degeneracy

Most of the degeneracy in the spectrum of the non-relativistic hydrogen atom is split by the

relativistic corrections, represented by the fine structure Hamiltonian

Hf = Hm +HD +Hso. (296)

The Ls coupling, appearing in the spin-orbit interaction can be diagonalized when the total angular

momentum, J = L+ s is used since

Ls =
1

2
(J2 −L2 − s2). (297)

Therefore we use the coupled basis

|n, J,M, ℓ〉 =
∑

se

|n, ℓ,M − se, se〉(ℓ,
1

2
,M − se, se|J,M). (298)

We shall use the traditional spectroscopic notations, the states will be labeled by the quantum

numbers nℓJ , and ℓ = 0, 1, 2, 3, . . . = s, p, d, f, g, . . ..
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1. n = 1

The 1s level has a 2×2 degeneracy in the spins. To find the first order correction to the energy,

E
(1)
n = 〈n|Hf |n〉, we need the spectrum and the eigenstates of the non-relativistic Hamiltonian,

H0. The diagonal matrix elements 〈n, ℓ,m, ss|Hf |n, ℓ,m, ss〉 are calculated for the state with wave

function

〈r, θ, φ, ss|n, ℓ,m, ss〉 = Rn,ℓ(r)Y
ℓ
m(θ, φ)u(se) (299)

where

R1,0(r) =
2

a
3
2
0

e
− r
a0 , (300)

and

Y 0
0 =

1√
4π
. (301)

Hm: To find the matrix elements of the relativistic correction to the kinetic energy we write

p4 = 4m2

(

H0 +
e2

r

)2

(302)

where

H0 =
p2

2m
− e2

r
(303)

is the non-relativistic Hamiltonian of spectrum En = −α2mc2

2n2 . We now have the expression

Hm = −(H0 +
e2

r )
2

2mc2
(304)

for the leading relativistic correction to the kinetic energy. Its expectation values are

〈Hm〉 = −
1

2mc2

(

E2
n + 2En〈

e2

r
〉+ 〈e

4

r2
〉
)

, (305)

The calculation of the matrix elements of rn is facilitated by the use of the generator functional

I(κ) =

∫ ∞

0
dre−κr =

1

κ
, (306)

because we have

〈 1
rn
〉 = 4π

4π

∫ ∞

0
drr2−n

4

a30
e
− 2r
a0 =

4

a30
(−1)2−n d

2−nI(κ)
dκ2−n |κ= 2

a0

(307)
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for n = 1, 2, in particular,

〈1
r
〉 = 1

a0
, 〈 1

r2
〉 = 2

a20
(308)

give

〈Hm〉 = −
1

2mc2

(
α4m2c4

4
− α2mc2e2

a0
+

2e4

a20

)

= −5

8
α4mc2. (309)

HD: The calculation of the diagonal matrix is obvious, leading to

〈HD〉 =
e2~2π

2m2c2
|ψn,ℓ,m(0)|2 =

e2~2

8m2c2
|R1,0(0)|2 =

1

2
α4mc2. (310)

Hso: The matrix element is vanishing in the s-wave sector.

We find the shift ∆E = −1
8α

4mc2 in 1s 1
2
and the degeneracy prevails.

2. n = 2

The fine structure within the shell n = 2 is non-trivial. This shell has the degeneracy

2
︸︷︷︸

2s 1
2

+ 2
︸︷︷︸

2p 1
2

+ 4
︸︷︷︸

2p 3
2

= 8. (311)

The fine structure is simplified by the absence of mixing of the states 2s and 2p,

Hf =




H2s 0

0 H2p



 . (312)

The radial wave functions,

R2,0 =
2

(2a0)
3
2

(

1− r

2a0

)

e
− r

2a0 , R2,1 =
1

√
2(2a0)

3
2

r

a0
e
− r

2a0 , (313)

give the matrix elements

〈2s|1
r
|2s〉 = 1

4a0
, 〈2s| 1

r2
|2s〉 = 1

12a20
, 〈2s| 1

r3
|2s〉 = 1

24a30
. (314)

The diagonal matrix elements within the subspace 2s,

〈Hm〉 = − 13

128
mc2α4

〈HD〉 = − 1

16
mc2α4

〈Hso〉 = 0 (315)



68

2s1/2 2p1/2

3/22p

−E/8

17E/128

Lamb:

s

p p

p

21E/128

s

p
p

p s

s

p

p

FIG. 15: Splitting of the shell n = 2 and the Lamb shift.

leave the degeneracy and produce the energy shift, ∆E2s 1
2

= − 21
128α

4mc2. The 2p sector is

〈Hm〉 = − 55

384
mc2α4

〈HD〉 = 0

〈Hso〉 = 〈2p,m, se|
e2

2m2c2
1

r3
SL|2p,m′, s′e〉 =

e2

2m2c2

∫ ∞

0
drr2

1

r3
|R2,1(r)|2

︸ ︷︷ ︸

mc2α4

48~2

〈1,m, se|SL|1,m′, s′e〉(316)

where the vanishing of 〈HD〉 is due to the asymptotic behavior Rℓ = O
(
rℓ
)
. The action of the

operator SL on an angular momentum eigenstate,

SL|ℓ,m, s〉 =
1

2
( ~J2 −L2 − S2)|ℓ,m, s〉

=
~
2

2

[

J(J + 1)− ℓ(ℓ+ 1)− 1

2

3

2

]

|ℓ,m, s〉

=
~
2

2

[

J(J + 1)− 11

4

]

|ℓ,m, s〉

=







−~2|1,m, se〉 J = 1
2

~2

2 |1,m, se〉 J = 3
2

(317)

gives

〈Hso〉 =







− 1
48mc

2α4 J = 1
2 ,

1
96mc

2α4 J = 3
2 .

(318)

The degeneracy in J is split, ∆E2p 1
2

= − 21
128α

4mc2, ∆E2p 3
2

= − 17
128α

4mc2 but the subspaces 2s 1
2

and 2p 1
2
remain degenerate. This degeneracy is split in O

(
α2
)
by photon emission and absorption

processes.
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FIG. 16: Two possible propagations which may be impossible to distinguish in quantum mechanics.

VII. IDENTICAL PARTICLES

The quantum effects are proportional to some positive power of ~ and the small value of Planck

constant in macroscopic units makes them unimportant for macroscopic system, except few re-

markable exceptions.

A. A macroscopic quantum effect

How do we distinguish particles? We may classify them according to the internal quantum

numbers, such as mass, spin, charge, etc. If these agree for two particles then we may look into

their behavior in space, into their external quantum numbers, such as energy, momentum, angular

momentum, etc.

Let us consider identical particles, particles with identical internal properties in classical physics

and label them by the index n. Their state of motion is characterized by the set of initial conditions

xn(ti) = xni and ẋn(ti) = vni. Suppose that we can determine the space points where a particle

can be found at time t and find the set of locations {x(j)}. Can we establish a correspondence

n ↔ j, between the initial particles and the locations where particle is found at a later time? As

long as the kinetic energy is finite the particle trajectories have finite derivative and a sufficiently

frequent check of the particle positions can be used to establish the unique trajectories and the

correspondence n↔ j, distinguishing the particles from each other.

The state of affairs changes in quantum mechanics where due to the uncertainty principle we

can not keep the whole phase space for the characterization of the motion. For instance, whatever

frequently do we measure the particle locations we can not construct their velocity, the observation

interferes with the particle dynamics as reflected by the uncertainty principle. As soon as the

precision to follow the motion in phase space is restricted the possibility of distinguishing the

particles is limited, too. If the unique distribution of the index n among the particles is impossible
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the distinguishability of the particles might partially be regained by the inspection of their spatial

behavior. But as far as states at a given time are concerned we have lost the possibility of tracing

down the individuality of particles with identical internal quantum numbers.

If the state |x1, x2〉 is not distinguishable from the one, obtained by the exchange of the two

particles, π|x1, x2〉 = |x2, x1〉 then

|x2, x1〉 = eiθe |x1, x2〉, (319)

the exchange produces a change of phase only. In terms of wave function we have

ψ(x2, x1) = eiθeψ(x1, x2). (320)

The loss of the distinguishability of identical particles reduces the number of possible physical

states for N particles by N !. Such a reduction is dramatic for macroscopic system and one may

wonder if it has already been noticed before the advent of quantum mechanics. One may say that

the resolution of the paradox of the non-additivity of entropy in ideal gas, put forward by Gibbs

is based on an intuitive realization of the indistinguishability of identical particles.

B. Fermions and bosons

One would naively conclude that the performance of two consecutive exchange oaf the particles

is the identity transformation,π2 = 1, allowing eiθe = ±1. But this is not necessarily so, all we can

safely say that the physical state π2|x1, x2〉 is identical of |x1, x2〉, π2|x1, x2〉 = e2iθe |x1, x2〉. But

on can show that e2iθe = 1 in three dimensional space. The argument is based on another phase,

hidden in our two-particle state. A rotation of a particle by 2π preserves the physical state and

can produce a phase only,

Uj(Rn(2π))|x1, x2〉 = eiθr |x1, x2〉, (321)

where the operator Uj(R) represents rotations of the particle j = 1, 2. the spin-statistics theorem

assures that the phase, acquired by rotating on of the identical particles by 2π is the same as the

one, obtained by exchanging them. The rather deep spin-statistics theorem, proven by the methods

of algebraic topology assures the identity of the two phases,

θr = θe. (322)

Due to the double connected topology of the rotation group SO(3) rotation by 4π is always trivial,

Uj(Rn(4π)) = 11, thus θr = 0 or π in three dimensions. Particles with θr = 0 have integer
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angular momentum and are called bosons. States with θr = π correspond to half-integer angular

momentum and represent fermions. It is advantageous to introduce the exchange statics, ξ = eiθr ,

assuming the value +1 and −1 for bosons and fermions, respectively, and write the spin-statistics

theorem as

U(Rn(2π)) = ξ. (323)

In two dimensions the rotation group, SO(2) is infinitely many connected, θr remains arbitrary

and we have anyons, particle classes corresponding to arbitrary values of θr.

The different behavior of fermions and bosons under rotation by 2π can be observed for tensor

operators, too. Namely, tensor operator with integer or half integer angular momentum preserve

their form or change their sign under rotation by 2π according to Eq. (176). Classical physics

has been known before quantum mechanics and is expressed in terms of vectors and tensors, all

belonging to integer angular momentum. In other words, classical physics and observables are

invariant under rotation by 2π. Let us now consider a matrix element 〈ψξ′ |T (ℓ)
m |φξ〉 of a tensor

operator between states with well defined exchange statistics, written as

〈ψξ′ |T (ℓ)
m |φξ〉 = 〈ψξ′ |U †(Rn(2π))U(Rn(2π))T

(ℓ)
m U †(Rn(2π))U(Rn(2π))|φξ〉. (324)

We now apply the tensor operator transformation rule (176) for R = Rn(−2π)),

〈ψξ′ |T (ℓ)
m |φξ〉 =

∑

m′

Dℓm′,m(Rn(−2π))〈ψξ′ |U †(Rn(2π))T
(ℓ)
m′ U(Rn(2π))|φξ〉, (325)

and the spin-statistics theorem (323),

〈ψξ′ |T (ℓ)
m |φξ〉 = ξ′ξ

∑

m′

Dℓm′,m(Rn(−2π))〈ψξ′ |T (ℓ)
m′ |φξ〉. (326)

Since rotations by 2π leave tensor operators with integer angular momentum invariant,

Dℓm′,m(Rn(−2π)) = δm,m′ , the matrix element is vanishing for ξ′ 6= ξ. This is a superselection rule,

namely interactions, described by a Hamiltonian composed of integer angular momentum tensor

operators can not mix states with different exchange symmetry. In other words, the Hamiltonian

is an ℓ = 0 tensor operator thus no interaction can generate for a fermion (boson) components

with bosonic (fermionic) properties. A two particle wave function can always be written as a sum

of even and odd components,

ψ(1, 2)
︸ ︷︷ ︸

H12

=
1

2
(ψ(1, 2) + ψ(2, 1))
︸ ︷︷ ︸

Hs

+
︸︷︷︸

⊕

1

2
(ψ(1, 2) − ψ(2, 1))
︸ ︷︷ ︸

Ha

(327)
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expressing that the two particle space of states is the direct sum of a fermion and a bosonic parts,

H12 = Hs ⊕Ha, not mixed by interactions.

