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Quantum mechanics is presented on different levels at the regular university lectures, and these

notes are supposed to bridge Quantum Mechanics II, a detailed discussion of the non-relativistic

one- or two-body problems and Quantum Mechanics III, an introduction to second quantization.

The lecturers usually rightly devote this latter to the technical complexity of the subject which

requires indeed time and attention. But this leaves the students somehow loosing the continuity

and the familiarity of the territory as they suddenly find themselves in the midst of formal quantum

fields, Feynman graphs and scattering amplitudes after having trained themselves with calculating

expectation values using down the Earth coordinate and momentum operators.

There are three sources of problems making the modification of the strategy of the usual non-

relativistic Quantum Mechanics necessary when extended over the relativistic regime:

1. The one-particle states are non-local in the space-time. The non-locality in space arises from

the creation of particle-anti partical pairs when a particle is localized at length scale smaller

than its Compton wavelength. The Lorentz-boost of this state spreads such a non-locality

over the time.

2. The anti-particle generates a wrong sign in the formalism which can be transfered from one

equation to another by redefining some quantities but can not be completely eliminated.

3. The Lorentz boosts changes the spacelike hypersurface where the quantum state is defined

by its wave function and the construction of the transformed state requires the solving of

a highly non-trivial dynamical problem. According to the experimental clarifications of the

Eistein-Podolski-Rosen phenomenon the entanglement of a state is formed in an acausal

manner, rendering the collapse of the state a non-covariant procedure and violating the

Lorentz covariance of the wave function.

Note that while problem 1. is based on physical processes and is therefore unavoidable problems

2. and 3. correspond to theoretical concepts and can be solved by the suitable change of the

formalism.

The solution of problem 2. is reached in the second quantized formalism of relativistic quantum

field theory by extending the quantum formalism for many-particle systems. That step leads to the

Fock space to represent the states of multi-particle systems where we can abandon the traditional

one-particle wave function. Thus the scalar product is liberated from the constraints, imposed by

the Lorentz transformations in the first quantized formalism and the dangerous minus sign can

be avoided by a suitable defined scalar product in the Fock space. Having disposed of the wave
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function problem 3 is not present anymore and the expectation values in the second quantized

formalism, expressed in term of Green functions, are covariant. Naturally the choice of the state

on which the collaps takes place remains an unresolved problem as in the non-relativistic case.

Problem 1 can be formally hidden by redefining the space coordinate when the quantum fields are

introduced. This change restores the locality in time, as well in the new space-time.

I believe that more attention should be payed to these issues to justify the profound modification

of the formalism of the traditional non-relativistic Quantum Mechanics when relativistic quantum

effects are discussed and to prepare the students to accept the formalism of relativistic quantum

field theory. These notes are supposed to help to fill up the gap.

I. RELATIVISTIC CLASSICAL DYNAMICS

Special relativity is about the preservation of the laws of classical physical in different coordinate

systems, called inertial reference frames. Rather than checking the fundamental equations one by

one it is required that

1. a free point particle moves with constant speed and

2. the propagation of light takes place with the same velocity, c

in each reference frame. The first condition leads to the linear Lorentz transformations,

xµ = Λµ
νx

ν , (1)

relating the space-time coordinates, xµ = (ct,x), of different reference frames. The classical and

the quantum equations of motion transform in a covariant manner, based on (1), during the Lorentz

transformations. The second condition is transformed into the preservation of the length

s2 = t2 − x2 = xµgµνx
ν . (2)

during Lorentz transformations. Hence the Lorentz group is defined by the condition

gµν = Λµ′

νgµ′ν′Λ
µ′

ν (3)

and consists of the usual spatial rotations and the Lorentz boosts.

The motion of a point particle is described by its world-line, xµ(s), s being a parameter which

can be chosen as the invariant length in case of a massive particle. The invariant length is sometime
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called proper time since it gives the time shown by a clock, attached to the particle as long as it

moves in the absence of external force.

The importance of condition 2 is the it introduces the same velocity parameter into the dynamics

for all particles. This generates two velocity regimes, v/c ∼ 0 and v/c ∼ 1. The Newtonian

mechanics, v/c→ 0, has no internal scale.

A. Anti-particles

The space-time is not an à priori structure in Special Relativity, we make it up with the help

of meter rods and clocks. Note that this procedure is limited to the macroscopic, classical regime,

for there is no way to measure the coordinates within an atom. The motion of a point particle is

described by means of a trajectory, x(t), in non-relativistic mechanics and the time t plays a double

role: It is a basic parameter of the dynamics to indetify events and to order them into a causal chain,

earlier phenomena assumed to be the origin of later ones. The time is a fundamentally different

variable than the coordinate and this remains so in Special Relativity but the roles, mentioned

above, are taken over by another variable, the parameter of the world line.

Do the non-relativistic trajectory, x(t) and the relativistic world line, xµ(x), cover the same

possibilities in physics? It is clear that one can find a world line for each trajectory but the converse

is not true. The relation between the coordinate system and the proper time,

ds2 = dt2
(

1− v2

c2

)

, (4)

allows the time and the proper time run either parallel or in opposite directions,

ds = ±dt
√

1− v2

c2
, (5)

the latter having no place in non-relativistic physics. In other words, the coordinate time may go

backward compared to the flow of time of a particle for a part of the world line as shown in Fig.

1 (a). The particle with opposite time flow is called anti-particle and it obviously possesses the

same mass as the particle. The world line of Fig. 1 describes a particle-anti particle pair beside the

original particles for t1 < t < t2. The energy-momentum conservation is maintained at t = t1 and

t2 by absorbing and emitting, respectively another particle, indicated by dashed lines in the figure.

The world line preserves the cherge, defined as the particle minus anti-particle number. One can

imagine a model of the Universe, made up by a single fermion with a conserved charge as shown in

Fig. 1 (b). In fact, the Big Bang leads to a neutral Universe and the Galaxy formation dynamics

may separate the matter and anti-matter.
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FIG. 1: (a): A world line of a point particle which does not exists in non-relativistic mechanics. (b): World

made up a single fermion, with left (right) a galaxy of matter (anti-matter).

Note that the world-line must have a sudden change of four velocity, ẋµ = dxµ/ds, when the

direction of time flips because the velocity, v = dx/dt, is bounded by c(= 1). The discontinuous

jump of the momentum of the particle relegates the physical processes, taking place at these points,

beyond classical physics. The reason is that classical physics, the unique determination of the future

by the initial conditions, is inconsistent with such singularity. It is well known that the necessary

condition that the solution of the differential equation,

ẋ(t) = f(x, t), (6)

be uniquely determined by the initial condition, x(ti) = xi is the continuity of ∂xf(x, t). To see

the need of the continuous derivative consider the differential equation ẋ = g|x|p with 0 < p < 1.

It is easy to check that the trajectory,

x(t) =











0 t < t0,

[g(1 − p)(t− t0)]
1

1−p t ≥ t0,
(7)

solves the equation for xi = 0 and an arbitrary t0 > ti, there are different solutions which share

the same initial condition. Hence it is highly non-trivial to recover the traditional, classical picture

where the future is determined by the initial conditions. If the particle possesses electric charge

then a photon is annihilated and created at t1 and t2, respectively according to quantum electrody-

namics. These processes represent quantum fluctuations which are known to be non-deterministic.

What is not excluded by conservation laws and may take place in classical physics can happen

with some probability in quantum mechanics. Hence a quantum system containing particles and

anti-particles may not conserve the number of degrees of freedom. This latter is fixed and is given
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FIG. 2: (a): The world lines of a point-like particle, xµ
p
(s), and and an anti-particle, xµ

ap
(s), at rest in an

1+1 dimensional space-time. (b) The end points are changed and as a result the particle and anti-particle

cross each other. We change the parametrization of the world lines to xµ−(s) and x
µ

+(s), covering the particle

and anti-particles segments before and after the crossing, respectively. (c): The singularities of the world

lines can be displaced in the space-time by continuous deformations and the particle-anti particle pair is

first annihilated and later created.

by the number of independent variables of the wave function hence unitarity is expected to be

violated when the usual formalism of quantum mechanics is applied with relativistic kinematics.

B. Energy of an anti-particle

The invariance of the canonical equations of motion,

q̇ =
∂H(q, p)

∂p
, ṗ = −∂H(q, p)

∂q
, (8)

remain invariant under the transformation t → −t, H → −H for time independent Hamiltonian,

H, suggesting that the energy of a particle and an anti-particle differ in their sign only, in agreement

with the double-valued dispersion relation,

E = ±c
√

m2c2 + p2, (9)

of relativistic mechanics. This would cause serious difficulties in the quantum case. In fact, an

important difference between the classical and quantum mechanics is that the boundedness of the

Hamiltonian is necessary for a quantum particle. The reason is that an arbitrarily weak coupling to

the fields, representing the environment, generates spontaneous decay processes towards the lower

energy states. The emitted quanta is not recovered within reasonable time if the environment
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fills up sufficiently large volume and the resulting irreversibility generates singular, ill-defined time

evolution if the particle Hamiltonian is unbounded from below. It is easy to see that a system of

non-interacting bosons whose energy can be negative has no ground state. In fact, the energy is an

additive observable and by adding a particle with negative energy one can lower the total energy.

Thus it is important to check if the energy of an anti-particle is indeed, without any doubt,

negative. There are two ways the energy can be defined in classical physics, both are based on the

action. Therefore let us start with the choice of the action of a relativistic particle. It should be

Lorentz and translation invariant, the simplest choice is

S = −mc
∫

dsf(ẋµ(s)gµν ẋ
µ(s)) (10)

where s denotes the parameter of the world line of length dimension, f(z) stands for a dimension-

less function and the prefactor is introduced to have the desired dimension, that of the angular

momentum. The mass m is rendered unique by requiring f ′(1) = 1
2 to assure the correct non-

relativistic limit. The parameter s is not associated with the invariant length at this stage because

such a relation would reduce the number of independent space-time coordinates in the variational

calculus and would represent an unwanted complication. Instead, s is identified with the invariant

length only after the derivation of the Euler-Lagrange equation,

0 = −mc d
ds
f ′(ẋ2)ẋµ

= −mcf ′(ẋ2)ẍµ − 2mcf ′′(ẋ2)ẋν ẍ
ν ẋµ. (11)

If s is the invariant length then ẋ2 = 1 and the derivative of this identity with respect to s,

ẋν ẍ
ν = 0, simplifies the equation of motion to the expected form,

0 = mcẍµ. (12)

There is a sign ambiguity in the energy in classical mechanics. A possible definition of the

energy comes form the canonical energy-momentum,

pµ = − ∂L

∂ẋµ
= mcẋµ, (13)

where the minus sign is to have to correct non-relativistic limit for the spatial components of

pµ = (Ec ,−p). The transformation s→ −s change the sign of the energy. Another definition,

Pµ =

∫

d3x
√−gTµ0, (14)

is based on the energy-momentum tensor, the source of the gravitational interaction,

Tµν(x) =
2√−g

δS

δgµν(x)
, (15)
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where the action is rewriten in terms of a curvlinear coordinate system by the introduction of a

metric tensor gµν(x). This expression arises from the derivation of Einstein’s equation of General

Relativity by varying the Einstein-Hilbert action with respect to gµν . The action (10) contains the

covariant metrix tensor whose variation can be found by varying the identity δµρ = gµνgνρ,

0 = δgµνgνρ + gµνδgνρ, (16)

yielding

δgµν = −gµρgνσδgρσ . (17)

The action (10), rewritten for general coordinate system reads as

S = −mc
∫

dxdsδ(4)(x− x(s))f(ẋµgµν(x)ẋν) (18)

which together with (17) gives the energy-momentum tensor

T µν(x) = mc

∫

dsδ(4)(x− x(s))ẋµ(s)ẋν(s). (19)

The corresponding energy-momentum vector,

Pµ = m

∫

dsδ(t− x0(s))ẋµ(s)ẋ0(s)

= mẋµ(s)
ẋ0(s)

|ẋ0(s)| , (20)

differs from (13) in a sign, rendering the energy-momentum of a particle and an anti-particle

identical. The lesson is that while the canonical mechanics assigns different sign to the energy of

a particle and an anti-particle these particles enter into the graviational interaction with identical

sign.