It is not difficult to generalize the bosonic and fermion states for several particles. Multi-particle

state of bosons (fermion) transform under the exchange of any pair of particles,

ψ(x1, . . . , xj , xj+1, . . . , xn) = ξψ(x1, . . . , xj+1, xj, . . . , xn). (328)

(One can see easily that it is sufficient to impose this property for the exchange of neighbouring

particles of the wave function.) We can construct a basis for a system of N identical particles by

starting with a complete set of one-particle states {|k〉} as

|k1, . . . , kN 〉 = N−1
∑

π∈SN
ξσ(π)|kπ(1)〉 ⊗ · · · ⊗ |kπ(N)〉 (329)

where N is a normalization factor and π denotes a permutation of N objects and σ(π) is the parity

of the permutation, defined in the following manner. Any permutation

π =
(

1 ,..., N
π(1),...,π(N)

)

(330)

can be visualized as a set of N curves, connecting N dots, representing the particles as shown in

Fig. 17. The curves correspond to particles and we find a series of crossings, particle exchanges, as

the dotted vertical line is moved from the right to the left. Each crossing generates a multiplicative

factor ξ in the state (329). The number of crossings is depends on the way the lines are drown and

is not uniquely defined, a continuous deformation of the curves may induce more or less crossings.

Nevertheless such a deformation of the lines may change the number of crossing in units of 2 since

whenever the deformation which preserves the order of the lines at the two ends but makes two

lines cross somewhere in the inner part of the figure must induce another crossing where the lines

return to the original order. This argument, borrowed from knot theory, a chapter of topology,

shows that (i) any permutation can be decomposed into the product of exchanges of neighboring

objects and (ii) the number of exchanges ℓ is not unique but its parity, σ(π) = ℓ(mod2) is well

defined. For example, for N = 3 we have

1 = σ

((

1,2,3
1,2,3

))

= σ

((
1,2,3
3,1,2

))

= σ

((
1,2,3
2,3,1

))

−1 = σ

((
1,2,3
1,3,2

))

= σ

((
1,2,3
3,2,1

))

= σ

((
1,2,3
2,1,3

))

. (331)

What is left to show is that the state (329) has the desired transformation property under

particle exchange. To prove this we start with the identity

∑

π∈SN
F (π) =

∑

π∈SN
F (ππ′). (332)
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FIG. 17: Graphical representation of the permutation
(
1,2,3,4,5
3,5,4,2,1

)

.

It holds because the map π → ππ′ of SN for a given π′ ∈ SN is bijective (onto and one-to-one), hence

we have the same quantities on both sides summed up in different order. Addition is commutative

hence Eq. (332) follows. This identity allows us write

|kπ′(1), . . . , kπ′(N)〉 = N−1
∑

π∈SN
ξσ(π)|kππ′(1)〉 ⊗ · · · ⊗ |kππ′(N)〉

= ξσ(π
′)|k1, . . . , kN 〉, (333)

where the equations σ(ππ′) = σ(π) + σ(π′), ξ2σ(π
′) = 1 have been used in arriving at the second

line. The wave function of the state (329),

ψ
(+)
k1,...,kn

(x1, . . . ,xN ) = N−1
∑

π∈SN
ψk1(xkπ(1)) · · ·ψkN (xkπ(N)

)

ψ
(−)
k1,...,kn

(x1, . . . ,xN ) = N−1
∑

π∈SN
(−1)σ(π)ψk1(xkπ(1)) · · ·ψkN (xkπ(N)

)

= N−1 det

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

ψk1(x1) ψk1(x2) · · · ψk1(xN )
ψk2(x1) ψk2(x2) · · · ψk2(xN )

...
... · · · ...

ψkN (x1) ψkN (x2) · · · ψkN (xN )

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(334)

where the subscript indicates the exchange statistics ξ. The fermionic wave function is called Slater

determinant. It displays Pauli’s exclusion principle, namely two fermions can not occupy the same

quantum state. In fact, the determinant is vanishing if two lines are equivalent.

C. Occupation number representation

The (anti)symmetrized states, (329), are unpractical for calculations with more than 4-5 par-

ticles due to their complicated structure. The reason of complication is that the construction is

based on the product wave function ψk1(x1), . . . ψkN (xN ) which contains too much information, it
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treats the identical particles distinguishable and we have to sum over a large number of terms to

cancel the unphysical information. The problem can be circumvented by the use of basis states

which has physical information only. This is achieved in the occupation number representation

where instead of keeping track of the state of each particle we store the occupation number, nk, of

each one-particle state, the number of particles which are in the state |k〉. A many-particle state

can be visualized by a series of boxes, one for each one-particle state. We distribute indistinguish-

able balls in the boxes, each ball representing a particle and the occupation number is the number

of balls in a given box. A basis for the many-particle system is given by the states |n〉 for each

occupation number nk. Additive quantum numbers, such as the particle number, the momentum

or the energy of non-interacting particles, can easily be recovered in this basis,

N [n] =
∑

k

nk, P =
∑

k

nkpk, E[n] =
∑

k

nkEk (335)

where pk and Ek denote the momentum and the energy of the state |k〉. Note that the number

of particles becomes a dynamical quantity in this representation which opens the way to describe

processes with variable number of degrees of freedom. This is the starting point to construct an

extension of non-relativistic quantum mechanics, the quantum field theory.

D. Exchange interaction

The (anti)symmetrization of states may introduce correlations among quantum numbers. Let

us for instance consider two particles with identical exchange statistics ξ and place them in two

different one-particle states with wave functions ψj(x, σ) where j = 1, 2 and σ stands for the spin.

When the two particles make up a system then their wave function is

ψ12(x1, σ1,x2, σ2) =
1√
2
[ψ1(x1, σ1)ψ2(x2, σ2) + ξψ2(x1, σ1)ψ1(x2, σ2)]. (336)

Let us now suppose that the one-particle wave functions are factorisable,

ψj(x, σ) = χj(x)φj(σ). (337)

This does not lead to factorisable two-particle wave functions but suggests the use of a factorisable

basis,

ψ12(x1, σ1,x2, σ2) = χ12(x1,x2)φ12(σ1, σ2), (338)

where we assume that both components on the right hand side have well defined transformation

property under the exchange of the particles,

χ12(x2,x1) = ξcχ12(x1,x2), χ12(x2,x1) = ξsφ12(σ1, σ2). (339)
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Since this wave function has a definite exchange statistics there is a correlation between the trans-

formation properties of the components under particle exchange,

ξcξs = ξ. (340)

Such a correlation between the coordinate and the spin dynamics of the basis vectors seems sur-

prising and leads to an unusual phenomenon, called exchange interaction.

The exchange interactions is the easiest to find in a the bound states of two identical fermions

interacting with a spherical symmetric potential which is strongly attractive at short distances,

H =
p2
1

2m
+

p2
2

2m
+ U(r12). (341)

One usually separates the trivial dynamics of the center of mass motion by introducing the variables

X = 1
2 (x1+x2), P = 1

2(p1+p2), x = x1−x2, and p = p1−p2 and write the coordinate-dependent

factor of the wave function as

χ(x1,x2) = e−
i
~
P ~Xηn,ℓ(r)Y

ℓ
m(θ, φ). (342)

Note that the exchange of the two particles induces x→ −x hence ξx = (−1)ℓ. The two spin can

be coupled into states S = 0 and S = 1 and ξx = −1 or 1 for S = 0 or 1, respectively according to

the first example of Chapter IIIB. We find in this manner a correlation between the total electron

spin and the orbital angular momentum, ℓ is even or odd for S = 0 or 1, respectively. This leads to

a spin characteristic energy spectrum, the ground state being the spin singlet. The reason is that

the coordinate eigenstate has the asymptotic behavior ηn,ℓ(r) = O
(
rℓ
)
, letting the potential to

lower considerably the interaction energy when the particles are close to each other, as it happens

for ℓ = 0. Such an observation seems surprising in view of the spin independence of the interaction

potential.

VIII. POTENTIAL SCATTERING

The microscopic interactions among atoms or elementary particles is easier to explore in scat-

tering experiments, an extension of the idea of microscope to matter waves. We shall consider the

simplest realization of this idea, the elastic, energy conserving, scattering of an incoming, coherent

beam of spinless particles on a localized, spherical potential, depicted in Fig. 18.
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FIG. 18: Schematic view of a scattering experiment

A. Cross section

The result of a collision experiment, the number of particles scattered at a given angle, dN , is

proportional to the beam flux, given by the magnitude of the probability current, |ji|,

dN = |ji|dσ, (343)

and the proportionality constant is called differential cross section. The total cross section,

σ =

∫

dσ =

∫

dΩ
dσ

dΩ
, (344)

is the integral of the differential cross section over the full solid angle. For instance the total cross

section of colliding with a rigid sphere of radius a is σ = a2π in classical physics. Another expression

for number of scattered particles, given in terms of the probability current of the scattered particles,

js,

dN = jsdS (345)

where dS stands for the active surface of the detector yields

dσ =
jsdS

|ji|
. (346)

The quantum mechanical calculation of the cross section is based on the assumption that the

detector is sufficiently far from the collision region where the potential is non-negligible therefore

one seeks a stationary state with wave function

ψ = ψi + ψs, (347)
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where

lim
r→∞

ψi = eikz (348)

represents the incoming, monochromatic beam and

lim
r→∞

ψd = f(θ, φ)
eikr

r
(349)

describes the scattered waves in terms of the scattering amplitude f(θ, φ) = f(θ). The incoming

and scattered probability currents are

ji = 〈ψi|j|ψi〉 =
~

2mi
(ψ∗i∇ψi −∇ψ∗i ψi) = ez

~k

m
(350)

and

js = 〈ψs|j|ψs〉 = er
~k

mr2
|f(θ)|2, (351)

respectively. The number of scattered particles is therefore

dN =
~k

m
dσ = r2

~k

mr2
|f(θ)|2dΩ (352)

and the resulting differential cross section, (346), is

dσ

dΩ
= |f(θ)|2. (353)

The total cross section reads as

σ = 2π

∫ 1

−1
d(cos θ)|f(θ)|2. (354)