We assume now that the particle carries an electric charge and moves in the presence of the

electromagnetic field Aµ(x). The Lagrangian is chosen to be

L = −mcf(ẋ2)− e

c
ẋµAµ(x), (21)

and it changes by a boundary term under gauge transformation, Aµ(x) → Aµ(x) + ∂µα(x), α(x)

being an arbitrary function.

C. Space-time inversions and charge conjugation

The elements of the Lorentz group, L, matrices satisfying (3) can be split into disconnected

sets. By taking the determinant of eq. (3) we have (detΛ)2 = 1. Since the matrix Λ is real its
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determinant is real, as well and we must have detΛ = ±1. We define the subsets of the Lorentz

group, L+ and L−, by collecting Lorentz matrices of determinant 1 and −1, respectively. the set

of matrices L+ and L− can not be joined by a continuous path in the Lorentz group because the

determinant is a continuous function of the matrix elements. Thus we have found two disconnected

components of the Lorentz group, L = L+ ∪ L−, of which L+ forms a subgroup.

The matrix element (00) of eq. (3),

1 = (Λ0
0)

2 −
∑

j

(Λ0
j)

2, (22)

shows that

|Λ0
0| ≥

√

1 +
∑

j

(Λ0
j)

2 ≥ 1, (23)

hence elements of the sets L↑ and L↓, containing Lorentz transformation matrices with Λ0
0 ≥ 1

and Λ0
0 ≤ −1, respectively give again a partition of the Lorentz group into two disconnected sets,

L = L↑ ∪ L↓, L↑ being a subgroup.

We have finally four disconnected components of the Lorentz group, L↑+ = L+ ∩ L↑, L↓+ =

L+ ∩ L↓, L↑− = L− ∩ L↑ and L↓− = L− ∩ L↓. The connected subgroup, L↑+, is called the proper

Lorentz group. The there is a bijective map among the four components, realized by particular

Lorentz transformations, by the space and the time inversions,

P : (t,x)→ (t,−x) (24)

and

T : (t,x)→ (−t,x), (25)

respectively, L↓+ = PTL↑+, L
↑
− = PL↑+ and L↓− = TL↑+.

Lorentz transformations act on world lines, as well and they bring a physically realizable world

line into another physical one. One can extend the symmetry group of the world lines by a further

discrete transformation, C : s → −s, by exploiting the sign ambiguity, (5), in relating the proper

time and the coordinate time.

Note that the action, constructed by means of the Lagrangian (21) can be made invariant under

the combined transformation CPT by extending the C transformation to the vector potential as

a charge conjugation, C : A → −A. This symmetry is not an accident, it is a rather non-

trivial theorem of relativistic quantum field theory stating that all relativistically invariant, local
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Lagrangian are CPT invariant. As a result, the classical Lagrangian, derived from a local quantum

theory should respect this symmetry, as well.

It is advantageous introduce the parity of the discrete transformations, P : f(x, ẋ) →
f(Px, P ẋ) = πff(x, ẋ), T : f(x, ẋ)→ f(Tx, T ẋ) = τff(x, ẋ), C : f(x, ẋ)→ f(x,−, ẋ) = γff(x, ẋ),

eg. πt = −πx = 1, −τt = τx = 1 and γxµt = −γẋµ = 1. Since any function f(z) can be written as

a sum of an even and an odd part,

f(z) =
f(z) + f(−z)

2
+
f(z)− f(−z)

2
, (26)

these parities assume the values ±1, in agreement with the relations

P 2 = T 2 = C2 = 11 (27)

in classical physics.

These equations are not necessarily valid in relativistic quantum mechanics, as shown in Ap-

pendix A. The point is the existence of the spin, a relativistic effect. The coordinate space of a

non-relativistic, spinless particle is R3, a connected space. The spin makes it necessary to follow

rotations, as well, and to extend the kinematical space over rotations. We shall see that the rota-

tional group is multiply-connected, a feature of the kinematical space which leads to multi-valued

wave functions. The relative phase between the Rieman-sheets of the wave function introduces

new quantum numbers and changes the transformation laws.

II. SCALAR PARTICLE

The relativistic generalization of the Schrödinger equation for a free particle,

i~∂tψ(x, t) = −
~
2

2m
∆ψ(x, t), (28)

should have the same order of derivative in time and space directions. This can be achieved in two

different manners, both have either first or second order derivatives. The former and the latter

equation, describe fermions and bosons, respectively.

A. Heuristic derivation of the Klein-Gordon equation

The heuristic argument to construct a second order equation of motion is based on the gener-

alization of the three-momentum to

pµ =

(

E

c
,−p

)

= i~∂µ = i~(∂0,∇), pµ =

(

E

c
,p

)

= i~∂µ = i~(∂0,−∇). (29)
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The mass shell condition,

p2 = m2c2ẋ2 = m2c2, (30)

leads to the Klein-Gordon equation

(

�+
m2c2

~2

)

φ(x) = 0 (31)

with � = ∂20−∇
2 as an equation of motion. The parameter ~/mc = λC , the Compton wavelength,

is the intrinsic length scale of a massive particle. The generalization for a charged particle in

the presence of an electromagnetic field Aµ(x), p
µ → pµ − q

cA
µ is obtained by the help of the

covariant derivative ∂µ → ∂µ + i q
~cAµ = Dµ. Special care is neede to set the value of q, it stands

for the charge of the field the covariant derivative is acting upon. Since the electric charge is

defined as the Noether charge, corresponding to phase rotation, φ(x)→ e−i
q
~c

αφ(x) the fields φ(x)

and φ∗(x) have opposite electric charge, e and −e, respectively and Dµφ = ∂µφ + i e
~cAµφ and

Dµφ
∗ = ∂µφ − i e

~cAµφ = (Dµφ)
∗. Further useful properties of the covariant derivative is that

it satisfies Leibnitz’s rule, Dφχ = (Dφ)χ + φDχ, and therefore allows partial integration. The

generalization of (31) for vector potential reads as

(

DµD
µ +

m2c2

~2

)

φ(x) = 0. (32)

The Klein-Gordon equation can be considered as the Euler-Lagrange equation for a complex

scalar field φ(x) when the action

S[φ] =

∫

dtd3xL(φ, φ∗,Dµφ,Dµφ
∗), (33)

defined by the Lagrangian

L = (Dµφ)
∗Dµφ−m2φ∗φ (34)

is used where the expression are simplified by using the units ~ = c = 1. The Lagrangian is

invariant under a continuous symmetry transformation, φ(x) → eiθφ(x), and the corresponding

conserved Noether-current is

jµ =
i

2m
(φ∗Dµφ− (Dµφ)

∗φ) =
i

2m
φ∗
←→
∂µφ−

e

mc
φ∗φAµ, (35)

where the derivative
←→
∂µ is defined as

f
←→
∂µg = g∂µg − ∂µgf. (36)
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It is the relativistic generalization of the non-relativistic probability current

jµ =

(

ψ∗ψ,
1

2im
[ψ∗Dψ − (Dψ)∗ψ]

)

=

(

ψ∗ψ,
1

2im
(ψ∗∇ψ −∇ψ∗ψ) +

e

mc
ψ∗ψA

)

(37)

of the Schrödinger equation. The important change is in the time component, the O (A) terms in

(35)-(37) represent the paramagnetic contribution to the electric current.

The plane-wave solutions are

φ(x) = e∓ipµx
µ

(38)

where p0 = ωp with

ωp =
√

m2 + p2. (39)

The sign - or + corresponds to positive energy (particle) or negative energy (anti-particle) plane

waves, respectively. The current (35) assumes the form

jµ = ±p
µ

m
(40)

for a plane wave. The negative energy plane wave represents anti-particles and the form (38) of

the wave function suggests that the energy-momentum pµ is the canonical one, corresponding to

(13).

The sign problem of the Klein-Gordon equation appears in two forms:

1. States with negative energy: The energy of a free particle, defined by the eigenvalue of i∂0 is

not definite. The appearance of negative energy one-particle states poses a serious problem

in quantum mechanics. In fact, the energy of a system of several free bosons can be lowered

without bound in this case and there is no ground state anymore.

2. No probabilistic interpretation: The density ρ of the Klein-Gordon current, (35) jµ = (ρ, j),

is the time component of a four vector rather than a scalar as in non-relativistic quantum

mechanics. It can not be interpreted as probability density because signρ may change during

Lorentz transformation.

Note that these problems are not independent, both of them arise from the same minus sign in the

exponent of the plane wave (38), the existence of anti-particles.
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B. First order formalism for scalar particles

The appearence of the anti-particle, the source of the sign problems, mentioned above, can

easily be traced back to the increase of the order of the equation of motion in the time derivative.

The point is that the unique solution of a second order differential equation, (32), needs two

initial conditions, for instance φ(ti,x) and ∂0φ(ti,x). This is an important change with respect to

non-relativistic quantum mechanics, suggesting the presence of two particles, one for each initial

condition function, in the state, represented by φ(t,x). It is natural to identify the second particle

with the anti-particle partner of the original particle. In other words, the wave function,

φ(t,x) =

∫

dω

2π
e−iωtφ(ω,x), (41)

is a linear superposition of the particle and anti-particle,

φ±(t,x) = Λ±φ(t,x) =

∫

dt′Λ±(t− t′)φ(t′,x) (42)

where the projectors

Λ±(t− t′) = ±
∫ ±∞

0

dω

2π
e−iω(t−t

′∓iǫ)

= − i

2π(t− t′ ∓ iǫ) , (43)

separate the positive and negative frequency components therefore have to act on the time variable.

Owing to the unconstrained integration over t′ in eq. (42) the separation of the particle and

the anti-particle content of the wave function φ(t,x) is possible after infinitely long observation

time. In fact, the energy-time uncertainty principle is due to the non-local nature of the Fourier

transformation. This represents an important difference between the relativistic and the non-

relativistic quantum mechanics, namely there are two particles represented by the Klein-Gordon

wave function and their separation can not be performed locally in time. The equation of motion

can be used to make the separation locally, by relating time- and space-dependence for free particles.

This solves the problem for free particles but any change in the equation of motion induces a mixing

of the states, defined for the free particles . This is the way we understand the creation particle-

anti particle pairs by external fields, examples being the electron-positron emission by strong

electromagnetic field and the Hawking radiation, stemming from the gravitational horizon.

1. Equation of motion

To preserve the simple, local nature of the equation of motion in time we separate the two

particles an approximate manner by the introduction of a two-dimensional Klein-Gordon spinor
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wave function,





χ+

χ−



 =
1

2





φ+ i
m∂0φ

φ− i
m∂0φ



 . (44)

A particle (anti-particle) in rest resides completely in χ1 (χ2) and a slow moving particle (anti-

particle) should have small χ2 (χ1) component. The redoubling of the components of the wave

functions halves the order of the differential equation and allows us to write Klein-Gordon equation

as

i∂0





χ+

χ−



 =
1

2





i∂0φ+ (m− 1
m∇

2)φ

i∂0φ+ ( 1
m∇

2 −m)φ



 . (45)

The relations χ+ + χ− = φ, χ+ − χ− = i
m∂0φ lead to further simplification,

i∂0





χ+

χ−



 =
1

2





m(χ+ − χ−) + (m− 1
m∇

2)(χ+ + χ−)

m(χ+ − χ−) + ( 1
m∇

2 −m)(χ+ + χ−)



 , (46)

which can be written as

i∂0χ = Hχ (47)

with the Hamiltonian

H = −∇
2

2m
(σ3 + iσ2) +mσ3. (48)

The last term on the right hand side sets different rest mass energy for the two components and

the first term adds the kinetic energy. The spectrum of the Hamiltonian is E = ±ωp and the

eigenstate can be identified by the particle and anti-particle states.