B. Optical theorem

The unitarity of the time evolution, the conservation of the probability flux, imposes a constraint

on the scattering amplitude and the cross section. The collision is described by a stationary state

therefore the total particle flux, traversing of radius R around the center of the scattering potential

is vanishing,
∫

d3rδ(|r| −R)r〈ψ|j|ψ〉 = 0. (355)

The form (347) of the state allows us to rewrite this condition as

0 =

∫

|r|=R
dΩr

~

2mi
[(ψ∗i + ψ∗s)∇(ψi + ψs)−∇(ψ∗i + ψ∗s)(ψi + ψs)]

=

∫

|r|=R
dΩr

[

ji + js +
~

2mi
(ψ∗i∇ψs + ψ∗s∇ψi −∇ψ∗i ψs −∇ψ∗sψi)

]

=

∫

|r|=R
dΩr

[

ji + js +
~

m
Im (ψ∗i∇ψs + ψ∗s∇ψi)

]

. (356)
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The asymptotic behavior of the wave function is known hence we consider the limit R→∞ where

one finds

0 =

∫

|r|=R
dΩ

[

r(ji + js) +
~

m
Im

(

e−ikz∂rf(θ, φ)
eikr

r
+ f∗(θ, φ)

e−ikr

r
∂re

ikz

)]

=

∫

|r|=R
dΩ

[

r(ji + js) +
~

m
Im

(

ikf(θ, φ)
eik(r−z)

r
+ ik cos θf∗(θ, φ)

e−ik(r−z)

r

)]

. (357)

The total flux of the incoming plane wave is vanishing and the last equation can be written as

σ~k

mR2
= − ~k

mR
Re

∫

dΩ
[

f(θ, φ)eik(R−z) + cos θf∗(θ, φ)e−ik(R−z)
]

= − ~k

mR

∫

dΩ(1 + cos θ) [Ref(θ, φ) cos k(R− z)− Imf(θ, φ) sin k(R − z)] . (358)

The contribution to the integral is vanishing for θ 6= 0 due to the oscillatory integrand and we find

σ = 4πR lim
R→∞

lim
δ→0

∫ 1

1−δc
dc [Imf(0, φ) sin kR(1− c)−Ref(0, φ) cos kR(1− c)]

= 4π lim
R→∞

lim
δ→0

[

Imf(0, φ)
1 − cos kRδc

kR
−Ref(0, φ)sin kRδc

kR

]

=
4π

k
Imf(0, φ), (359)

a simple proportionality of the total cross section and the imaginary part of the forward transition

amplitude.

C. Lippmann-Schwinger equation

There are two frequently followed, different ways to calculate cross sections, one is based exclu-

sively on plane wave states and shows the peculiarity of continuous spectrum. One starts with the

Hamiltonian

H = H0 + V, (360)

where

H0 =
p2

2m
, (361)

supposes that it has continuous spectrum and constructs the eigenstates |ψ〉

(H0 + V )|ψ〉 = E|ψ〉. (362)
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It is advantageous to introduce the unperturbed eigenstate of the same energy, H0|φ〉 = E|φ〉 which
represents the incoming beam and write

|ψ〉 = 1

E −H0
V |ψ〉+ |φ〉. (363)

This equation has to be modified to make the resolvent, (E −H0)
−1, well defined within the null-

space of E−H0, the subspace corresponding to the eigenvalue E of H0. The spectrum of H0 is real

therefore the introduction of an infinitesimal imaginary part in the free Hamiltonian, H0 → H0±iǫ,
is sufficient. The resulting Lippmann-Schwinger equation,

|ψ(±)〉 = 1

E −H0 ± iǫ
V |ψ(±)〉+ |φ〉 (364)

identifies the full scattering state starting from the incoming beam state |φ〉. There are two

degenerate states for each energy, corresponding to the orientation of the scattered wave in time,

|ψ(±)〉 which can describe in- or out-going waves. Time inversion maps one state onto the other

and changes the sign of the anti-Hermitian part of the Hamiltonian. By starting with the state

〈x|φ〉 = eixk (365)

we find the Lippmann-Schwinger equation

〈x|ψ(±)〉 =
∫

d3x′〈x| 1

E −H0 ± iǫ
|x′〉V (x′)〈x′|ψ(±)〉+ 〈x|φ〉. (366)

The matrix element in this equation,

G±(x,x
′) =

~
2

2m
〈x| 1

E −H0 ± iǫ
|x′〉, (367)

can be found by going over momentum space representation,

G±(x,x
′) =

~
2

2m

∫
d3k′

(2π)3
d3k′′

(2π)3
〈x|k′〉〈k′| 1

E(k)−H0 ± iǫ
|k′′〉〈k′′|x′〉

=
~
2

2m

∫
d3k′

(2π)3
d3k′′

(2π)3
〈x|k′〉 1

E(k) − ~2k′′2

2m ± iǫ
〈k′|k′′〉
︸ ︷︷ ︸

(2π)3δ(k′−k′′)

〈k′′|x′〉

=
~
2

2m

∫
d3k′

(2π)3
eik

′(x−x′)

E(k)− ~2k′2

2m ± iǫ
(368)
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with E(k) = ~
2k2

2m . The Fourier integral can easily be carried out,

G±(x,x
′) =

~
2

2m(2π)3

∫ ∞

0
dqq2

∫ π

−π
dφ

∫ 1

−1
d(cos θ)

eiq|x−x
′| cos θ

~2k2

2m −
~2q2

2m ± iǫ

=
1

(2π)3

∫ ∞

0
dqq2

∫ π

−π
dφ

∫ 1

−1
d(cos θ)

eiq|x−x
′| cos θ

k2 − q2 ± iǫ

= − 1

2(2π)2i|x− x′|

∫ ∞

−∞
dqq

eiq|x−x
′| − e−iq|x−x′|

q2 − k2 ∓ iǫ
︸ ︷︷ ︸

(q−k∓iǫ′)(q+k±iǫ′)

= − 1

4π|x− x′|

[

(±k)e±ik|x−x′|

±2k +
(±k)e±ik|x−x′|

±2k

]

= − e±ik|x−x
′|

4π|x− x′| , (369)

and it reduces (366) to

〈x|ψ(±)〉 = −2m

~2

∫

d3x′
e±ik|x−x

′|

4π|x− x′|V (x′)〈x′|ψ(±)〉+ 〈x|φ〉. (370)

The scattering amplitude is read off from the stationary state at spatial infinity, thus we go into

the limit r = |x| ≫ r′ = |x′|, where

|x− x′| =
√

r2 − 2rr′ cos θ + r′2

= r

√

1− 2r′

r
cos θ +

r′2

r2

≈ r − nx′ (371)

where n = x
|x| and

e±ik|x−x
′| ≈ e±ikr∓ik′x′

, (372)

with k′ = kn, giving

lim
r→∞
〈x|ψ(±)〉 = −2m

~2

e±ikr

4πr

∫

d3x′e∓ik
′x′

V (x′)〈x′|ψ(±)〉+ 〈x|k〉

= eikx +
e±ikr

r
f (±)(k′,k). (373)

With the time evolution |ψ(±)(t)〉 = e−
i
~
E(k)t|ψ(±)〉 we find spherical out- and in-going scattered

waves in ψ(+)〉 and ψ(−)〉, respectively. The differential cross section is therefore

dσ

dΩ
= |f (+)(k′,k)|2. (374)

The Lippmann-Schwinger equation is easiest to solve by iteration. The first order result, the

Born approximation, where the replacement 〈x′|ψ(+)〉 → 〈x′|φ〉 = eikx
′

is made on the right hand
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k

k’

q
0

FIG. 19: The vectors q, k and k′ for the calculation of fB(θ).

side, leads to

fB(k
′,k) = − m

2π~2

∫

d3x′ei(k−k
′)x′

V (x′)

= − m

2π~2
Ṽ (k′ − k). (375)

Let us take for the sake of an example a spherically symmetric scattering potential, V (x) =

V (|x|) and use q = |k′ − k| = 2k sin θ/2 (cf. Fig. 19),

fB(θ) = −m
~2

∫ ∞

0
drr2V (r)

∫

d(cos θ)eiqr cos θ

= −m
~2

∫ ∞

0
drr2V (r)

eiqr − e−iqr
iqr

= − 2m

q~2

∫ ∞

0
drrV (r) sin qr. (376)

In particular, the screened Coulomb potential, V (r) = ge−µr/r, gives

fB(θ) = − mg

iq~2

∫ ∞

0
dr[e(iq−µ)r − e−(iq+µ)r]

=
mg

iq~2

(
1

iq − µ +
1

iq + µ

)

= −2mg

~2

1

q2 + µ2
. (377)

The identity

q2 = 4k2 sin2
θ

2
= 2k2(1− cos θ) (378)

produces finally

dσ

dΩ
=

4m2g2

~4

1

[2k2(1− cos θ) + µ2]2
. (379)

The choice µ = 0 and g = ZZ ′e2 gives

dσ

dΩ
=

4m2(ZZ ′e2)2

~4

1

4k4(1− cos θ)2

=
4m2(ZZ ′e2)2

~4

1

16k4 sin4 θ2

=
(ZZ ′e2)2

16E2
0 (~k)

1

sin4 θ2
(380)
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with E0(~k) =
~
2k2

2m , the Rutherford cross section for scattering of two nuclei of charge Z1 and Z2

by a Coulomb potential.

It is worthwhile noting the following features of the Born approximation:

1. dσ
dΩ is independent of the sign of V (r).

2. The cross section is given by

fB(θ) = −
m

2π~2

∫

d3x′V (x′) (381)

at low energy, krch ≪ 1.

3. The Born approximation is valid for weak potential or high energy, k →∞,
∣
∣
∣
∣
∣

∫

d3x′
e±ikr

′

4πr′
V (x′)eikx

′

∣
∣
∣
∣
∣
≪ ~

2

2m
. (382)

D. Partial waves

Another approximation for the cross section which remains valid at low energy is based on phase

shift, induced by the scattering potential on the spherical harmonic components of the stationary

scattering state.

One start here with the solution ψ(r, θ, φ) = R
(0)
ℓ (k, r)Y ℓ

m(θ, φ) of the free Schrödinger equation,

− ~
2

2m

[
1

r2
∂rr

2∂r −
ℓ(ℓ+ 1)

r2

]

R
(0)
ℓ (k, r) = ER

(0)
ℓ (k, r), (383)

written as
[

∂2x +
2

x
∂x + 1− ℓ(ℓ+ 1)

x2

]

R
(0)
ℓ (k, r) = 0 (384)

by means of the dimensionless radius x = kr and E = ~
2k2

2m . We have two kinds of solutions,

� Bessel functions: R
(0)
ℓ (k, r) = jℓ(kr), jℓ(0) <∞,

r→ 0 : j0(x) =
sinx

x
, j1(x) =

sinx

x2
− cos x

x
, . . .

r →∞ : jℓ(x) =
1

x
sin

(

x− ℓπ

2

)

. (385)

� Neumann functions: R
(0)
ℓ (k, r) = nℓ(kr), nℓ(0) =∞,

r → 0 : n0(x) = −
cos x

x
, n1(x) =

cos x

x2
− sinx

x
, . . .

r→∞ : nℓ(x) =
1

x
cos

(

x− ℓπ

2

)

. (386)
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The divergence of the Neumann function at the origin excludes them from the description of a free

particle state.

In the presence of the scattering potential we write the wave function of the scattered particle

as

ψs(r, θ, φ) =
∑

ℓ,m

Cℓ,mRℓ(k, r)Y
ℓ
m(θ, φ) (387)

where

[

− ~
2

2m

(
1

r2
∂rr

2∂r −
ℓ(ℓ+ 1)

r2

)

+ U(r)

]

Rℓ(k, r) = ERℓ(k, r). (388)

It is advantageous to use the same dimensionless radius x and the potential V (x) = 2m
~2
U(xk ), giving

[

∂2x +
2

x
∂x − V (x) + 1− ℓ(ℓ+ 1)

x2

]

Rℓ(k, r) = 0. (389)

The solution of this equation is made unique by the boundary conditions.

1. r → 0: We start with a useful relation obtained by the orthogonality of eigenvectors of the

Hamiltonian, H|ψ〉 = E|ψ〉, H|ψ′〉 = E′|ψ′〉,

(E − E′)〈ψ′|ψ〉 = 0 (390)

To find this relation for the scattering states we consider two solutions, Rℓ(k, r) = u(r)/r

and R̃ℓ(k̃, r) = ũ(r)/r of the Schrödinger equation,

Euℓ(r) =

(

− ~
2

2m
∂2r +

~
2ℓ(ℓ+ 1)

2mr2
+ U(r)

)

uℓ(r),

Ẽũ∗ℓ(r) =

(

− ~
2

2m
∂2r +

~
2ℓ(ℓ+ 1)

2mr2
+ U(r)

)

ũ∗ℓ (r). (391)

By multiplying the first and the second equation with ũ∗ℓ(r) and uℓ(r), respectively and

subtracting the resulting two equations we find

(E − Ẽ)ũ∗ℓ (r)uℓ(r) = ũ∗ℓ(r)

[

− ~
2

2m
∂2r +

~
2ℓ(ℓ+ 1)

2mr2
+ U(r)

]

uℓ(r)

−uℓ(r)
[

− ~
2

2m
∂2r +

~
2ℓ(ℓ+ 1)

2mr2
+ Ũ(r)

]

ũ∗ℓ(r)

= − ~
2

2m
∂r[ũ

∗
ℓ (r)∂ruℓ(r)− uℓ(r)∂rũ∗ℓ (r)]. (392)

The integration of this equation over r gives

0 = (E − Ẽ)〈ũℓ|uℓ〉 = (E − Ẽ)

∫ ∞

0
drũ∗ℓ(r)uℓ(r) =

~
2

2m
[ũ∗ℓ (0)∂ruℓ(0)− uℓ(0)∂r ũ∗ℓ(0)]. (393)
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Let us now turn our attention to the behavior of the wave functions at small r where the

functional forms

U(r) = rp(U0 + U1r + U2r
2 + · · · ),

uℓ(k, r) = rRℓ(k, r) = rs(c0 + c1r + c2r
2 + · · · ), (394)

are assumed with c0 6= 0 and write the Schrödinger equation as

Ers(c0 + · · · ) =
[

− ~
2

2m
∂2r +

~
2ℓ(ℓ+ 1)

2mr2
+ rp(U0 + U1r + · · · )

]

rs(c0 + · · · ) (395)

The equivalence of the terms O
(
rs−2

)
yields the equation

0 =







− ~2

2m [s(s− 1)− ℓ(ℓ+ 1)] p ≥ −1,

− ~2

2m [s(s− 1)− ℓ(ℓ+ 1)] + U0 p = −2.
(396)

For the more realistic case, p ≥ −1, we have s = −ℓ or s = ℓ+1. The orthogonality condition,

(393), restricts the solution to s = ℓ+ 1, giving uℓ(r) = O
(
rℓ+1

)
and Rℓ(k, r) = O

(
rℓ
)
.

2. r → ∞: It is assumed that the scattering potential is negligible at large distances,

limr→∞ rU(r) = 0 where the solution approaches a linear superposition of the free

Schrödinger equation of the same energy, involving both the Bessel and the Neumann func-

tions,

lim
r→∞

Rℓ(k, r) = jℓ(kr) cos δℓ + nℓ(kr) sin δℓ =
sin
(
kr − ℓπ

2 + δℓ
)

kr
(397)

The mixing angle, δℓ is the phase shift of the scattered particle with respect to the free

propagation.

1. Scattering amplitude

The scattering amplitude is determined by the wave function as r → ∞ which is found by

considering the wave function of the complete state with m = 0,

ψ(r, θ, φ) =
∑

ℓ

CℓRℓ(k, r)Pℓ(cos θ). (398)

Since

eikz =
∑

ℓ

(2ℓ+ 1)iℓjℓ(kr)Pℓ(cos θ)

→
∑

ℓ

(2ℓ+ 1)iℓ
sin
(
kr − ℓπ

2

)

kr
Pℓ(cos θ) (399)
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in this limit the wave function of the scattered particle is

ψ − eikz → f(θ)
eikr

r

=
1

kr

∑

ℓ

Pℓ(cos θ)

[

Cℓ sin

(

kr − ℓπ

2
+ δℓ

)

− (2ℓ+ 1)iℓ sin

(

kr − ℓπ

2

)]

=
1

2kri

∑

ℓ

Pℓ(cos θ)

×
[

ei(kr−
ℓπ
2
)
(

Cℓe
iδℓ − (2ℓ+ 1)iℓ

)

− e−i(kr− ℓπ2 )
(

Cℓe
−iδℓ − (2ℓ+ 1)iℓ

)]

. (400)

The second term in the square bracket is vanishing in the absence of ingoing spherical waves thus

Cℓ = eiδℓ(2ℓ+ 1)iℓ (401)

and

f(θ) =
∑

ℓ

(2ℓ+ 1)fℓPℓ(cos θ) (402)

where the partial scattering amplitudes,

fℓ =
e2iδℓ − 1

2ik
=
eiδℓ sin δℓ

k
=

1

k

1

e−iδℓ 1
sin δℓ

=
1

k cot δℓ − ik
, (403)

are given in terms of the phase shifts. The orthogonality of the spherical harmonics,

∫ 1

−1
d(cos θ)Pℓ(cos θ)Pℓ′(cos θ) = δℓ,ℓ′

2

2ℓ+ 1
(404)

leads to the total cross section

σ = 2π

∫ 1

−1
d(cos θ)|f(θ)|2 = 4π

∑

ℓ

(2ℓ+ 1)|fℓ|2 =
4π

k2

∑

ℓ

(2ℓ+ 1) sin2 δℓ =
∑

ℓ

σℓ, (405)

shown in Fig. 20. Note that the upper bound of the partial cross section is

σℓ ≤ σℓ max =
4π(2ℓ + 1)

k2
. (406)

The decomposition of the scattered state into spherical harmonics is useful and converges fast,

σℓ ∼ 0, if the impact parameter b and the characteristic length, r0, satisfy b > r0. This inequality

assumes the form ℓ > r0k because the impact parameter can be defined by the angular momentum

as Lx = bp = ~ℓ.
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FIG. 20: Argand diagram for kfℓ =
i
2
(e2iδℓ − 1).

2. Phase shift

One can obtain a more explicit expression for the phase shift by following the strategy of eqs.

(391)-(392) by two wave functions, Rℓ(r) = u(r)/r and R̃ℓ(r) = ũ(r)/r, of the same energy and

satisfying the Schrödinger equation with potentials U(r) and Ũ(r), respectively,

Euℓ(r) =

(

− ~
2

2m
∂2r +

~
2ℓ(ℓ+ 1)

2mr2
+ U(r)

)

uℓ(r),

Eũℓ(r) =

(

− ~
2

2m
∂2r +

~
2ℓ(ℓ+ 1)

2mr2
+ Ũ(r)

)

ũℓ(r),

0 = ũℓ(r)

(

− ~
2

2m
∂2r +

~
2ℓ(ℓ+ 1)

2mr2
+ U(r)

)

uℓ(r)

−uℓ(r)
(

− ~
2

2m
∂2r +

~
2ℓ(ℓ+ 1)

2mr2
+ Ũ(r)

)

ũℓ(r)

= [U(r)− Ũ(r)]ũℓ(r)uℓ(r)−
~
2

2m
∂r[ũℓ(r)∂ruℓ(r)− uℓ(r)∂rũℓ(r)]. (407)

The integration over r now gives

∆ =

∫ ∞

0
dr[U(r)− Ũ(r)]ũℓ(r)uℓ(r) =

~
2

2m
[ũℓ(r)∂ruℓ(r)− uℓ(r)∂rũℓ(r)]|r=∞ (408)

One assumes the asymptotic form

lim
r→∞

uℓ(k, r) =
1

k

[

sin

(

kr − ℓπ

2

)

+ cos

(

kr − ℓπ

2

)

tan δℓ

]

(409)
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(a) (b)

FIG. 21: A qualitative plot of the radial wave function, u0(r), of the free particle (thin solid line), the

scattered particle (fat solid line) and the potential, U(r), (dashed line) as functions of r. (a): The potential

is attractive, increasing the curvature of u0(r), “pulling back“ the particle and inducing δ0 > 0. (b): The

potential is repulsive, decreasing the curvature of u0(r), “pushing out“ the particle and inducing δ0 < 0.

and finds

∆ =
~
2

2mk2

{[

sin

(

kr − ℓπ

2

)

+ cos

(

kr − ℓπ

2

)

tan δ̃ℓ

]

×∂r
[

sin

(

kr − ℓπ

2

)

+ cos

(

kr − ℓπ

2

)

tan δℓ

]

−
[

sin

(

kr − ℓπ

2

)

+ cos

(

kr − ℓπ

2

)

tan δℓ

]

×∂r
[

sin

(

kr − ℓπ

2

)

+ cos

(

kr − ℓπ

2

)

tan δ̃ℓ

]}

|r=∞

=
~
2

2mk
(tan δ̃ℓ − tan δℓ). (410)

One way to use this result is to establish a differential equation for the phase shift,

dδℓ
dλ

= −2mk

~2

∫ ∞

0
dr
dU(r)

dλ
u2ℓ (kr), (411)

indicating that a more attractive potential induces more phase shift, delaying more the wave

function as a function of r, compared to the free propagation, cf. Fig. 21. But the phase shifts

do not characterize the potential completely, in particular sufficiently strong potentials may reach

δℓ = 0(mod2π) and σ0 = 0 (Ramser-Townsed effect).

A more explicit expression is found for the phase shift by setting Ũ(r) = 0,

tan δℓ = −
2mk

~2

∫ ∞

0
drr2U(r)jℓ(kr)Rℓ(r). (412)

One can conveniently characterize the scattering process by means of the scattering matrix, S

whose matrix element for ℓ-waves, Sℓ, is defined in the limit r →∞ by

ψ → 1

2kri

∑

ℓ

(2ℓ+ 1)iℓPℓ(cos θ)
[

Sℓe
i(kr− ℓπ

2
) − e−i(kr− ℓπ2 )

]

. (413)
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The comparison of this equation with the expression

ψ → 1

kr

∑

ℓ

Pℓ(cos θ)e
iδℓ(2ℓ+ 1)iℓ sin

(

kr − ℓπ

2
+ δℓ

)

(414)

results

Sℓ = e2iδℓ . (415)

The scattering matrix allows us to write the scattered state as

|ψs〉 = S|ψi〉. (416)

3. Low energy scattering

The scattering is simplified considerably in the limit k → 0 mainly because it dominated by

s-waves, ℓ = 0. Assuming that the potential is of finite range we have u′′0(r) = 0 and u(r) ∼ r − a
at large distances, a being a characteristic length scale, the scattering length. We have for the

scattered wave, (397),

u′0(r)
u0(r)

= k cot(kr + δ0)→
1

r − a (417)

as k → 0 which allows us to write

lim
k→0

k cot δ0 → −
1

a
(418)

even though the wave function (397) is valid at large r. The total cross section is therefore

σ = σ0 = lim
k→0

4π

k2| cot δℓ − i|2
= 4πa2, (419)

by using eqs. (403), (405) and (418).