Hermiticity The operator H is non-Hermitian, H† 6= H and as a result its eigenvectors,

corresponding to particle and anti-particle are not orthogonal and the unstable. Such a mixing

of the particle and anti-particle state is non-physical and we should restore Hermiticity. This is

achieved by modifying the scalar product by the help of a ”metric operator”, g, 〈ψ|φ〉 → 〈ψ|g|φ〉.
This is formally equivalent with the generalization of each vector |ψ〉 to a ”covariant” and a

”contravariant” version, the bra and the ket, respectively. The usual Hermitian conjugation which

maps the ket |ψ〉 into the bra |ψ〉 → |ψ〉† = 〈ψ| is replaced by the bra generated by the Klein-

Gordon conjugation, |ψ〉 → 〈ψ̄| = 〈ψ|g yielding the scalar product 〈ψ̄|φ〉 = 〈ψ|g|φ〉. The equation

〈φ|A†|ψ〉 = 〈ψ|A|φ〉∗ defining the matrix elements of the usual Hermitian conjugate A† of an

operator A, is now replaced by 〈φ̄|Ā|ψ〉 = 〈ψ̄|A|φ〉∗ written as 〈φ|gĀ|ψ〉 = 〈ψ|gA|φ〉∗. Hence we
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have gĀ = (gA)†, yielding the Klein-Gordon conjugate operator, Ā = g−1A†g†. We shall use

g = σ3 which leads to the matrix elements

〈χ̄|A|χ′〉 =
∫

d3xχ̄(x)Aχ′(x), (49)

and the Klein-Gordon conjugate of wave functions and operators, χ̄ = χ†σ3 and A→ σ3A
†σ3 = Ā,

respectively. It is easy to check that the Hamiltonian is now Hermitean, H̄ = H.

The modification of the Hermitian conjugation and with it the scalar product influences the

physical content, the definition of the expectation values. We are forced to make this momentous

step to assure the orthogonality and the stability of the particle and anti-particle eigenstates of H.

But this comes with a high price: the scalar product becomes indefinite owing to the non-definite

eigenvalues of σ3. In fact, the naive scalar product for the Klein-Gordon wave function,

〈φ|φ′〉 =
∫

d3xφ∗(t,x)φ′(t,x), (50)

is now replaced by

〈χ̄|χ′〉 =
∫

d3xχ̄(t,x)χ′(t,x) =
i

2m

∫

d3xφ∗(x)
←→
∂0 φ

′(x), (51)

in particularly the norm of a Klein-Gordon spinor χ is given by the non-definite Noether charge,

〈χ̄|χ〉 =
∫

d3xj0(t,x). (52)

The result allows us to keep an important feature of the non-relativistic quantum mechanics,

namely that the norm of a state is the space integral of the probability distribution.

Lagrangian The equation of motion (47) can be obtained from the Lagrangian

L =
i

2
χ̄∂0χ−

i

2
∂0χ̄χ− χ̄Hχ. (53)

In fact, the Euler-Lagrange equation, corresponding to the variation of χ̄ is (47) and the variation

of χ yields

i∂0χ̄ = −χ̄H. (54)

Due to H̄ = H this equation of motion is equivalent with eq. (47).

2. Free particle

Plane wave: Let us look for the plane wave solution with positive and negative energy,

χ(+)(x) = upe
−ipx, (55)
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and

χ(−)(x) = vpe
ipx. (56)

The mass-shell condition, p2 = m2, requires p0 = ωp and the vectors u and v satisfy the equation

ωpup = Hpup,

−ωpvp = Hpvp, (57)

where the Hamiltonian, acting in a given two dimensional momentum subspace is

Hp =
p2

2m
(σ3 + iσ2) +mσ3. (58)

We shall use the eigenvectors

up =
1

2
√
mωp





m+ ωp

m− ωp



 = u−p,

vp =
1

2
√
mωp





m− ωp

m+ ωp



 = v−p, (59)

which are orthogonal,

ūpvp = v̄pup = 0, (60)

and normalized,

ūpup = −v̄pvp = 1. (61)

Wave function: The general solution of the equation of motion (47) can be written as a

Fourier integral,

χ(x) =

∫

p

[apupe
−ipx + b∗pvpe

ipx]|p0=ωp
, (62)

using the integral measure

∫

p

=

∫

d3p

(2π)3
, (63)

and the scalar field, corresponding to this solution, is

φ(x) =

∫

p

√

m

ωp
[ape

−ipx + b∗pe
ipx]|p0=ωp

. (64)
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The plane waves of the Fourier decomposition of the general solution are always on mass hell,

p0 = ωp. The negative energy component, describing the anti-particle content has the three-

momentum with the wrong sign. This sign problem can be avoided by interpreting the coefficient

function as the complex conjugate of the anti-particle wave function,

ap =
i

2
√
mωp

∫

x

eipx
←→
∂0φ(x),

a∗p = − i

2
√
mωp

∫

x

e−ipx
←→
∂0 φ

∗(x),

b∗p = − i

2
√
mωp

∫

x

e−ipx
←→
∂0 φ(x),

bp =
i

2
√
mωp

∫

x

eipx
←→
∂0φ

∗(x). (65)

Note the unusual way both the particle and the anti-particle states are unified within the Klein-

Gordon wave function: φ(x) contains the wave function of the particle and the complex conjugate

of the wave function of the anti-particle. The complex conjugation amounts to the flipping of the

direction of the time, in agreement with the earlier remark that the time runs in the opposite

direction for anti-particles. The wave function, satisfying the second order Klein-Gordon equation

may be real, φ∗(x) = φ(x), and the anti-particle of a neutral particle is identical with the particle.

Non-locality in space: The “the square root” of the Klein-Gordon equation,

i∂0φ
(±)(x) = ±

√

m2 −∆φ(±)(x), (66)

refers exclusively either to to the particle or to the anti-particle. A differential equation is local if it

can be expanded in the Fourier space around the vanishing Fourier variable, the spatial momentum

in the present case,

i∂0φ
(±)(t,p) = ±

√

m2 + p2φ(±)(t,p), (67)

The square root function is not an entire function hence this equation is non-local in space.

Non-relativistic limit: The non-relativistic limit,

i∂0φ
(+)(t,p) =

[

m+
p2

2m
+O

(

(

p2

m

)2
)]

φ(+)(t,p), (68)

reproduces Schrödinger’s equation in the leading order in p2/m2. The non-relativistic limit for

the Klein-Gordon spinor cam be found by noting that χ2 is suppressed for slow moving particle.

This suggests the strategy to eliminate χ2 by its equation of motion which reduces to an algebraic

calcuation in momentum space. We assume a plane wave, χ(x) = e−ipxηp, satisfying

p0





η1

η2



 =
1

2





m(η1 − η2) + (m+ 1
mp2)(η1 + η2)

m(η1 − η2)− (m+ 1
mp2)(η1 + η2)



 , (69)



19

and use its second component to eliminate η2,

η2 = −
1
mp2

2p0 + 2m+ 1
mp2

η1. (70)

the resulting effective equation of motion for χ1,

2p0η1 = m(η1 − η2) + (m+
1

m
p2)(η1 + η2)

=

(

2m+
1

m
p2 − ( 1

mp2)2

2p0 + 2m+ 1
mp2

)

η1, (71)

yields the spectrum, p0 = m+ ǫ,

ǫ =
p2

2m
− ( 1

mp2)2

8m+ 4ǫ+ 2p2

m

≈ p2

2m
− (p2)2

8m2
. (72)

However the equations of motion (67) and (71) are not very useful because they are highly non-local

in three space.

Particle and anti-particle projectors: The simplest separation of the particle or anti-

particle modes is achieved by using the projection operator,

Λ±,p =











up ⊗ ūp

−vp ⊗ v̄p
= ± 1

4mωp





(m± ωp)
2 p2

−p2 −(m∓ ωp)
2



 . (73)

The projection operator in coordinate space,

Λ±(x,y) =

∫

p

eip(x−y)−|p|ǫΛ±,p, (74)

suffers of a singularity as x − y → 0. The fast oscillating contribution of the Fourier integral is

suppressed in any application of the projector operator on states with finite length scale according

to the Riemann-Lebesbgue lemma, to be taken into account by the introduction of a regulator, the

infinitesimal parameter ǫ. The asymptotic behavior

Λ±,p =











± |p|4m(σ3 + iσ2) |p| ≫ m,

1
2(11± σ3) |p| ≪ m,

(75)

shows that the low momentum, |p| ≪ m, particle and the anti-particle amplitude resides mainly in

the upper and the lower component of the Klein-Gordon spinor, respectively. The p-dependence,

displayed at large momenta, |p| ≫ m, reflects the mixing of the particle and anti-particle modes

in the upper and the lower components and the non-locality, the spread of the particle or the

anti-particle states in space.
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Charge conjugation: The exchange of particle and anti-particle is performed by the matrix

Cp = vp⊗ūp−up⊗v̄p =
1

4mωp









m2 − ω2
p −(m− ωp)

2

(m+ ωp)
2 ω2

p −m2



−





m2 − ω2
p −(m+ ωp)

2

(m− ωp)
2 ω2

p −m2







 = σ1,

(76)

in the Klein-Gordon spinor space within a given momentum subspace.

Indefinite norm: The norm of the state, defined by the wave-function (62)

〈χ̄|χ〉 =

∫

d3xχ̄(x)χ(x)

=

∫

p

(a∗pap − bpb∗p), (77)

is non-definite, anti-particles have negative norm and are in conflict with the probabilistic interpre-

tation of the wave function. One could have guessed this problem, the non-definite nature of the

probability density, at the very beginning by noting that a conserved current, ∂µj
µ = 0 must be

linear in the first derivative of the scalar wave function φ(x) and the density, j0, being proportional

to ∂0φ and ∂φ∗ have different sign for particle and anti-particle wave functions.

Expectation values: The definition of the expectation value is left open in a linear space with

indefinite norm, we may use either

〈A〉 = 〈χ̄|A|χ〉|〈χ̄|χ〉| , (78)

or

〈A〉 = 〈χ̄|A|χ〉〈χ̄|χ〉 . (79)

The expectation value of the energy-momentum operator, pµ = (H,−i∇), is

〈χ̄|pµ|χ〉 =

∫

d3xχ̄(t,x)(H,−i∇)χ(t,x)

=

∫

d3x

∫

pq

[a∗pūpe
ipx + bpv̄pe

−ipx](ωq, q)[aquqe
−iqx − b∗qvqeiqx]

=

∫

p

(ωp,p)[a
∗
pap + bpb

∗
p]. (80)

The Noether current, (35), with Aµ = 0, in a state, described by the wave function φ(x) is the

expectation value of the operator i
←→
∂ µ/2m. The relations

j0 =
1

2
(χ+ + χ−)

∗(χ+ − χ−) +
1

2
(χ+ − χ−)∗(χ+ + χ−) = χ̄(x)χ(x),

j = − i

2m
(χ+ + χ−)

∗←→
∇ (χ+ + χ−) = −

i

2m
χ̄(x)
←→
∇ (σ3 + iσ2)χ(x), (81)



21

the minus sign in the last equation is due to the relation jµ = (j0,−j), show that 〈χ|j0|χ〉 is given
by the norm, (77), and

〈χ̄|j|χ〉 = − i

2m

∫

d3x

∫

pq

[a∗pūpe
ipx + bpv̄pe

−ipx]
←→
∇ (σ3 + iσ2)[aquqe

−iqx + b∗qvqe
iqx]

= ℜ 1

m

∫

d3x

∫

pq

q[a∗pūpe
ipx + bpv̄pe

−ipx](σ3 + iσ2)[aquqe
−iqx − b∗qvqeiqx]

=

∫

p

p

m
[a∗papūp(σ3 + iσ2)up − bpb∗pv̄p(σ3 + iσ2)vp]. (82)

The straightforward calculation,

ūp(σ3 + iσ2)up =
1

4mωp

(m+ ωp,−m+ ωp)





1 1

−1 −1









m+ ωp

m− ωp





=
(m+ ωp,−m+ ωp)

2ωp





1

−1





=
m

ωp

= v̄p(σ3 + iσ2)vp, (83)

yields

〈χ̄|jµ|χ〉 =
∫

p

(

1,
p

ωp

)

[a∗pap − bpb∗p]. (84)

Note that whatever normalization is chosen for the expectation values, either the energy is

unbounded from below in eq. (80) or the probability density is non-definite in eq. (84). The

choice (78) stabilizes the energy and leads to ground state. The non-definite nature of j0 can be

understood by recalling that the Noether current is weighted by the electric charge which changes

signs when particles and anti-particles are exchanged. One can interpret the dynamics as long as

we have exclusively particles or anti-particles. Such a restriction applies anyhow to a description

based on a wave function with fixed number of variables. In fact, when particles and anti-particles

are present simultaneously then annihilation may take place which requires the reduction of the

number of degrees of freedom and correspondingly the decrease of the number of the variables

of the wave function. But the separation of the particle and the anti-particle modes can not be

maintained in the presence of external electromagnetic field as we shall see below.