Note that the two length scales, associated with the potential, the range and scattering length,

r0 and a can be different, cf. Fig. 22. The former characterizes the potential alone, the latter

is the half of the radius of a sphere which would produce the same scattered particle intensity in

classical mechanics.

4. Bound states

A possible bound state, encountered in Fig. 22 (c), can be viewed as the change k → iκ in the

s-wave wave function,

ψ =
1

2kri

[

S0(k)
eikr

r
− e−ikr

r

]

∼ e−κr

r
. (420)

The following conditions should be satisfy by Sℓ(k):
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FIG. 22: A qualitative plot of the radial wave function, u0(r), (solid line), its linear approximation, u0(r) ∼
r− a, (dotted line) and the potential, U(r), (dashed line) as functions of r. (a): The potential is attractive,

a < 0. (b): The potential is repulsive, a > 0. (c): The scattering length, a jumps to a large positive value

as the attractive strength of the potential (a) is increased and a bound state is formed.
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FIG. 23: The poles of the scattering matrix.

1. It should display a pole at k = iκ. In fact, it is the relative strength of the two terms in the

square brackets which matters, hence the emergence of a bound state implies S = ∞. One

can argue that the divergence of the scattering matrix always corresponds to a simple pole,

cf. Fig. 23.

2. The phase shift, δ0(k) is real in the physical regime, |Sℓ(k)| = 1 for k > 0,

3. The limit (419) indicates that k cot δ0 → − 1
a as k → 0. This requires δ0 → nπ and S0(k) =

e2iδ0(k) → 1.

A simple form for S0(k), satisfying these requirements is

S0(k) = −
k + iκ

k − iκ , (421)

giving

f0(k) =
S0(k)− 1

2ik
=

i

k − iκ =
1

k cot δ0 − ik
, (422)
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where the bound state parameter, κ is given by

κ = − lim
k→0

k cot δ0 =
1

a
. (423)

The analytic structure of the scattering matrix enables one to relate the usually unknown bound

state size parameter, κ to the measured scattering length, a.

5. Resonances

We mention finally the qualitative behavior of the cross section and the phase shift around a

resonance, an “almost” bound state. The effective potential,

Ueff (r) = U(r) +
~
2

2m

ℓ(ℓ+ 1)

r2
, (424)

may support quasi-bound states for sufficiently attractive potential U(r), limr→∞U(r) = 0, at

positive energy, E = Eers > 0. These states are not really bound, the tunneling through the

centrifugal barrier induces a finite life-time.

As the beam energy is increase from zero a partial cross section, corresponding to the most

attractive angular momentum ℓ displays a maximum at the E = Eers. According to Eq,(403) the

phase shift reaches δℓ = π/2 at this point, cf. Fig. 24. Hence the parametrization

cot δℓ = −c(E − Eres) +O
(
(E − Eres)

2
)

(425)

is applicable in the vicinity of the resonance and it yields the scattering amplitude

fℓ =
1

k cot δℓ − ik
≈ −1

k

1

c(E −Eres) + i
, (426)

written as a simple pole,

fℓ =
Γ
2

k(E − Eres +
iΓ
2 )
. (427)

The cross section turns out

σℓ =
4π(2ℓ+ 1)

k2
(Γ2 )

2

(E − Eres)2 + (Γ2 )
2

(428)

(Breit-Wigner). The phase shift assumes the value δℓ = π/2, at the resonance and extends ap-

proximately over the interval 0 < δℓ < π as the resonance energy is passed, displaying the fastest

variation at the resonance,

d cot δℓ
dE |E=Eres

= −c = − 2

Γ
. (429)
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FIG. 24: The cross section, σℓ, and the phase shift, δℓ, around a resonance.

IX. OUTLOOK

Quantum Mechanics has been extended over a large domain, left of the dividing vertical line of

Fig. 8 to cover relativistic phenomenas. That extension has two peculiar features, the relativistic

invariance holds for the averages of observables and is violated by quantum fluctuations and the

space-time can not be continuous. It remains one of the main challenges in Physics to find the

true mixture of the principles of Quantum Mechanics and Special Relativity. This issue should

obviously be settled before embarking the problem of approaching General Relativity and Quantum

Mechanics.

Let us leave these problems for later time and return to non-relativsistic Quantum Mechanics.

One expects that this theory serves as the origin of classical mechanics. However the rules, govern-

ing quantum and classical mechanics appear too different to reach this goal. Some features of this

problem are commented briefly below without attempting of completeness. The guiding principle

in visiting the difficulties is a simple theory of the measurement processes due to Neumann. The

problems, laid bare by such a simple considerations, are related to determinism, the violation of

the rule of interference and the emergence of non-locality.

A. Measurement theory

The quantum level influences the classical world by letting microscopic events ”growing” up

to the macroscopic scale and simple realization example to guide our intuition is the measuring

process. It is described by the help of three components, the measured system, the measuring

apparatus and their environment. The latter is needed to generate the macroscopic features of

the apparatus. A simple example is the determination of the momentum of a charged particle,
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making up the microscopic system. The particle traverses a coil and its velocity can be inferred

by measuring the electric current in the coil. The measurement apparatus is therefore an ammeter

and the environment consists of the air molecules around the apparatus. The closed dynamics of

the full system is governed by the Hamiltonian H = Hs+Ha+Hs,a(t)+He+Hs,a,e where Hs, Ha

and He denote the Hamiltonian of the system, apparatus and the environment and Hs,a +Hs,a,e

describes the system-apparatus and the system-apparatus-environment interactions. The system-

apparatus interaction is time dependent and Hs,a(t) 6= 0 is assumed only for a short period of time,

tm− τm < t < tm+ τm. We consider non-demolishing measurement for the sake of simplicity where

the system state does not change during the measurement, [Hs,Hs,a] = 0.

The whole system starts before tm within the pure state |Ψ〉 =∑n cn|ψn〉s⊗|φ0〉a⊗|χ〉e, written
as the direct product of the system, apparatus and the environment factors and the measuring

process is split into three consecutive steps:

1. Pre-measurement, tm−τm < t < tm+τm: The measuring apparatus functions by correlating

the microscopic state with the pointer of the ammeter in such a manner that the registration

of the pointer state allows us to identify the chosen quantum number nm of the microscopic

system. The measurement process is assumed to be fast enough to ignore the presence of

the environment, τmHa,e ≪
∫
dtHs,a(t), during the measurement and the initial factorized

state develops into an entangled one,

∑

n

cn|ψn〉s ⊗ |φ0〉a ⊗ |χ〉e →
∑

n

cn|ψn〉s ⊗ |φn〉a ⊗ |χ〉e. (430)

This is the step where the microscopic information spreads over macroscopic distances within

the apparatus. However this spread is realized by the unitary time evolution and still shares

the fragility of the quantum world.

2. Decoherence tm+τm < t < tm+τm+τd: The problem with the state (430) is that it contains

the linear superposition of macroscopically different apparatus states since the Schrödinger

equation is linear. This is the point where the environment becomes important. The system

and the measuring device form together an open system because they interact with their

environment and this interaction generates an entangled state,

∑

n

cn|ψn〉s ⊗ |φn〉a ⊗ |χ〉e →
∑

n

cn|ψn〉s ⊗ |φn〉a ⊗ |χn〉e, (431)

owing to the different relative environment state, |χn〉e. The system-apparatus reduced
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density matrix, c.f. appendix A,

ρs,a =
∑

n,n′

c∗ncn′〈χn|eχn′〉e|ψn〉s ⊗ |φn〉a〈ψn′ |s ⊗ 〈φn′ |a, (432)

looses the contributions where the different apparatus states are macroscopically different.

This process is called decoherence and its dynamical origin is the same as dissipation, describ-

ing the unavoidable loss of information (relative phase of macroscopically different apparatus

states) or energy (apparatus energy to the environment). When the apparatus consists of

the pointer of the ammeter and the environment contains the surrounding air molecules

then the relative environment states of two macroscopically different pointer states, |φn〉 and
|φn′〉 become orthogonal for large environment. A semiclassical argument to show this is to

consider the change of the state of a molecules after a reflection from the pointer. If the

pointer has different angle in |φn〉 and |φn′〉 then this molecule will have different momentum

after the collision. The further collisions between the molecules generate rapidly different

momentum for each molecules. The scalar product 〈χn|eχn′〉e is the product of the overlap

of the state of the molecules, each of them has an absolute magnitude less than one hence

〈χn|eχn′〉e → 0.

The decoherence process generates non-unitary time evolution and the arising irreversibility

lends some robustness to the information within the apparatus about the microscopic system.

3. Collapse: A complicated many-body effect makes a rapid collapse of the mixed state (433)

onto

∑

n,n′

c∗ncn′〈χn|eχn′〉e|ψn〉s ⊗ |φn〉a〈ψn′ |s ⊗ 〈φn′ | → |ψnm〉s ⊗ |φnm〉a〈ψnm |s ⊗ 〈φnm |a. (433)

Note such a a pure, factorisable system-apparatus density state is a rough approximation,

resulting from the omission of the system-apparatus entanglements within microscopically

different apparatus states. This step transforms the robust information, stored in the ap-

paratus, into the well defined, deterministic laws of classical physics. A more detailed,

microscopic picture of this process is still lacking.

B. (In)Determinism

The choice of the element of the spectrum of the observable, realized by the measurement, is

the deepest mystery of Quantum Mechanics because the choice of the quantum number nm should
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be non-deterministic according to the uncertainty principle. In fact, this principle prevents us

to obtain all information from a physical system by rendering the observations blurred. Let us

consider for instance a particle with spin 3/2, obeying the operator equation

S2 = S2
x + S2

y + S2
z (434)

with a state vector which is eigenvector of the left hand side with eigenvalue 3
4 (in units of ~2). The

spectrum of the spin component operators is {±1
2 ,±3

2} and it is a simple exercise to check that

eq. (434) can not be satisfied by assigning spectrum elements to each spin component. In other

words, information which seems to exists ”out there” according to our view of classical physics

are non-accessible in the quantum world. This is the basis of distinguishing quantum and classical

probabilities, controlling quantum and classical (thermal) fluctuations.

Can it be that such a crushing defeat of our macroscopic world view results only from our

insufficient resolution of observing microscopic phenomena? In that case we may hope that the

deterministic world view can be extended over the quantum domain when better technology is

available. Such a hypothetical classical, deterministic theory contains variables which are at the

time being hidden for us.

A simple hidden variable theory has been proposed by David Bohm for a system of N spinless

particle where the hidden variable is the N -particle wave function, governed by Schrödinger’s

equation. Each (classical!) particle obeys a first order differential equation, stating that their

velocity is proportional to the gradient of the phase of the wave function with respect to the

particle coordinates. It is a matter of trivialities to check that the motion, generated by such an

equation of motion produces the desired probability distribution of the particles.

While the construction of hidden variable theories is therefore possible the alternative, offered

by them, comes with such a high price which makes this way of refuting the disturbing features of

the quantum domain unacceptable for the majority of physicists.

C. Non-locality I. Einsein-Podolksi-Rosen experiment

One of the important difference between the hidden variable and truly classical theories is that

the former is non-local. This problem can be approached by considering a thought experiment with

a bomb which is cut into two equally massive pieces and glued together. The bomb is then brought

to rest in the air and is exploded in such a manner that the two half acquire opposite momentum

in the horizontal plane. The two fragments land on a horizontal area and the knowledge of the
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identification of the location of one of them allows us to predict immediately the location of the

other. Such simple experiment becomes highly non-trivial in the microscopic world.

The thought experiment, proposed by Einstein, Podolsky and Rosen and modified slightly by

Bohm, starts with a singlet state of two electrons,

|S〉 = 1√
2
(|+z〉 ⊗ |−z〉 − |−z〉 ⊗ |+z〉), (435)

where the spin projection on the axis z is shown in units 2/~. One separates the particles by

transporting the electrons to locations 1 and 2 without changing the total spin and measures the

projection of the spin of the electron at location 1 on the direction a with the result s. The two

particle state collapses to |sa〉⊗ |− sa〉 at this moment hence we know without actually performing

any observation that the measurement of the spin of the other electron on the same direction, if

carried out, must yield the opposite result, −s.
The difference between the macroscopic and the microscopic experiments is that while the

”other”, unobserved part follows a well defined, deterministic path in the former case the real

direction of the spin is not defined for neither parts until the measurement in the latter case. Thus

the microscopic experiment predicts the instantaneous spread of information, encoded by the spin

entanglement in the state (435). Such a violation of Special Relativity has been confirmed by a

number of experiments, using entangled two photon states. It was possible to confirm a non-trivial

correlation between the spin of a photon, measured along a randomly chosen direction at location 1

and the successive measurement of the spin of the other photon along a fixed direction at location

2. The two measurements have been performed with such a small time delay which excluded

that the choice of the direction of the polarization, used at location 1 could have influenced the

measurement at location 2.

These are actually the first pair of experiments in the history of science, performed at spatial

separation, without causal connection and they lead to a brutal violation of the limiting speed

of propagation of signals. Nevertheless there is no explicit violation of Special Relativity because



96

the latter is stated within the realm of classical physics. The violation is found only on the

level of ”quantum fluctuations”, the choice of one of the factorizable term in the entangled state

(435). Since the collapse of the state during the measurement is non-deterministic and can not be

influenced by macroscopic means the content of the signal, violating Special Relativity, can not be

freely chosen by us. The entangled two-photon state has to be regarded as a non-local state with

non-separable photons rather than the combination of two localizable single photon states.

D. Non-locality II. Bell inequality

The hidden variable theory offers a different interpretation of the EPR experiment. Let us

denote the hidden variable by λ and its probability distribution by p(λ). The result of the

measurement of the spin of the electron at location 1 (2) is given by A(a, λ) (B(a, λ)) where

A(a, λ), B(a, λ) = ±1. We assume that the hidden variable theory is local hence the expectation

value of the product of the spin, measured along the direction a (b) at location 1 (2) is

p(a, b) =

∫

dλp(λ)A(a, λ)B(b, λ). (436)

The prediction of Quantum Mechanics for this experiment can easily be fond by exploiting the

rotational invariance and choosing a pointing to the z axis,

p(a, b) =
1√
2
(〈+z | ⊗ 〈−z| − 〈−z| ⊗ 〈+z|)σz ⊗ bσ

1√
2
(|+z〉 ⊗ |−z〉 − |−z〉 ⊗ |+z〉)

=
1

2
(〈−z|bσ|−z〉 − 〈+z|bσ|+z〉)

=
1

2



〈−z|




bz bx − iby

bx + iby −bz



 |−z〉 − 〈+z|




bz bx − iby

bx + iby −bz



 |+z〉





= −bz = −ab. (437)

The results (436) and (437) are incompatible. This can be seen by noting that A(a, λ) =

−B(a, λ) for a singlet state, choosing a third polarization direction, c and calculating

p(a, b)− p(a, c) = −
∫

dλp(λ)[A(a, λ)A(b, λ) −A(a, λ)A(c, λ)]

=

∫

dλp(λ)A(a, λ)A(b, λ)[A(b, λ)A(c, λ) − 1]. (438)

The bound |A(a, λ)| ≤ 1 yields Bell’s inequality,

|p(a, b)− p(a, c)| ≤
∫

dλp(λ)[1 −A(b, λ)A(c, λ)]

= 1 + p(b, c). (439)
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FIG. 26: The directions a, b and c, with ab = bc =
√
3

2
to show the incompatibility of the inequalities (436)

and (437).

It is easy to check that this inequality is violated by (437) say by choosing the directions a, b and c

in the same plane as in Fig. One way to bring Quantum Mechanics and the hidden variable theory

compatible is to make the latter non-local, i.e renouncing (436) and loosing a decisive feature of

classical physics.

E. Contextuality

Another possibility to save the deterministic hidden variable scheme is to renounce a tacit as-

sumption about the well definiteness of physical quantity and accept contextuality. This concept

is unusual in Quantum Mechanics on two counts. First, it characterizes the result of single obser-

vations rather than averages. Second, the deterministic structure of the hidden variable theories

allows us to consider dynamical variables which are actually not measured but could be measured

and their value happened to be well defined. The contextuality covers such kind of imaginary

measurements.

Let us consider three observables, A, B and C such that [A,B] = [A,C] = 0 and [B,C] 6= 0. We

may measure either the pair A,B or A,C and the result is contextual if the value of A is different

in the two cases. The contextual hidden variable theories are consistent with the restriction of

observations to compatible (commuting) observables however they explain the uncertainty of non-

compatible observable by statistical fluctuations of hidden variables rather than the quantum state.

The contextuality of any hidden variable theory theory can be seen in the case of the simulta-

neous measure of the spin of two electrons. Consider the rearrangement of the spin observables,

11⊗ σz σz ⊗ 11 σz ⊗ σz
σx ⊗ 11 11⊗ σx σx ⊗ σx
σx ⊗ σz σz ⊗ σx σy ⊗ σy

(440)
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where each row and column contains commuting observables which can be measured simultaneously

and therefore have well defined values in any hidden variable theory. The product of two observables

in each row and column gives the third one except in the third column where a -1 sign occurs hence

there is no way to assign a spectral values, ±1, to all operators.

F. Instead of conclusion

The fundamental equations of physics can never be proven mathematically, they represent our

way to summarize our knowledge about Nature. In a similar manner there is no way to prove

any interpretation of Quantum Mechanics. Nevertheless it seems to me that the most reasonable

interpretation is based on the view that Quantum Mechanics provides us consistent and optimized

rules in dealing with the partial information we can have about the world around us and within

us.

This impression has already been expressed by Heisenberg in 1958: ”We are finally led to

believe that the laws of nature that we formulate mathematically in quantum theory deal no longer

the particles themselves but with our knowledge of the elementary particles. ... The conception of

the objective reality of the particles has thus evaporated in a curious way, not in the fog of some new,

obscure, or not yet understood reality concept, but into the transparent clarity of a mathematics

that represents no longer the behavior of the elementary particles but rather our knowledge of this

behavior.” It remains for the next generations to refine this view or to find a more convincing one.

APPENDIX A: DENSITY MATRIX

The probability theory, a chapter of mathematics, describes the rules of using the probability

without defining probability. The interpretation of the probability is provided by the law of large

numbers. It is based on the empirical frequency of the realization of an event, ν(Ntot) = Nr/Ntot,

the ratio of the realization of the event and the number of trials and states that the probability

of any finite deviation between ν and p, the probability of the event, is vanishing in the limit

Ntot → ∞, P (|ν(Ntot) − p| > ǫ) = 0 for any ǫ > 0 as Ntot → ∞. This is a circular definition

without any hint about the origin or meaning of probability. The only discipline of natural science

claiming to possess a constructive definition of probability is quantum mechanics and even that

leaves the interpretation open.
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1. Gleason theorem

The indeterministic nature of the microscopic world leaves us the possibility to use only prob-

abilities in describing phenomena. The probability is defined in the classical world as a measure

p, defined on a σ-algebra, H. The σ-algebra is a collection of the measurable subsets of a set of

elementary events,M, and is closed under

1. forming the union of countable many subsets, ∪nan ∈ M if an ∈M and

2. the making the complement, H\a ∈ M if a ∈ M.

A probability measure, a real valued function on the subspaces, µ :M→ R, satisfies the conditions

1. 0 ≤ p(a) <∞ (p(a) < 1 for discrete values of a)

2. p(∅) = 0

3. p(∪nan) =
∑

n p(an) for an ∈M and am ∩ an = ∅.

The probability of quantum theory is defined by the help of a set H, consisting of the linear

space of states, andM containing the closed linear subspaces to which probability can be assigned.

The set of measurable linear subspaces,M, is closed under forming

1. the linear superposition of countable many states of the measurable subspaces,
∑

n cnan ∈ M
if an ∈ M and

2. the orthogonal complement, {v|〈v|w〉 = 0,∀w ∈ a} ∈ M.

A probability measure, a real valued function on the subspaces, µ :M→ R, satisfies the conditions

1. 0 ≤ p(a) <∞

2. p(∅) = 0

3. p({∑n cnan}) =
∑

n p(an) for an ∈ M and am ⊥ an = 0.

Gleason theorem states that for any measure, p in a separable Hilbert space of at least 3

dimensions, either above real or complex numbers, one can find a linear operator ρ, called density

matrix, such that

p(a) = Tr[ρΛ(a)], (A1)
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where

Λ(a) =
∑

n

|n〉〈n|, (A2)

is the projector onto a, constructed by the help of a basis, {|n〉}, within the linear subspace, |n〉 ∈ a.
The observable

A =
∑

n

|ψn〉λn〈ψn| (A3)

consists of a correspondence, |ψn〉 ↔ λn, between a basis in the Hilbert space and real numbers,

and the result of the measurement of the observable in question in case when the state of the

system is the corresponding basis vector. Therefore the average of the observable,

〈A〉 =
∑

n

pnλn, (A4)

with pn = Tr[ρΛ(|n〉)] can be written in the form

〈A〉 = TrρA. (A5)

There is no indication in quantum mechanics whether the probability is meaningful in case of the

observation of an individual event.

2. Properties

The density matrix possesses the following properties:

1. ρ† = ρ: Any operator can be written as the sum of a Hermitian and an anti-Hermitian piece,

ρ = ρh + ρah, with ρh = 1
2(ρ+ ρ†) and ρah = 1

2(ρ− ρ†). The probability TrPψρ = 〈ψ|ρ|ψ〉 is
real |ψ〉 hence 〈ψ|ρ|ψ〉 = 〈ψ|ρ†|ψ〉. This equation holds for an arbitrary vector |ψ〉 therefore
ρah = 0.