3. Localization

There are simple arguments, suggesting problems with localizing particles or anti-particles:
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1. Spread of the wave packet: Consider a non-relativistic wave packet of width ∆x. The

speed vspr of the spread of a wave packet can be estimated by the help of the Heisenberg

uncertainty relation, vspr ∼ ∆p/m ∼ 1/m∆x. One expects that velocity of the spread will

be bounded by the speed of light in relativistic quantum mechanics, requiring a non-local

realization of the coordinate operator.

2. Pair creation: It is well known that if a one-dimensional particle is confined into an

interval of length ∆x then it develops a discrete momentum spectrum, pn = 2πn/∆x. As

the localization becomes strong, ∆x → 0, a decay to a lower stationary state, n → n − 1,

provides the energy, ∆E =
√

m2 + p2n+1 −
√

m2 + p2n, sufficient to create a particle-anti

particle pair. This process starts at the localization which is comparable with the Compton

wavelength, ∆x = λc = 1/m. In other words, a particle may emit particle-anti particle

radiation when localized in a smaller region than its Compton wavelength.

Both arguments indicate that there is a maximal localization of a relativistic particle at around

the size of its Compton wavelength.

In fact, the separation of the particle and the anti-particle mode was partially carried out by

the introduction of the two component wave function (44). The full separation which requires

infinitely long observation time can nevertheless be carried out locally in time for free particles,

cf. the spinors (59) for p 6= 0, by the help of the equation of motion which relates the space-

and time-dependence. The particle and anti-particle states of a free particle is defined for each

momentum by eqs. (59) and the matrix

Sp =
m+ ωp − σ1(m− ωp)

2
√
mωp

(85)

brings the original, Klein-Gordon basis into the new, momentum-independent one,

Spup =
mc+ ωp − σ1(mc− ωp)

2
√
mcωp

1

2
√
mcωp





mc+ ωp

mc− ωp



 =





1

0



 = w+

Spvp =
mc+ ωp − σ1(mc− ωp)

2
√
mcωp

1

2
√
mcωp





mc− ωp

mc+ ωp



 =





0

1



 = w−. (86)

This is a unitary transformation,

S̄p = σ3S
†σ3 =

m+ ωp + σ1(m− ωp)

2
√
mωp

= S−1p , (87)

allows us to write the Hamiltonian within the sector p in the form

Hp = S−1p [w+ωpw̄+ − w−(−ωp)w̄−]Sp (88)
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where

HFV = SpHpS
−1
p = ωp(w+w̄+ + w−w̄−) = σ3ωp, (89)

is a diagonal matrix. The explicit calculation of the similarity transformation is the simplest by

using {σa, σb} = 2δa,b, c.f. eq. (166),

HFV = SpHpS
−1
p

= Hp

(

m+ ωp + σ1(m− ωp)

2
√
mωp

)2

= σ3ωp. (90)

The Hamiltonian obviously possesses the right non-relativistic limit.

The momentum-dependence of the basis transformation, Sp, can easily be understood in the

following manner. The change of the momentum p induces a change of ωp and the Klein-Gordon

spinor χ±(x) = (1± p0

m )e−ipx, requiring a modified basis transformation S.

The transformation Sp can be extended from a given momentum sector to the whole Hilbert

space,

〈p|Saa′ |p′〉 = (2π)3δ(p − p′)Spaa′ ,

〈x|Saa′ |x′〉 =

∫

pp′

〈x|p〉〈p|Saa′ |p′〉〈p′|x′〉 =
∫

p

Spaa′e
ip(x−x′), (91)

taking the general solution of the Klein-Gordon equation, (62), into

χFV (xFV ) = SχKG(xKG) =

∫

p

[ape
−ipxFV w+ + b∗pe

ipxFV w−] =





χ+(xFV )

χ−(xFV )



 (92)

in the decoupled, Feshbach-Villars basis where χ+(xFV ) and χ−(xFV ) stand for the particle and

anti-particle wave function.

It is a point of central importance that a momentum-dependent mixing of the Klein-Gordon

spinor components, described by the matrix S, obtained by extending Sp to all momentum sub-

space, changes the definition of the coordinate operator, xKG → xFV , indicated explicitely in (92).

In fact, the representation x̂KG = i∇pKG
of the coordinate operator yields

x̂FV = Sx̂KGS̄ = Si∇pS̄ (93)

and the application of the identity, [i∇p, fp] = i∇pfp, gives

x̂FV = i(∇p + cpσ1) = x̂KG + icpσ1, (94)
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with cp = −∇pωp/2ωp. The first term on the right hand side is the usual non-relativistic expression

and the second, “connection“ term results from the p-dependence of the eigenvectors up, vp and

mixes the positive and the negative frequency components. This construction is formally similar

to an Abelian gauge field, introduced in momentum rather than coordinate space. The important

lesson is that the coordinate operator of the original, Klein-Gordon representation mixes the (free)

particle and anti-article states, opening up the possibility of creation and annihilation of particle-

anti particle pairs by the electromagnetic field. This is not an entirely unexpected effect since a

measue of the coordinate is an attempt to localise the particle beyond its Compton wavelength.

This problem, namely that the physical role of the variables of χFV (x) and χFV (x) are different

in eq. (92), is hidden by the notation which assigns the same symbol to the variable of both

functions. In fact, the components x denotes a spectrum element of the coordinate operator

and the spectrum of x̂KG and x̂V S are identical. To make the notation clearer we introduce the

coordinate and momentum eigenstates,

x̂KG|x, a〉 = x|x, a〉, p̂KG|p, a〉 = p|p, a〉, x̂FV |ẋ, ȧ〉 = ẋ|ẋ, ȧ〉, p̂FV |ṗ, ȧ〉 = ṗ|ṗ, ȧ〉, (95)

where the quantum numbers with a dot belong to the decoupled basis. The overlap between the

coordinate and the momentum bases is given by the usual expression,

〈x, a|p, b〉 = aδabe
ixp, 〈ẋ, ȧ|ṗ, ḃ〉 = ȧδȧḃe

iẋṗ, (96)

however transfer between the coupled and the decoupled bases is given by

〈ṗ, ȧ|p, a〉 = (2π)3δ(ṗ − p)Spȧa, 〈p, a|ṗ, ȧ〉 = (2π)3δ(ṗ − p)S̄paȧ. (97)

The general solution (92) reads as

χ(ẋ) =

∫

ṗ

[aṗw+e
−iṗẋ + b∗ṗw−e

iṗẋ]. (98)

The limitation on the localizability of a particle or anti-particle is an inextricable difficulty in

recovering the usual formalism in the quantum mechanics for relativistic particles and forces us to

make a radical step, to change the position operator which up to now has been taken over naively

from the non-relativistic case. We shall check that the spread of the wave-packet can consistently

be interpreted in the decoupled basis.

The completeness relations,

11 =
∑

a

∫

d3x|x, a〉a〈x, a| =
∑

a

∫

p

|p, a〉a〈p, a| =
∑

ȧ

∫

ṗ

|ṗ, ȧ〉ȧ〈ṗ, ȧ|, (99)
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allows us to write the decoupled coordinate eigenstate in the original basis,

|ẋ, ȧ〉 =
∑

a

∫

pṗ

d3x|x, a〉a〈x, a|p, a〉a〈p, a|ṗ, ȧ〉ȧ〈ṗ, ȧ|ẋ, ȧ〉

=
∑

a

∫

p

d3x|x, a〉S̄paȧȧei(x−ẋ)p, (100)

leading to the overlap

〈ẋ, ȧ|x, a〉 =
∫

p

ȧSpȧae
i(ẋ−x)p, 〈x, a|ẋ, ȧ〉 =

∫

p

S̄paȧȧe
i(x−ẋ)p, (101)

in the coordinate basis.

4. The birth of relativistic quantum field theory

The two problems, mentioned at the end of section (IIA), can be solved by building up another

representation of the physical states and observables than in Schrödinger’s quantum mechanics

and its relativistic extension, discussed so far. The starting point is the observation that the

spectrum of a system of particles with a given momentum, ṗ, is equidistant, En = nωṗ, n denoting

the number of particles. The only one dimensional quantum system with such a spectrum is the

harmonic oscillator with frequency ωṗ. Thus one defines a harmonic oscillator for the particles

and anti-particles within each momentum sector by introducing the formal variables Xṗ,ȧ, Pṗ,ȧ

with the usual commutation relation, [Xṗ,ȧ, Pṗ′,ȧ′ ] = iδȧ,ȧ′δ(ṗ− ṗ′) and Hamiltonian is additive for

noninteracting particles,

H =
∑

ȧ

∫

ṗ

(

1

2
P 2
ṗ,ȧ +

ω2
ṗ

2
X2

ṗ,ȧ

)

. (102)

One can imagine such a system of infinitely many harmonic oscillator as a series of boxes,

assigned to each possible value of the three-momentum. The boxes may contain balls, representing

the particles, the box corresponding to ṗ including nṗ balls. We actually need two boxes for each

three-momentum, one for the particles and the other for the anti-particles. The multi-particle

states are given by the help of such a double occupation number, |nṗ, n̄ṗ〉 where nṗ and n̄ṗ denotes

the number of particles and anti-particles, respectively, in the bos of momentum ṗ.

The quantum field, an x-dependent operator, is obtained from (98) where we dispose the spinors

w± by using the operators

aṗ =
ωṗXṗ,+ + iPṗ,+

√

2ωṗ

, bṗ =
ωṗXṗ,− + iPṗ,−

√

2ωṗ

. (103)
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The resulting expression,

φ(ẋ) =

∫

ṗ

[aṗe
−iṗẋ + b†ṗe

iṗẋ], (104)

contains operator valued Fourier coefficients. One could have use any other combination ofXṗ,ȧ and

Pṗ,ȧ in constructing a quantum field but it is known that the creation and annihilation operators

offers the simplest and clearest equations for quantum harmonic oscillators. The quantum field

(104) removes a particle and creates and anti-particle and the spinors w± are left out because the

operators ap and bp act on Hilbert spaces associated with w+ and w−, respectively.

Note that the field (104) looks superficially than as a wave function, the general solution of the

free equation of motion except that it is operator valued function of the space-time coordinates.

This is the origin of the name ”second quantization“: The first quantization, the introduction

of the wave function in Schrödinger’s formalism is followed by the replacement of the c-number

valued wave functin by operators, a second quantization procedure. The key differences between

the two quantization procedure, the different origin of the Hilbert space, the scalar product and the

observables, in particular the Hamiltonian, make it possible to avoid the problems, mentioned at

the end of section (IIA). The Hamiltonian (102) has obviously positive spectrum and the problem

of the negative anti-particle energy is cured. the price is to rely on the energy, (102), defined by

the harmonic oscillators rather than the time dependence in the quantum field. The probability

distribution is positive definite for harmonic oscillators hence the problem with the non-definite

nature of the Noether current is eliminated, too. Both results originate algebraically from the

non-commutativity of the Fourier coefficients, (103),

[aṗ, a
†
ṗ′ ] = [bṗ, b

†
ṗ′ ] = (2π)3δ(ṗ − ṗ′). (105)

The representation of the multi-particle states with the occupation number, |nṗ, n̄ṗ〉, solves yet
another, technical problem. Namely, the multi-particle states must be symmetrized with respect to

the exchange of particles. This forces us to use multi-particle states where the symmetry is achieved

by summing over the permutations of the variables of the wave function. Such a sum contains n!

contribution for an n-particle state and renders the use of such a state extremely difficult beyond

few particles. The particles with the same momentum are represented by the different quanta of

excitations of a given harmonic oscillator. The n excitations enter in an indistinguishable manner

in the state a†n|0〉 and the symmetrization is automatically achieved.

The former similarity of (98) and (104) suggest the interpretation of the quantum field as

some kind of generalization of the one-particle wave function. The generalization involves the
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replacement of c-numbers, the Fourier amplitudes, aṗ and b∗ṗ, by operators, reminiscent of the

quantization of a classical system. Since this manipulation is performed on a wave function,

resulting from a quantization procedure, the appearance of the quantum field was historically

associated with second quantization, by changing the continuous spectrum of a harmonic oscillator

to discrete one. This is a misleading analogy because it holds for free particles only, the reason

being that lack of wave function, associated to a part of an interacting system. In fact, the system-

environment entanglement generates mixed system states and requires the use of density matrix

rather than state vectors. The picture of second quantization, taken more seriously, requires the

use of bi-local fields, corresponding to one-particle density matrices.

The difference between the first and the second quantized formalism can better be seen by

considering the wave function as a map of the space-time, called external space, into Cn where

n is the number of the components of the wave functions (n = 2 for χ), called internal space.

The name can be justified by regarding the space-time and the value of the wave function as

an external or internal structure from the point of view of an elementary particle. The original

quantum mechanics is based on quantization rules in the external space, e.g. the replacement of the

classical dynamical variables, the functions of the external space coordinates and their canonical

pairs, by operators. The second quantization keeps the external variable as (quantum) numbers

and applies the quantization rules within the internal space and replaces the value of the wave

function and its canonical pair with operators. The Hilbert space of physical states and the scalar

product are constructed in a different manner than in the first quantized theory.

The by now standard notations in quantum field theory is simplified and the dots are left out

from the equations, written in the decoupled basis. This step contains the danger of confusion

and one always has to remember that all equations of relativistic quantum field theory are given

in the decoupled basis where the coordinate operator is different than that in the non-relativistic

formalism. This is all the more subtle point because a spinless particle is described by the scalar,

Klein-Gordon field, φ(x), without referring to the first order formalism however the separation of

the particle and the anti-particle modes, assumed tacitly by using different harmonic oscillators

for them, relies on the decoupled basis.

The development of these ideas and the systematical build up of relativistic quantum field

theories go beyond this lecture and we shall restrict our attention to some remarks about it and

continue with the presentation of the first quantized, relativistic quantum mechanics with fixed

number of degrees of freedom.
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5. Spread of the wave packet

The problems with localization can the clearest be seen by considering the spread of a wave-

packet. A wave function of a wave-packet of a non-relativistic particle is of the form,

ψ(t,x) =

∫

p

ψpe
−itEp+ixp, (106)

where Ep = p2/2m. The expectation value of the coordinate is

〈x〉 =

∫

pq

d3xxψ∗pψqe
−it(Eq−Ep)+ix(q−p)

=

∫

pq

d3xψ∗pψqe
it(Ep−Eq)(−i∇q)e

ix(q−p)

=

∫

p

ψ∗p(i∇p + t∇Ep)ψp

= 〈ψ|x|ψ〉0 + t〈ψ|vgr|ψ〉0, (107)

where a partial integration was carried out in arriving at the third equation and the subscript 0

indicates that the matrix elements are calculated between the states which are taken at t = 0. One

finds a free particle trajectory on the level of the expectation value, starting at the expectation

value of the coordinate operator, x̂ = i∇p, at the initial time, in agreement with Ehrenfest’s

theorem. The velocity, expectation value of the group velocity, vgr(p) = ∇Ep = p/m, is extracted

by the coordinate operator acting on the time dependence of the plane waves.

To follow the spread of the wave packet we need the expectation value of the square of the

coordinate,

〈x2〉 = −
∫

pq

d3xψ∗pψqe
it(Ep−Eq)∇

2
qe
−ix(p−q)

= −
∫

p

[

ψ∗pe
itEp∇

2
(

ψpe
−itEp

)]

= −
∫

p

ψ∗p[∇
2 − 2it∇Ep∇− it∇2Ep − t2(∇Ep)

2]ψp

= 〈ψ|(x + tvgr)
2|ψ〉0. (108)

The spread is the second moment of the coordinate, σ2x(t) = 〈x2〉 − 〈x〉2, is given by

σ2x(t) = 〈ψ|(x+ tvgr)
2|ψ〉0 − (〈ψ|x|ψ〉0 + t〈ψ|vgr|ψ〉0)2

= σ2x(0) + t(〈ψ|xvgr + vgrx|ψ〉0 − 2〈ψ|x|ψ〉0〈ψ|vgr|ψ〉0) + t2σ2v(0) (109)

where

σ2v(0) = 〈ψ|v2
gr|ψ〉0 − 〈ψ|vgr|ψ〉20 (110)
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denotes the spread of the velocity. Note that the particle can be localized with arbitrary precision,

ie. σ2x(0) can be arbitrarily small and the speed of the spreading, ∂tσ
2
x(t), can be arbitrarily large

because vgr is an unbounded operator.

We turn now to the relativistic case where one expects that velocity of the motion and the

speed will be limited and the component of the coordinate operator which mixes particles and

anti-particles generates qualitatively new contributions compared to the non-relativistic motion.

We carry out the calculation first in the decoupled basis which is formally more similar to the

non-relativistic case. The average of the coordinate of the decoupled basis,

〈χ|xFV |χ〉 = i

∫

ṗq̇

d3ẋ[a∗ṗw̄+e
itωṗ−i ˙̇xṗ + bṗw̄−e

−itωṗ+i ˙̇xṗ]

[−aq̇w+e
−itωq̇∇q̇e

iẋq̇ + b∗q̇w−e
itωṗ∇q̇e

−iẋq̇]

=

∫

q̇

[a∗q̇(i∇+ t∇ωq̇)aq̇ + bq̇(i∇− t∇ωq̇)b
∗
q̇]

=

∫

q̇

[a∗q̇(i∇+ t∇ωq̇)aq̇ − b∗q̇(i∇+ t∇ωq̇)bq̇]

= 〈a|xFV + tvgr|a〉0 − 〈b|xFV + tvgr|b〉0, (111)

and its square,

〈χ|x2
FV |χ〉 = −

∫

ṗq̇

d3ẋ[a∗ṗw̄+e
itωṗ−iẋṗ + bṗw̄−e

−itωṗ+iẋṗ][w+∇
2
q̇e

iq̇ẋaq̇e
−itωq̇ + w−∇

2
q̇ |e−iq̇ẋb∗q̇eitωq̇ ]

= −
∫

q̇

[a∗q̇ [∇
2 − 2it∇ωq̇∇− it∇2ωq̇ − t2(∇ωṗ)

2]aq̇

−bq̇[∇2 + 2it∇ωṗ∇+ it∇2ωq̇ − t2(∇ωq̇)
2]b∗q̇]

= 〈a|(xFV + tvgr)
2|a〉0 − 〈b|(xFV + tvgr)

2|b〉0, (112)

reflect the negative norm of the anti-particle modes. The spread of the relativistic state is

σ2ẋ(t) = 〈a|(xFV + tvgr)
2|a〉0 − 〈b|(xFV + tvgr)

2|b〉0 − (〈a|xFV + tvgr|a〉0 − 〈b|xFV + tvgr|b〉0)2

= σ2ẋ(0) + ta+ t2b (113)

with

a = (〈a|xFV vgr + vgrxFV |a〉0 − 2〈a|xFV |a〉0〈a|vgr|a〉0
−〈b|xFV vgr + vgrxFV |b〉0 − 2〈b|xFV |b〉0〈b|vgr|b〉0
+2〈a|xFV |a〉0〈b|vgr|b〉0 + 2〈a|vgr|a〉0〈b|xFV |b〉0,

b = 〈a|v2
gr|a〉0 − 〈a|vgr|a〉20 − 〈b|v2

gr|b〉0 − 〈b|vgr|b〉20 + 2〈a|vgr|a〉0〈b|vgr|b〉0. (114)

The wave-packet can be arbitrarily narrow, the particles and the anti-particles are treated sep-

arately and remain decoupled in the absence of an external field or interactions and the group
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velocity, based on the relativistic dispersion relation,

vgr = c∇p

√

m2c2 + p2 = c
p

√

m2c2 + p2
, (115)

bounded by c.

The expectation value of the coordinate operator in the Klein-Gordon basis, x̂KG = x̂FV−icpσ1,

〈χ|xKG|χ〉 = i

∫

pq

d3ẋ[a∗pw̄+e
itωp−ixFV p + bpw̄−e

−itωp+ixFV p]

×[aqe−itωq (−∇q − cqσ1)w+e
iqxFV + b∗qe

itωq (∇q − cqσ1)w−e
−iqxFV ], (116)

can be written as

〈χ|xKG|χ〉 = 〈χ|xFV |χ〉+ i

∫

q

cq[b−qaqe
−2itωq − a∗−qb∗qe2itωq ]

= 〈a|x+ tvgr|a〉0 − 〈b|x+ tvgr|b〉0 − 2Im(e−2itωp〈b∗|cp|a〉0). (117)

When only positive or negative frequency modes are present then we recover eq. (111) but the

interference of the particle and anti-particle modes yields Zitterbewegung, a fast oscillating term.

The expectation value of the coordinate square turns out to be

〈χ|x2
FV←KG|χ〉 = −

∫

pq

[a∗pw̄+e
itωp−ixp + bpw̄−e

−itωp+ixp]

×{aqe−itωq (∇2
q + 2cq∇qσ1 + c2q)w+e

iqx + b∗qe
itωq (∇2

q + 2cq∇qσ1 + c2q)w−e
−iqx}

= −
∫

pq

[a∗pw̄+e
itωp−ixp + bpw̄−e

−itωp+ixp]

×{[(∇2
q − 2cq∇qσ1 + c2q)aqe

−itωq ]w+e
iqx + [(∇2

q − 2cq∇qσ1 + c2q)b
∗
qe

itωq ]w−e
−iqx}

= −
∫

q

{a∗q[∇2 − 2it∇ωq∇− it∇2ωq − t2(∇ωq)
2 + c2q]aq

−bq[∇2 + 2it∇ωq∇+ it∇2ωq − t2(∇ωq)
2 + c2q ]b

∗
q

−2e2itωqa∗−qcq(∇+ it∇ωq)b
∗
q + e−2itωqb−qcq(∇− it∇ωq)aq}

= 〈a|(x+ tvgr)
2|a〉0 − 〈b|(x− tvgr)2|b〉0 + 2Im(e−2itωp〈b∗|cp(x+ tvgr)|a〉0),(118)

where the Zitterbewegung term prevents us to decrease the width of the wave packet without limit.