2. The density matrix is a positive operator because its expectation value in any state is non-

negative, 〈ψ|ρ|ψ〉 = Tr[Λ(ψ)ρ] ≥ 0.

3. Trρ = 1: The probability of the whole space of events, Tr11ρ is unity.

4. The density matrix, being a Hermitian operator, is diagonalizable and can be written as

ρ =
∑

n

|ψn〉pn〈ψn|, (A6)
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{|ψn〉} being an orthonormal base. The eigenvalues are real, 0 ≤ pn, and the diagonalization

preserves the trace,
∑

n pn = 1. The spectrum, {pn}, can be interpreted as the probability

of finding the system in one of the states, |ψn〉 since

TrAρ =
∑

n

pn〈ψn|A|ψn〉. (A7)

5. The inequality

Trp2 =
∑

n

p2n ≤
∑

n

pn = Trρ (A8)

becomes an equality only for pure states, ρ = |ψ〉〈ψ|. The states with strict inequality are

called mixed. The decomposition of the density matrix as a sum over pure state projectors is

not unique, there are different systems of non-orthogonal states which yield the same density

matrix.

Example: The most general density matrix of a two-state system is

ρ =
1

2
(11 + pσ) (A9)

where the Pauli-matrices are

σ =








0 1

1 0



 ,




0 −i
i 0



 ,




1 0

0 −1







 . (A10)

This corresponds to the mixture of two states with probabilities 1
2(1± |p|) and

〈σ〉 = tr[ρσ] = p. (A11)

3. Composite systems

We make a little detour in discussing the way composite quantum systems can be represented

before discovering the physical origin of the mixed states. Let suppose that we have two systems

and use the the linear spaces, Hj, j = 1, 2 for the description of their states. How to describe

the composite systems of the two subsystems? It is clear that we have to use a linear space, H12,

constructed by the help of the pairs, (|ψ1〉, |ψ2〉) ∈ H12, |ψj〉 ∈ Hj. The structure of the linear

space, the definition of the addition, multiplication and the scalar product, remains to be defined.

The following two possibilities are used in linear algebra:

Direct product: The elements ofH1⊗2 = H1⊗H2, are denoted by |ψ1〉⊗|ψ2〉 and the structure

is defined by:
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1. Multiplication:

(c|ψ1〉)⊗ |ψ2〉 = |ψ1〉 ⊗ (c|ψ2〉) = c(|ψ1〉 ⊗ |ψ2〉). (A12)

2. Addition: H1 ⊗ H2 is closed with respect to addition, |ψ1〉 ⊗ |ψ2〉, |ψ′1〉 ⊗ |ψ′2〉 ∈ H1 ⊗ H2

implies |ψ1〉 ⊗ |ψ2〉+ |ψ′1〉 ⊗ |ψ′2〉 ∈ H1 ⊗H2.

3. Scalar product:

(〈ψ1| ⊗ 〈ψ2|)(|ψ′1〉 ⊗ |ψ′2〉) = 〈ψ1|ψ′1〉〈ψ2|ψ′2〉. (A13)

4. A pair of operators, Aj : Hj →Hj defines A1 ⊗A2 : H1⊗2 →H1⊗2, as

〈ψ1| ⊗ 〈ψ2|A1 ⊗A2|ψ′1〉 ⊗ |ψ′2〉 = 〈ψ1|A1|ψ′1〉〈ψ2|A2|ψ′2〉. (A14)

These properties suggest to represent the direct product of vectors by multiplying their components,

〈j1, j2|ψ1〉 ⊗ |ψ2〉 = 〈j1|ψ1〉〈j2|ψ2〉, and (ψ1 ⊗ ψ2)(x1, x2) = ψ1(x1)ψ2(x2) with ψ(x) = 〈x|ψ〉, in
terms of the bra-kets and the wave functions, respectively. If the set {|nj〉} is a basis for Hj then
{|m1〉 ⊗ |n2〉| is a basis for H1⊗2 and dimH1⊗2 = dimH1 dimH2.

Direct sum: The linear spaces, H1⊕2 = H1 ⊕H2, consisting of the pairs |ψ1〉 ⊕ |ψ2〉 is defined
by

1. Multiplication: H1 ⊕H2 is closed with respect to the multiplication, |ψ1〉 ⊕ |ψ2〉 ∈ H1 ⊕H2

implies (c|ψ1〉)⊕ |ψ2〉, |ψ1〉 ⊕ (c|ψ2〉) ∈ H1 ⊕H2.

2. Addition:

|ψ1〉 ⊕ |ψ2〉+ |ψ′1〉 ⊕ |ψ′2〉 = (|ψ1〉+ |ψ′1〉)⊕ (|ψ2〉+ |ψ′2〉), (A15)

3. Scalar product:

(〈ψ1| ⊕ 〈ψ2|)(|ψ′1〉 ⊕ |ψ′2〉) = 〈ψ1|ψ′1〉+ 〈ψ2|ψ′2〉, (A16)

4. A pair of operators, Aj : Hj →Hj defines A1 ⊕A2 : H1⊕2 →H1⊕2, as

〈ψ1| ⊕ 〈ψ2|A1 ⊕A2|ψ′1〉 ⊕ |ψ′2〉 = 〈ψ1|A1|ψ′1〉+ 〈ψ2|A2|ψ′2〉. (A17)

It is natural to represent the direct sum of vectors by a simple sum, 〈j|(|ψ1〉⊕|ψ2〉) = 〈j|ψ1〉+〈j|ψ2〉,
and (ψ1 ⊕ ψ2)(x) = ψ1(x) + ψ2(x). If the set {|nj〉} is a basis for Hj then {|m1〉 ⊕ |n2〉| is a basis

for H1⊕2 and dimH1⊕2 = dimH1 + dimH2.
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Either procedure can in principle be followed to define a composite quantum system, the thumb

rule is to use the direct product or the direct sum in describing simultaneously or exclusively

existing components, respectively, for instance a spinless electronic state of the Hydrogen atom is

ψ(x) =
∑

nml cnmlψnml(x) and a factorisable two (distinguishable) particle wave function can be

written in the form ψ(x1,x2) = ψ1(x1)ψ2(x2).

Multi-particle systems with variable particle number require a unification of the two schemes,

resulting the Fock space, HF12 = H1 ⊕H2 ⊕ (H1 ⊗H2).

4. Physical origin

Two, superficially different circumstances, loss of information and entanglement require the use

of mixed states.

a. Loss of classical information

One has to distinguish classical and quantum probabilities. Probability appears in determinis-

tic classical physics only if we lack some information. Such a probability characterizes our limited

knowledge in an otherwise completely determined world. The information loss, behind the proba-

bility, given by the quantum mechanical Born’s rule, is different.

On the one hand, the Heisenberg uncertainty relation implies a fuzziness which can not be

recovered by improving our measuring device. One can find the origin of the unavoidable loss of

information by noting that the equation of motion is a differential equation of order 2 and 1 in the

classical and the quantum case, respectively. Hence a state say of a free particle is represented by

twice as much numbers in the classical (coordinate and momentum) than in quantum mechanics

(coordinate or momentum). Therefore the probability distribution of an observable in a pure

state, pn in (A4), always represents some uncertainty, compared to the classical description. The

limitation of the available information by the uncertainty principle induces a loss of information,

represented by quantum probability, the probability distribution of the spectrum variables of the

observables, given by Born’s rule.

On the other hand, the classical probability arises from the lack of the definite knowledge of

the actual (pure) state of the system. We perform a number of measurements on a family of

equivalently prepared systems to determine its quantum state. If the result is not certain then all

we have at the end is a probability distribution of possible states, |ψn〉 ↔ pn. This gives rise to
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the probability distribution {pn}, represented by the density matrix in the expectation value (A7).

Such a classical probability distribution enters in an additive manner in the expectation value.

The quantum probability of the observable A in the pure state, |ψ〉 =∑n

√
pn|ψn〉,

〈ψ|A|ψ〉 =
∑

m,n

√
pmpn〈ψm|A|ψn〉, (A18)

is not additive anymore in pn owing to the interference between the different components of |ψ〉.
The non-additivity results from the interference of the components of the state |ψ〉. It can be

argued that the coherence between macroscopically different components is lost. Let us suppose

for the sake of simplicity that the states |ψn〉, contributing to |ψ〉, are macroscopically different.

Then the decoherence, a necessary condition of the emergence of the classical world from quantum

mechanics, is the change

〈ψ|A|ψ〉 =
∑

mn

√
pmpn〈ψm|A|ψn〉 →

∑

n

pn〈ψn|A|ψn〉, (A19)

which can be achieved by the change

ρ =
∑

m,n

√
pmpn|ψm〉〈ψn| →

∑

n

pn|ψn〉〈ψn|. (A20)

The destruction of the coherence among macroscopically different states generates classical proba-

bilities for macroscopically different quantum states. That is not only the driving force in reaching

the macroscopic physics from the microscopic one but it presumably serves as the origin of the

universal laws of Statistical Physics.

b. Entangled states

Let us suppose that a closed system consists of two sub-systems with bases |φm〉 and |χn〉 and
we can observe sub-system 1 only. We shall call the sub-system 1 and 2 as the observed system

and its environment, respectively. Any pure state of the complete system can then be written as

a linear superposition,

|ψ〉 =
∑

m,n

cm,n|φm〉 ⊗ |χn〉. (A21)

Such a decomposition is not unique and the Schmidt decomposition of |ψ〉 gives a specially useful

representation,

|ψ〉 =
N∑

n=1

cn|un〉 ⊗ |vn〉, (A22)
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because its states are orthogonal, 〈um|um′〉 = δm,m′ , 〈vn|vn′〉 = δn,n′ . A state with N = 1 consists

of a single contribution, |ψ〉 = |u〉| ⊗ |v〉, and is called factorisable and the states with N ≥ 2 are

called entangled.

The properties of a sub-system are well defined only if the whole system is in a factorisable state.

In fact, let us consider an observable A1 of our system, represented by the operator A = A1 ⊗ 112.