The problem, related to the interference of the particle and anti-particle states in the time

evolution of the expectation value of the coordinate is nicely reflected in the expectation value of

the velocity operator, defined in the Heisenberg representation,

∂tx = −i[x,H], (119)

which is

∂tx = −i
[

x,
p2

2m
(σ3 + iσ2) +mσ3

]
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=
p

m
(σ3 + iσ2) (120)

in the Klein-Gordon basis. Its average in the state (62),

〈χ|∂tx̂KG|χ〉 =

∫

pq

d3x[a∗pūpe
iωpt−ipx + bpv̄pe

−iωpt+ipx]

× q

m
(σ3 + iσ2)[aquqe

−iωqt+iqx + b∗qvqe
iωqt−iqx]

=

∫

p

p

m
[a∗papūp(σ3 + iσ2)up + bpb

∗
pv̄p(σ3 + iσ2)vp

−e2iωpta∗−pb
∗
pūp(σ3 + iσ2)vp − e−2iωptb−papv̄p(σ3 + iσ2)up]

=

∫

p

p

ωp
[a∗pap − bpb∗p − e2iωpta∗−pb

∗
p − e−2iωptb−pap], (121)

shows clearly fast oscillation owing to the particle and anti-particle interference.

The advantage of the decoupled basis is the absence of the non-physical Zitterbewegung con-

tributions. However one should be aware that the gauge transformations which are strictly local

must be redefined when moving from the non-relativsitic to the relativistic domain.

C. External field

When the external electromagnetic field is is assumed then the Klein-Gordon spinor (44) is

given by





χ1

χ2



 =
1

2





φ+ i
mD0φ

φ− i
mD0φ



 (122)

and the Klein-Gordon equation, (32), can be written as

iD0χ = Hχ (123)

cf. (47), where

H = −D2

2m
(σ3 + iσ2) +mσ3. (124)

and the covariant derivatives D0 = ∂0+ieϕ, D = ∇−ieA are given in terms of the vector potential

Aµ = (ϕ,A). The equation of motion is therefore

i∂tχ =

[

−∇
2

2m
(σ3 + iσ2) +mσ3 −

(

ie

m
A∇+

ie

2m
∇A

)

(σ3 + iσ2) + eφ

]

χ. (125)

The spatial components of the vector potential mix the particle and anti-particle modes and the

states which decouple, the particle and the anti-particle states in the presence of the vector potential
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FIG. 3: A step function potential, U(z), shown by fat solid line. The particle and anti-particle continuum

is indicated by dotted lines. The particle and anti-particle states are mixed at the energy level, denoted by

a dashed line.

can not be found in a simple, closed form. When the wave function is represented by a Fourier

integral as in eq. (62) then the external field pieces, the last two terms in the right hand side,

mix to the plane wave with momentum p with momentum q 6= p with an amplitude which is

proportional to Aµ
±ωp−q ,p−q. This not only reshuffles the Fourier modes as in the non-relativistic

case but mixes the particle and the anti-particle modes and renders the formalism inconsistent,

discussed in the following examples.

1. One dimensional potential barrier

The simplest, non-trivial example is the one dimensional stationary state of a particle in the

z-direction in the presence of step potential, U(z) = U0Θ(z), U0 > 0. The wave function,

ψ(t, z) = χ(z)e−itE , (126)

satisfies the Klein-Gordon equation

[(E − U(z))2 +∇2
z −m2]χ(z) = 0. (127)

The solution is of the form χ(z) = Θ(−z)[χi(z) + χr(z)] + Θ(z)χt(z) where

χi(z) = eipz, χr(z) = be−ipz, χt(z) = deip
′z, (128)



33

with p =
√
E2 −m2 and p′ =

√

(E − U0)2 −m2. The matching conditions are the same as in the

non-relativistic case, namely the continuity of the wave function,

1 + b = d (129)

and its first derivative,

1− b = dξ (130)

where ξ = p′

p . Therefore the coefficients b and d are

b =
1− ξ
1 + ξ

, d =
2

1 + ξ
. (131)

Let us consider strong step potential, U0 > 2m, and the energy level m < E < U0−m, indicated

by dashed line in Fig. 3, where there are extended states on both sides of the singularity. The

current

jz =
1

2im
(χ∗∇zχ−∇zχ

∗χ), (132)

yields jzi (0) = p, jzr (0) = −|b|2p, jzt (0) = |d|2p′ and one finds positive reflection and transmission

coefficients,

R = |b|2 = (1− ξ)2
(1 + ξ)2

, T = |d|2ξ = 4ξ

(1 + ξ)2
(133)

and the fulfillment of current conservation, jzi (0) + jzr (0) = jzt (0), assures R+ T = 1. Since ξ > 0

we have 0 ≤ R,T ≤ 1. The mixing of the particle-anti particle modes in the state is reflected by

the sign of the charge density (35), j0(z) = E/m > 0 for z < 0 and j0(z) = (E − U)/m < 0 for

z > 0.

2. Spherical potential well

As another example we consider the Oppenheimer-Schiff-Snyder effect, displayed by a particle

moving in a spherical potential, U(r). The Klein-Gordon equation assumes the form

[(∂0 + iU(r))2 −∆+m2]φ(x) = 0 (134)

whose stationary states will be sought in the parametrization

φlm(x) = ηℓ(r)Y
ℓ
m(θ, φ)e−itE . (135)
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FIG. 4: A spherical potential well, U(r), using the convention of Fig. 3.

The radial wave function of a given ℓ-shell satisfies the equation
[

(E − U(r))2 +
1

r2
∂rr

2∂r −
l(l + 1)

r2
−m2

]

ηℓ(r) = 0. (136)

It is advantageous to separate the radial integral measure by writing η(r) = u(r)/r and

[

∂2r −
l(l + 1)

r2
+ (E − U(r))2 −m2

]

uℓ(r) = 0. (137)

Let us consider an attractive square well potential, U(r) = −U0Θ(R − r), and look for the

stationary states with energy −m < E < m and E > m− U0, allowing the mixing of the particle

and anti-particle modes, cf. Fig. 4. We consider the s-wave sector, ℓ = 0, only for the sake of

simplicity where the radial wave function obeys the equation

u′′0 = [m2 − (E − U(r))2]u0. (138)

The solution for r < R is

u0 = sinκr (139)

with κ =
√

(E + U0)2 −m2, the component cos κr being suppressed by the regularity of the wave

function at the origin, uℓ(0) = 0. In the exterior region, r > R, we have

u0 = ae−kr (140)

with k =
√
m2 − E2. The matching conditions,

sinκR = ae−kR, κ cos κR = −kae−kR (141)
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FIG. 5: A spherical potential well, U(r), using the convention of Fig. 3.

yield the transcendental equation

tanRκ = −κ
k
, (142)

whose more detailed form,

tanR
√

(E + U0)2 −m2 = −
√

(E + U0)2 −m2

m2 − E2
, (143)

can be solved graphically. One can easily see an interesting qualitative feature, namely there are

more and more solutions as U0 →∞, shown qualitatively in Fig. 5. As U0 is increases the extended

particle and anti-particle modes, influenced less by the potential, decrease their energy, as expected.

But some bound states are formed withing the forbidden gap, coming both from the particle and

the anti-particle continuum. Note that there are values of U0 which produce two bound states,

corresponding to the same continuous curve in Fig. 5. This is the first surprise, namely the same

potential can bind both particles and anti-particles. The other surprise appear as U0 is increase

until the two bound states coincide where the curve has vertical slope. The system lost a particle

and an anti-particle state at this point. The energy level, given by the matching condition, (143),

becomes complex at this point indicating that this is an unstable, virtual particle-anti particle pair

which can penetrate up a finite distance into the forbidden, r > R region.

III. FERMIONS

A. Heuristic derivation of Dirac equation

By following Dirac’s intuitive derivation we seek an equation of motion which is of first order in

the space-time derivatives by taking formally the square root of the Klein-Gordon equation (31).
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The result, written as

i∂0ψ = (−iα∂ + βm)ψ = Hψ, (144)

where the Hamiltonian,

H = αp+ βm, (145)

contains the formal symbols, α and β. The square of this equation should reproduce the Klein-

Gordon equation,

−∂20ψ = (−iα · ∂ + βm)2ψ

=

[

−1

2
{αj , αk}∂j∂k + β2m2 −mi{αj , β}∂j

]

ψ, (146)

where the anti-commutator {A,B} = AB +BA has been introduced and the identity

αjαk∂j∂k =
1

2
({αj , αk}+ [αj, αk])

1

2
({∂j , ∂k}+ [∂j , ∂k])

=
1

4
({αj , αk}+ [αj, αk]){∂j , ∂k}

=
1

2
{αj , αk}∂j∂k (147)

was used in the last equation. We arrive at the Klein-Gordon equation by requiring

{αj , αk} = 2δj,k, β2 = 11, {α, β} = 0. (148)

A covariant notation is established by introducing γµ = (β, βα) and writing the Dirac equation as

(iγµ∂µ −m)ψ(x) = (iγ0∂0 + iγ∇−m)ψ(x) = (i∂/ −m)ψ(x) = 0 (149)

where the constraints (148) are

{γµ, γν} = 2gµν = 2

















1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

















. (150)

Covariance with respect to Lorentz transformation requires that the objects γµ transform as con-

travariant four-vectors.

The “square” of Dirac equation, calculated before can now be written in a simple, covariant

form,

(i∂/−m)(i∂/ +m) = −∂2 −m2. (151)
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One can show that the simplest realization of the objects α and β is in terms of 4× 4 matrices,

β = γ0 =





11 0

0 −11



 , α =





0 σ

σ 0



 , γ =





0 σ

−σ 0



 , (152)

and any other set of 4 × 4, verifying the same conditions, (148), can be obtained by a unitary

transformation.

The hermitian conjugate of the wave function satisfies the equation of motion

i∂µψ
†(x)γµ† + ψ(x)m = 0. (153)

Since some of the the Dirac matrices, γµ, are not Hermitian, γ0† = γ0, γj† = −γj, this equation is

not covariant. But it is easy to find a linear combination of the components of ψ† which satisfies

covariant equation of motion. The starting point is the relation

γ0γµγ0 = γµ† (154)

which suggests that the Dirac conjugate,

ψ̄ = ψ†γ0, (155)

will satisfy covariant equation. In fact, inserting γµ† of eq. (154) into eq. (153) we find

i∂µψ̄γ
µ + ψ̄m = 0. (156)

But there is an important difference between the use of the Klein-Gordon and the Dirac conjugation.

The former is used in the definition of the scalar product to render the Hamiltonian (48) Hermitian.

The Hamiltonian (145) is Hermitian from the very beginning when the matrix α, given by eq. (152)

is used together with the usual Hermitian conjugate in the scalar product,

〈ψ|ψ′〉 =
∫

d3xψ†(x)ψ′(x). (157)

The Dirac conjugate, ψ̄, appears only as an auxiliary variable to make the equation of motion for

ψ† covariant.

The Dirac-equation can be derived as an Euler-Lagrange equation from the Lagrangian

L =
i

2
[ψ̄γµ(∂µψ)− (∂µψ̄)γ

µψ]−mψ̄ψ. (158)

The Noether current of the U(1) symmetry, ψ(x)→ eiθψ(x), ψ̄(x)→ e−iθψ̄(x) is

jµ = ψ̄γµψ. (159)
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An important difference compared to the Klein-Gordon equation driven scalar particle is that the

conserved current of an equation of motion which is a first order differential equation contains no

derivative. As a result j0 = ψ†ψ is positive definite and no states with negative norm arise.

The derivation of the Dirac equation, presented above is simple and heuristic but leaves the

physical interpretation of the Dirac space, the four dimensional linear space of the Dirac spinor,

ψa, unclear. To have better understanding of the role played by these components we re-derive

eq. (149) as the simplest equation which governs an elementary particle, equipped with relativistic

symmetries.

B. Spinors

The four dimensional Dirac-space, emerging from the heuristic argument, has physically inter-

pretable structure. To discover it we need a rather lengthy detour into the representation of the

space-time symmetries, realized by spin half particles.

1. Non-relativistic spinors

Elementary systems: Elementary quantum systems are defined with respect to their sym-

metry properties. Suppose that we know that our system under consideration is lacking of any

internal structure and displays a symmetry with respect to transformations, belonging to a group,

G. Therefore there is a linear, unitary or anti-unitary operator, U(g), corresponding to each sym-

metry transformation which acts in the linear space of states and this representation of the group

preserves the algebraic structure of group multiplication, U(gg′) = U(g)U(g′).