The expectation values in a factorisable state, |ψ〉 = |φ〉| ⊗ |χ〉,

〈ψ|A|ψ〉 = 〈φ| ⊗ 〈χ|A1 ⊗ 112|φ〉 ⊗ |χ〉 = 〈φ|A1|φ〉, (A23)

is indeed determined by the state |φ〉.
This is not possible anymore for entangled states, there is no pure state of the observed system

which reproduces all the expectation value of an entangled (pure!) state. In fact, let us suppose

that the contrary is true, i.e. N ≥ 2 in (A22) and any the system expectation values can be

calculated by using the system state |φobs〉. We inquire about the probability of finding the system

in the state |φobs〉. That probability can be obtained in two different manner: On the one hand,

we have in linear space of the the observed system,

p(|φobs〉〈φobs|) = 〈φobs|φobs〉〈φobs|φobs〉 = 1. (A24)

On the other, the calculation on the level of the full, closed system yields

p(|φobs〉〈φobs|) = 〈ψ|(|φobs〉〈φobs| ⊗ 112)|ψ〉

=
∑

n,n′

c∗n′cn〈un′ | ⊗ 〈vn′ |(|φobs〉〈φobs| ⊗ 11)|un〉 ⊗ |vn〉

=

N∑

n=1

|cn|2|〈un|φ〉|2 < 1. (A25)

In the case of N ≥ 2 the inequality follows from the normalization
∑

n |cn|2 = 1, and the bound

|〈un|φobs〉| ≤ 1. The expectation value of system observable in an entangled state (A21)

〈A〉 =
∑

n,n′

c∗ncn′〈un| ⊗ 〈vn|A1 ⊗ 112|un′〉 ⊗ |vn′〉

=
∑

n

|cn|2〈un|A1|un〉, (A26)

is of a mixed state, described by the density matrix

ρ1 =
∑

n

|un〉|cn|2〈un|. (A27)
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The density matrix (A27), defining the mixed state of the observed system is called the reduced

density matrix. The reduced density matrix of the subsystem 1, ρ1, and can be obtained from the

density matrix of the full system,

ρ12 =
∑

n,n′

cnc
∗
n′ |un〉 ⊗ |vn〉〈un′ | ⊗ 〈vn′ |, (A28)

by ”tracing out” the unobserved environment space,

ρ1 = Tr2[ρ12]

=
∑

n̄

〈χn̄|ρ12|χn̄〉

=
∑

n̄,n,n′

cnc
∗
n′〈χn̄|(|un〉 ⊗ |vn〉〈un′ | ⊗ 〈vn′ |)|χn̄〉

=
∑

n̄,n,n′

cnc
∗
n′ |un〉〈un′ |〈vn|χn̄〉〈χn̄|vn′〉. (A29)

The closing relation 112 =
∑

n̄ |χn̄〉〈χn̄| completes the demonstration of the equivalence of the

expressions (A27) and (A29),

ρ1 =
∑

n,n′

cnc
∗
n′ |un〉〈un′ |〈vn|vn′〉

=
∑

n

|cn|2|un〉〈un|. (A30)

The lesson of the above steps is:

1. A sub-system which is entangled with its environment has mixed state and possesses no

unique properties, the expectation values are given in terms of the amplitudes of the full

system state.

2. If the full system starts in a factorisable pure state then the interaction between the two sub-

systems generates entanglement except of the unimportant special case where the interaction

Hamiltonian is diagonal in the Schmidt decomposition basis. Hence entanglement arises

from interactions. However entanglement is more general than interactions because the

latter assumes an interaction Hamiltonian while the former is a property of the state of the

complete system, without any reference to the interaction between the sub-systems.

3. Both the loss of classical information and the entanglement are represented by the same

mathematical device, a mixed state. Therefore one tends to consider entanglement as the

physical origin of mixed states and the modelization of lost classical information at the more

fundamental quantum level.
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c. Relative states

The correlation between the system and its environment can better be seen by relaxing the

orthogonality condition of the Schmidt decomposition because it shows in a clearer manner the

correlation between the two subsystems. For any pure complete system state |ψ〉 the relative state

of an environment state vector, |χ〉, is defined by

|R(χ)〉 = N
∑

m

|φm〉〈φm, χ|ψ〉, (A31)

where the notation |φm, χ〉 = |φm〉 ⊗ |χ〉 is introduced and N = 1/
√
p denotes the normalization,

defined by the marginal probability distribution,

p(χ) =
∑

m

|〈φm, χ|ψ〉|2

= 〈ψ|(11 ⊗ |χ〉〈χ|)|ψ〉, (A32)

of the environment states in |ψ〉. One can prove that the relative state and the marginal probabil-

ities are independent of the choice of the system basis, |φm〉.
Let us consider a system observable which is diagonal in our basis, As =

∑

m |φm〉λm〈φm|. Its

expectation value in a relative state, assuming that the environment is in the pure state |χ〉,

〈R(χ)|As|R(χ)〉 =
1

p(χ)

∑

m

〈ψ|φm, χ〉〈φm, χ|As ⊗ 11|φm, χ〉〈φm, χ|ψ〉, (A33)

can be written as

〈R(χ)|As|R(χ)〉 =
∑

m

λm
〈φm, χ|ψ〉|2

p(χ)
. (A34)

Since the factor p(φm|χ) = 〈φm, χ|ψ〉|2/p(χ) is just the conditional probability of finding the system

state |φm〉, assuming that the environment is in the state |χ〉, we have

〈R(χ)|As|R(χ)〉 =
∑

m

λmp(φm|χ), (A35)

indicating that the knowledge of the environment state translates itself into the relative system

states, as far as the system observables are concerned. The pure complete system state can be

written as

|ψ〉 =
∑

m,n

|φm, χn〉〈φm, χn|ψ〉 =
∑

n

√

p(χn)|R(χn)〉 ⊗ |χn〉 (A36)
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We now return to the discussion of the density matrix and write the expectation value of the

system observable, As, in the pure complete system state, |ψ〉, as

〈ψ|As|ψ〉 =
∑

n,n′

√

p(χn)p(χn′)〈R(χn′)| ⊗ 〈χn′ |As ⊗ 11|R(χn)〉 ⊗ |χn〉

=
∑

n

p(χn)〈R(χn)|As|R(χn)〉. (A37)

In other words, the reduced density matrix is

ρ =
∑

n

|R(χn)〉p(χn)〈R(χn)|. (A38)

The lesson is that entanglement arises if different environment states can condition linearly inde-

pendent system states in the given pure complete system state.

APPENDIX B: QUANTUM ANOMALIES

The trajectory of a classical free point particle has analytical, more precisely linear, time depen-

dence. There are no trajectories in quantum mechanics but the propagation of a free point particle

displays singular features for short time. Such singularities introduce unexpected modification to

a thumb rule, introduced in the early days of quantum mechanics, namely that the commutators

of dynamical quantities can be obtained from their classical counterparts, the Poisson bracket, by

inserting a multiplicative factor i~ into the right hand side, e.g.

{xj , pk} = δj,k =⇒ [xj , pk] = i~δj,k. (B1)

It will be pointed out that the short time singularities of the transition amplitude of a free particle

between two space points is the result of Heisenberg’s canonical commutation relation. Since

the use of the Poisson bracket in classical mechanics is based on regular, differentiable functions

the short time singularities generate unexpected, so called Schwinger terms to the commutators.

These corrections violate the above mentioned simple quantization rule and are given the rather

unfortunate name ”anomaly”.

1. Singular time dependence

The amplitude of propagation x→ y within time t of a three dimensional free particle,

〈x|e− i
~

p
2

2m
t|y〉 =

( m

2πi~t

) 3
2
ei

m
2~t

(x−y)2 (B2)
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gives us the wave function

ψ(t,x) = 〈x|e− i
~

p
2

2m
t|y〉, (B3)

satisfying the initial condition

ψ(0,x) = δ(x− y). (B4)

In fact, it is easy to check that the wave function satifies Schrödinger’s equation,

i~∂tψ(t,x) = −
~
2

2m
∆ψ(t,x), (B5)

and the initial condition arises from the orthogonality of the coordinate eigenstates, 〈x|y〉 =

δ(x− y).

The phase difference of the wave function at different space points is measurable and the distance

of points with a given phase difference Φ is

|∆x| =
√

2~tΦ

m
. (B6)

The velocity of the spread of the pair of points, corresponding to a fixed phase difference,

v =
|∆x|
t

=

√

2~Φ

mt
, (B7)

diverges at short time, t→ 0. The singularity results from Heisenberg’s uncertainty principle and

is the dynamical origin of the spread of the wave packet. In fact, the initial condition (B4) amounts

ot the perfect knowledge of the coordinate hence the observation of the momentum, the mass time

the velocity, produces diverging fluctuations.

The short time singularity of the propagation leaves two important fingerprints in quantum

theory:

1. The regular time dependence in classical mechanics allows us to change the coordinate system

by following the standard rules of calculus. The short time singularity in quantum mechanics

generates O (~) corrections to these rules. In particular, the Legendre transformation, con-

necting the classical Lagrangian and Hamiltonian has to be modified in quantum mechanics.

This amounts to an O (~) violation of the canonical symmetry of quantum mechanics and the

change of the quantization rules when a non-linear coordinate transformation is performed.

2. The Poisson bracket structure of classical mechanics implies regular time dependence. How-

ever the singular time dependence produces Schwinger terms to certain commutators. Hence
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certain classical conservation laws and symmetries, expressed by the vanishing of the Pois-

son bracket between the Hamiltonian and a dynamical quantity may be violated by O (~)

quantum effects.

These issues are best understood within the framework of Feynman’s path integral formalism

of quantum mechanics where they result from the fractal nature of the typical trajectories of a

particle. However the argument would lead us beyond the scope of these lectures. Thus the

demonstration of the modification of the quantization rules in polar coordinate system is presented

below within the operator formalism.

2. Quantization rules in polar coordinates

The quantization rules define the Hamiltonian and the equation of motion by starting the

Lagrangian. In case of a free particle, described by the Cartesian coordinates x = (x1, x2, x3), one

starts with the Lagrangian

L =
m

2
ẋ2, (B8)

defines the momentum

p =
∂L

∂ẋ
= mẋ, (B9)

and construct the Hamiltonian,

H = ẋp− L, (B10)

expressed in terms of the momentum

H =
p2

2m
. (B11)

The canonical commutation relations,

[xj , pk] = i~δj,k, (B12)

give rise to the representation pj =
~

i ∂xj and the Hamiltonian

H = − ~
2

2m
∇2, (B13)

which possesses translational and rotational symmetry,

[H,p] = [H,L] = 0, (B14)
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where the momentum p and angular momentum L generates translations and rotations, respec-

tively.

The quantization in polar coordinates is carried out by the help of the parametrization

x =







r sin θ cosφ

r sin θ sinφ

r cos θ

(B15)

and the free Lagrangian

L =
m

2
(ṙ2 + r2θ̇2 + r2 sin2 θφ̇2) (B16)

yields the momenta

pr =
∂L0

∂ṙ
= mṙ,

pθ =
∂L0

∂θ̇
= mr2θ̇,

pφ =
∂L0

∂φ̇
= mr2 sin2 θφ̇. (B17)

The classical Hamiltonian is therefore of the form

Hcl = pr ṙ + pθθ̇ + pφφ̇− L

=
p2r
2m

+
p2θ

2mr2
+

p2φ

2mr2 sin2 θ
. (B18)

The canonical commutation relations,

[r, pr] = [θ, pθ] = [φ, pφ] = i~ (B19)

are satisfied by

pr =
~

i

∂

∂r
, pθ =

~

i

∂

∂θ
, pφ =

~

i

∂

∂φ
. (B20)

The insertion of these operators into the classical Hamiltonian yields

Hnaive = −
~
2

2m

[

∂2r +
1

r2

(

∂2θ +
1

sin2 θ
∂2φ

)]

. (B21)

It is not difficult to see that this operator does not possess the usual symmetries, namely

[Hnaive,p] 6= 0, [Hnaive,L] 6= 0, i.e. Schwinger terms arise in these commutators.

It is well known that the correct Hamiltonian is obtained by starting with the Cartesian result

(B13) involving the Laplace-Beltrami operator,

H = − ~
2

2m

[
1

r2
∂r(r

2∂r) +
1

r2

(
1

sin θ
∂θ(sin θ∂θ) +

1

sin2 θ
∂2φ

)]

, (B22)
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which differs from Hnaive,

H = Hnaive + i
~

2m

(
2

r
pr + cot θpθ

)

, (B23)

and the difference, an O (~) term, is called Îto potential.