What can be the consequence in this algebraic structure that our system is elementary? It is

natural to expect that any state can be obtained from a fixed state, |ψ0〉, by the application of

symmetry transformations. In fact, suppose that this is not true and there is a state |ψ′〉 which is

not in the linear space generated by the set of vectors U(g)|ψ0〉, g ∈ G. Then we can safely ignore

the state |ψ′〉 in the discussion of our elementary system because it plays no role in realizing the

symmetry and its inaccessibility by the application of symmetry transformations should come from

some internal structure. The possibility of generating all states of the system from an arbitrary

but fixed state is called irreducibility. The states of an elementary system with a symmetry group

G are therefore vectors of irreducible representation of G.

The construction of irreducible representation is quite different for discrete and continuous
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groups. This is the reason that one carefully separates these cases and considers first the con-

nected components of symmetry groups only. For instance, spatial rotations in n-dimensions,

x → Rx, are realized by n × n orthogonal matrices, RtrR = 11 and the determinant of this equa-

tion, (detR)2 = 1, assures detR = ±1 because the determinant of a real matrix is real. The

determinant is a continuous function of the matrix elements, hence the group O(n) has two discon-

nected components, O±(n) = {R|RtrR = 11, detR = ±1}. The subset O+(n) = SO(n) contains

the identity and is a subgroup. It is easy to establish a bijective relation between O+(n) and

O−(n), it is given by the inversion of a coordinate, P1 : (x1, x2, . . . , xn) → (−x1, x2, . . . , xn) or

spatial inversion, P : x→ −x. In fact, we have O−(n) = P1O+(n) and O−(n) = P1O+(n) in even

or odd dimensions, respectively. One works out the irreducible representation for SO(n) first and

extends them over O(n) in the second step.

Irreps of SO(3): It is known that the irreducible representations of the rotation group G =

SO(3) are given by the rotational multiplets,

HJ =

{

J
∑

m=−J

cm|J,m〉
}

, (160)

of dimension 2J + 1 where J is integer, J = 0, 1, . . . , or half-integer, J = 1
2 ,

3
2 , . . .. Thus the

states of elementary systems with a rotational degree of freedom can be represented by the linear

superposition of basis vectors {|J,m〉} for some J . Any representation can be written as the direct

sum of irreducible representations, justifying our definition of elementary system by means of its

symmetry properties.

Tensors and spinors are the wave functions belonging to states with integer and half-integer

angular momentum J , respectively. The difference between them is their response to rotations by

2π. Let us denote the matrix performing a rotation by angle α around the axis n by Rn(α). We

have

U(Rn(α)) = e−iαnL (161)

where L is the angular momentum operator and the Wigner matrix elements,

D(J)
m,m′(Rn(α)) = 〈J,m|e−iαnL|J,m′〉, (162)

satisfy the equation

D(J)
m,m′(Rn(2π)) = δm,m′e−2πim =











+1 J = integer,

−1 J = half integer.

(163)
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The simplest non-trivial, tensor and vector representations belong to J = 1
2 and 1, respectively.

H1 is span by the three-vector x and vectors ψ = (ψ1, ψ2) of the two dimensional H1/2 are called

rotational spinors.

Fundamental representation of SU(2): We first show that the representations of the group

SU(2) can be considered as the representations of the rotation group, SO(3). This circumstance

provides us a simple way to generalize the non-relativistic spinors, defined by the rotation group,

for relativistic spinors, corresponding to the Lorentz group. Let us consider a linear combination

of Pauli matrices and the identity,

A(a,a) = a11 + iaσ =





a+ ia3 ia1 + a2

ia1 − a2 a− ia3



 , (164)

where a and a are real numbers, constrained by the condition

detA(a,a) = a2 + a2 = 1. (165)

Such a matrix structure is preserved under multiplication. In fact, identity

σaσb = 11δab + iǫabcσc (166)

can be used to write the product of two such matrices as

A(a,a)A(b, b) = A(ab− ab, ab+ ba− a× b). (167)

Furthermore, this result shows that A−1(a,a) = A(a,−a) = A†(a,a) hence these matrices form

the group SU(2). Another parametrization of the SU(2) matrices, better known in quantum

mechanics, is

An(α) = e−
i
2
αnσ = 11 cos

α

2
− inσ sin

α

2
= A

(

cos
α

2
− n sin

α

2

)

, (168)

with n2 = 1.

The non-relativistic SU(2) spinor is a two component quantity, ψa, a = 1, 2, transforming

according to the fundamental representation of the group SU(2), ψ → Aψ, and can be interpreted

as a wave function. Having two components, the state, represented by this wave function should

have spin s = 1/2. The complex conjugate of this transformation rule, η → A∗η, yields another two

dimensional representation. But this is unitary equivalent with the fundamental representation.

Two representations, U(g) and U ′(g), are unitary equivalent if there is g-independent unitary

operator, V , which brings it into the other, U ′(g) = V †U(g)V . In fact, the equation

(iσ)∗ = σ2iσσ2 = σ†2iσσ2 (169)
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can be used to establish A∗ = σ2Aσ2. This equation together with eq. (166) define the Pauli

matrices.

Adjoint, vector representation of SU(2): The simplest higher dimensional, so called adjoint

representation consists of two index spinors, Xab, a, b = 1, 2, considered as a matrix, transforming

as

X → AXA†, (170)

indicating that the left and the right indices transform according to the fundamental representation

and its complex conjugate, respectively. This representation is 8 dimensional but note that if X

is Hermitian then this property is preserved. Thus it is advantageous to focus our attention to

Hermitian matrices which can be written as

X(xµ) = x011 + xσ =





x0 + x3 x1 − ix2

x1 + ix2 x0 − x3



 , (171)

with real coefficients xµ. Note that detX is preserved during this transformation. This matrix can

be considered as the spin wave function of two spin half particles where we use a basis which is

transformed by the unitary matrix σ2 for the particle of the right index. The rule 1
2 ⊗ 1

2 = 0⊕ 1 of

the addition of angular momentum suggests that we have a spin zero singlet and a spin one triplet

subspaces. It is clear that the former belongs to the component x0, being invariant under SU(2)

transformations.

Relation between SO(3) and SU(2): Now we show that the triplet multiplet is realized by

the components (x1, x2, x3) = x. The length of the vector x, being related to the determinant,

detX = −x2, is preserved by the SU(2) transformation, given by (170). We therefore have found

a linear, length preserving transformation of three-vectors for each SU(2) group elements. The

group SU(2) has the same dimension as SO(3) which makes it possible that the different SU(2)

transformations cover the group SO(3). To prove that this possibility is indeed realized it is

sufficient to consider infinitesimal SU(2) transformation using the parametrization (168),

An(α)X(0,x)A†n(α) ≈
(

11− iα
2
nσ
)

xσ
(

11 + i
α

2
nσ
)

≈ xσ − iα
2
[nσ,xσ]

= X(0,x + αn× x), (172)

which is indeed an infinitesimal rotation. The repeated application of this argument establishes

the result for finite α.
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(a)

(b)

A=−1

2π

π

A

−A

FIG. 6: The group space of SU(2) consists of a sphere or radius 2π in the space αn, the surface being

identified with −11. The group SO(3) is within the sphere of radius π. Two closed loops representing the

two homotopy classes of the group SO(3) are shown, starting and ending at the identity, located at the

origin. The loop (a) reaches Rn(π), jumps to Rn(−π). The loop (b) does not use the identity of the

diametrically opposite points. The (b) is homotopic with the trivial loop, resting at 11 and the (a) is an

element of the only non-trivial homotopy class.

Topology: We have just proven is that the transformation (170) realizes a mapping, SU(2)→
SO(3), A → R(A). The image is not the full O(3) group because the repetition of infinitesimal

rotations can cover the connected subgroup, SO(3) only.

Our mapping SU(2)→ SO(3) is a two-to-one since R(−A) = R(A). Though the group manifold

SU(2) is simply connected this mapping shows that the group SO(3) has multiply connected

topology: In fact, the diametrically opposite SO(3) rotations, Rn(π) and Rn(−π), are identical

because one is obtained from the other by rotation by 2π, a symmetry transformation of vectors.

Hence a closed loop in the SO(3) group manifold which starts at 11, passes to Rn(π), “jumps“ to

Rn(−π) and returns back to 11 can not be deformed in a continuous manner into a closed loop

passing by 11 and not using the relation Rn(π) = Rn(−π), cf. Fig. 6. On the contrary, any

closed loop can be deformed continuously to a single point in SU(2) which has the topology of a

three-sphere, cf. eq. (165). The spinors transforms as ψ → −ψ under rotation by 2π and they are

preserved by rotation α = 4π.
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2. Projective representations

The vectors |ψ〉 and eiα|ψ〉 represent the same physical state hence the representation,U(g), is

to be generalized to a projective representation,

U(gg′) = U(g)U(g′)eiα(g,g
′), (173)

where the function α(g, g′) is arbitrary, except that group multiplication should remain associative,

α(g3, g2g1) + α(g2, g1) = α(g3, g2) + α(g3g2, g1). The obvious question which arises at this point is

whether this phase can be eliminated by a ”gauge transformation“, U(g)→ U(g)eiβ(g). There are

two conditions to satisfy if we want to reduce a projective representation of a connected group to

a non-projective representation:

1. Local: One can eliminate the phase factor locally, in the vicinity of the identity if the group

has no central charge (a group has a central charge if the commutator of some generators con-

tain a term, proportional to the unit operator). It is worth to mention that the central charge

of a semi-simple group (a group is semi-simple if has no generators which commute with all

the other generators) can be eliminated by the appropriate redefinition of the generators.

2. Global: The phase factor can be eliminated globally, in the whole group, if in addition the

topology of the group is simply connected. In case of a multiply connected topology the

phase α(g, g′) gives a representation of the fundamental group (the group consisting of the

connected components of closed loops within the group).

Let us apply these theorems for the rotation group, SO(3), which is semi-simple but doubly

connected, its fundamental group π1(SO(3)) = Z2. The spin is pseudo-scalar and is left unchanged

by space inversion therefore U(P ) is a unitary, diagonal 2 × 2 matrix. Two inversions, executed

subsequently restores the original state therefore one expects U2(P ) = 11 ∈ Z2. But there are

projective representations with U2(P ) = −11 ∈ Z2, as well. In this case two inversions amounts

to a rotation by 2π, an invisible transformation in classical physics. We have therefore either

U(P ) = ±11 (U2(P ) = 11) or U(P ) = ±i11 (U2(P ) = −11).
Every rotation by 2π is represented by the same transformation, Rn(2π) = 11 in SO(3) and

An(2π) = −11 in SU(2). The family of rotations with 0 < α < 2π generate a topological non-

trivial closed loop in the group space. Therefore U(Rn(2π)) = 11eiθ, there the phase factor gives

a representation of the fundamental group, π1(SO(3)) = Z2. This restricts the three-dimensional

particles to being bosons (θ = 0) or fermions (θ = π). The fundamental group is two dimensional
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rotations is larger, π1(SO(2)) = Z, the additive group of integers, each homotopy class is charac-

terized by the winding number of the loops. As a result the phase θ is arbitrary in two dimensions,

the two dimensional edge states of the quantum Hall effects are anyons.

3. Relativistic spinors

Fundamental representation of SL(2c): It is not difficult to find spinors for the Lorentz

group along the line of though of the non-relativistic construction. One starts with SL(2, c) groups,

consisting of complex 2 × 2 matrices with unit determinant and its fundamental representation

realized by SL(2, c) spinors, as ψ → Aψ. The parametrization (164), subject of the constraint

(165) remains valid for SL(2, c) matrices except that a and a are complex numbers. Therefore

SL(2, c) is a six dimensional group. The generalization of the parametrization (168) is obtained

by letting α complex.

An important difference with respect to the non-relativistic, SU(2) spinors is that the fun-

damental representation and its complex conjugate are not unitary equivalent anymore because

(169) is insufficient to establish the unitary equivalence for complex α. We follow van der Waerden

conventions for SL(2, c) spinors and use the notation a = 1, 2 and ȧ = 1, 2 for the indices of the

fundamental and the complex conjugate spinor representation where the SL(2, c) transformation

rules are

ξa → A b
a ξb, ηȧ → A∗ḃȧ ψḃ, (174)

Furthermore, there are covariant and contravariant spinors because

gab =





0 1

−1 0



 = iσ2 = −gab (175)

plays the role of the metric tensor since the scalar product remains invariant under SL(2c) trans-

formation,

ξaχ
a = ξag

abχb = ξ1χ2 − ξ2χ1 → (ξaχb − ξbχa)A
a
1 A

b
2 = (ξ1χ2 − ξ1χ2) detA

b
a = ξaχ

a. (176)

The metric tensor is the same for the spinors and complex conjugate spinors.

Lorentz group and SL(2c): Let us now consider the adjoint representation of SL(2, c),

obeying the transformation rule of (170) where the matrix A is now belong to SL(2, c) and the

matrix (171) has the indices Xaḃ(xµ). Another version of this matrix is

Xaȧ = gabgȧḃX
bḃ = iσ2(x

011 + xσ)iσtr2 = x011− xσtr. (177)
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The preservation of detX(x) = x2 makes it plausible that the adjoint representation, (170), is a

Lorentz transformation of xµ. This is certainly the case for the subgroup SU(2) ⊂ SL(2, c) has we
have seen in the previous Chapter. The remaining, other three dimensions of SL(2, c) belong to

imaginary α of the parametrization (168),

An(iβ) = e
β
2
nσ = 11 cosh

β

2
+ nσ sinh

β

2
, (178)

and the transformation with infinitesimal β,

An(iβ)X(x0,x)A†n(iβ) ≈
(

11 +
β

2
nσ

)

(x011 + xσ)

(

11 +
β

2
nσ

)

≈ x011 + (x+ x0βn)σ +
β

2
{nσ,xσ}

= X(x0 + βnx,x+ x0βn), (179)

indeed represents a Lorentz boost with infinitesimal velocity v = cβn. It is easy to see that neither

time nor space inversion can be generated in this manner. Thereby we obtained a two-to-one

correspondence between SL(2, c) and the proper Lorentz group, L↑+ and the simplest, spin half

elementary objects are described by spinors ξa or ηȧ.

Topology: The topology of SU(2) = {An(α)} is S3, the Lorentz boosts manifold, {An(−iβ)},
is topologically equivalent with R3 hence the manifold SL(2, c) has the same topology than S3 ⊗
R3, i.e simply connected. The SL(2, c) matrices A and −A have identical effect in the adjoint

representation hence the topology of the proper Lorentz group is double connected, π1(L
↑
+) = Z2.

1. P : As far as P 2 is concerned we have the same possibilities as in the non-relativistic case,

P 2 = ±11. But the representation of P is rendered more involved than for non-relativistic

rotations because the Lorentz boost, Lv, contains the spatial components of a four-vector

which itself is changed by space inversion. The result, PL(v) = L(−v)P 6= L(v)P , implies

that space inversion can not be represented by a multiplication of the relativistic spinor com-

ponents with a common phase factor as in the non-relativistic case. Therefore the irreducible

representation of L↑+∪L↑− is constructed by means of the direct sum of two irreducible repre-

sentations of L↑+. The simplest possibility is to take two spin half representations, consisting

of the bi-spinors

ψ =





ξa

ηȧ



 , (180)

as a four dimensional reducible representation of the proper Lorentz group. One uses the

fundamental representation and its complex conjugate to be able to introduce later the matrix
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Xaȧ(pµ), representing the four-momentum in the equation of motion. Another advantage of

this choice, to be demonstrated in Section IIIB 4, is that the anti-particle of ξ (η) can be

represented by η (ξ).

The space inversion is represented by the transformation

Pξa = zP ηa, Pηa = zP ξ
a. (181)

on bi-spinors, where zP = ±1 (P 2 = 11) or ±i (P 2 = −11). The sign of zP drops out from

expectation values but the sign of P 2 leads to different transformation rules for complex

conjugate bi-spinors and influences the construction of real bi-spinors. But as long as we do

not want to use our scheme to describe neutral fermions we can ignore this sign.

2. T : The time inversion does not commute with Lorentz boosts in a manner similar to the

space inversion but we can represent it within the same spinor representation of the proper

Lorentz group because T is an anti-unitary operation which changes the sign of the spin. It

should not mix the particle with anti-particle thus we take

Tξa = zT gabξ
∗b, T ηa = zT g

abη∗b , (182)

the multiplication with the spinorial metric tensor being the only covariant way of flipping

the spin and zT = ±i to satisfy

T 2 = U(Rn(2π)) = −11. (183)

3. C: The charge conjugation exchanges particles and anti-particles and flips the spin, therefore

we use the representation

Cξa = zCg
abη∗a, Cηa = −zCgabξ∗b (184)

where zC = ±1 or ±i.

The convention, usually followed in a PTC-symmetric quantum field theory, is zP = −zT = −zC =

i.

4. Dirac equation

The ingredients of an equation of motion for a free particle are the bi-spinor ψ = (ξa, ηȧ) and

the energy-momentum four-vector paȧ = p011 + pσ. The only possibility to combine these element
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in a linear fashion is

paȧηȧ = mξa,

paȧξ
a = mηȧ, (185)

where m is a constant of mass dimension. One could use different masses in the two equation but

by an appropriate rescaling of the spinors the two masses become identical. Note that the mass

serves as a coupling constant between the two spinors which decouple in the massless limit where

we can have a covariant equation of motion for one spinor only. the set of equations (185) can be

written in a more explicit manner as

(p0 + pσ)η = mξ,

(p0 − pσ)ξ = mη. (186)

By the elimination of one spinor one arrives at the second order equations

(p2 −m2)ξ = (p2 −m2)η = 0. (187)

The first order equation, eq.(185), can be brought into a simpler form of eq. (149) by pµ = i∂µ

and the introduction of the matrices

γ0ch =





0 1

1 0



 , γjch =





0 −σj
σj 0



 (188)

which are related to the ”standard“ Dirac matrices, given by eq. (152) by the basis transformation

γµch = UγµU †, U =
1√
2
(1− γ5γ0) = 1√

2





11 −11
11 11



 , (189)

where

γ5 = iγ0γ1γ2γ3, (190)

assuming the form

γ5ch =





11 0

0 −11



 (191)

in chiral representation.

In the presence of an external vector potential, Aµ with minimal coupling, pµ → pµ − eAµ,

∂µ → ∂µ + ieAµ, the Dirac equation is

(i∂/− eA/ −m)ψ = 0 (192)
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and the discrete inversions, identified by requiring that the transformed equation of motion remains

covariant, assume the following form:

• Pψ = UPψP , fP (t,x) = f(t,−x), AµP (t,x) = (φ(t,x),A(t,x))P = (φ(t,−x),−A(t,−x)),

UP = iγ0, UP γ
0U−1p = γ0, UPγU

−1
P = −γ, (i∂/ − eA/P −m)ψP = 0,

• Tψ = UT ψ̄T , fT (t,x) = f(−t,x), AµT (t,x) = (φ(t,x),A(t,x))P = (−φ(−t,x),A(−t,x)),

UT = −iγ1γ3γ0, UTγ
0U−1T = γtr0, UTγU

−1
T = −γtr, (i∂/ − eA/T −m)ψT = 0,

• Cψ = UCψ̄, UC = −iγ2γ0, UCγ
µU−1C = −γtrµ, (i∂/ + eA/−m)ψC = 0.

We turn our attention to the transformation properties of the bi-spinor under proper Lorentz

transformations. Let us use the parametrization (164) for SL(2, c) matrices with a,a being complex

numbers and write the transformation of the ξ spinor as ξ → A(a,a)ξ. The complex conjugation,

A∗(a,a) = σ2A(a
∗,a∗)σ2, (193)

cf. (169), and the displacement of the van der Waerden indices,

A b
a = gaa′g

bb′Aa′

b′ , (194)

with g = iσ2 yields

η → iσ2A
∗(a,a)iσtr2 η = A(a∗,a∗)η. (195)

Hence the proper Lorentz transformations, An(α+ iβ), can be parametrized by two three-vectors,

u = αn and v = βn which can be rearranged in an anti-symmetric tensor,

ωµν =

















0 v1 v2 v3

−v1 0 u3 −u2
−v2 −u3 0 u1

−v3 u2 −u1 0

















(196)

in a Lorentz covariant manner in manner, similar to the field strength tensor of electrodynamics.

Lorentz transformation are presented on bi-spinors as

ψ → e−
i
4
ωµνσµν

ψ, (197)

where

σ0j = i





σj 0

0 −σj



 , σjk = ǫjkℓ





σℓ 0

0 σℓ



 (198)
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in chiral representation. A representation independent form of the generators is

σµν =
i

2
[γµ, γν ]. (199)

The generator of SO(3) rotations,

Sj =
1

2
ǫjkℓσkℓ, (200)

gives the representation of the spin in terms of Dirac matrices.

It is important to know the transformation properties of bilinear expressions of bi-spinors, ψ̄aψb

which enter in expectation values. The properties of the 4× 4 = 16 components are listed in Table

I.

TABLE I: Transformation properties of bilinears.

Bilinear Special Lorentz tr. Space inv. Time inv. Charge conj.

S = ψ̄ψ S S S S

P = ψ̄γ5ψ P −P P P

V µ = ψ̄γµψ = (V 0,V ) ωµ

ν
V ν (V 0,−V ) (−V 0,V ) V µ

Aµ = ψ̄γ5γµψ ωµ

ν
V ν (−V 0,V ) (−V 0,V ) Aµ

T µν = ψ̄σµνψ = T µν(u,v) ωµ

ν
ωµ

′

ν′T νν
′

T µν(−u,v) T µν(−u,v) T µν(u,v)

C. Free particles

After having clarified the physical structure of the Dirac spinor in terms of the representations

of the Lorentz group we turn to the simplest problem, that of a free particle.

1. Plane wave solutions

Let us now consider the plane waves solutions,

ψ(+)(x) = e−ipxup, ψ(−)
p (x) = eipxvp (201)

where p0 = ωp ≥ 0 and the bi-spinors up and vp satisfy the equations

(p/−m)up = (p/+m)vp = 0 (202)

with p2 = m2c2 due to Eq. (151). The construction of the spinors up and vp starts in their rest

frame, pµ0 = (mc,0) (m2 > 0),

(γ0 − 1)u0 = (γ0 + 1)v0 = 0, (203)
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in particular

u
(1)
0

=

















1

0

0

0

















=





φ(1)

0



 , u
(2)
0

=

















0

1

0

0

















=





φ(2)

0



 ,

v
(1)
0

=

















0

0

1

0

















=





0

χ(1)



 , v
(1)
0

=

















0

0

0

1

















=





0

χ(2)



 . (204)

The bi-spinors corresponding to an arbitrary energy-momentum pµ on the mass shell, p2 = m2c2

are given by

u
(α)
p =

p/+m
√

2m(m+ ωp)
u
(α)
0

=







√

m+ωp

2m φ(α)

σp√
2m(m+ωp)

φ(α)







v
(α)
p =

−p/+m
√

2m(m+ ωp)
v
(α)
0

=







σp√
2m(m+ωp)

χ(α)

√

m+ωp

2m χ(α)






(205)

according to Eq. (151) where φ(α) and χ(α) are p-independent, two-component spinors. The

normalization is chosen in such a manner that the relations

ū
(α)
p u

(β)
p = −v̄(α)p v

(β)
p = δα,β, ū

(α)
p v

(β)
p = v̄

(α)
p u

(β)
p = 0 (206)

hold. It is easy to see that the current (159) assumes the form (40) for plane waves. Since

j0 = ψ̄γ0ψ = ψ†ψ ≥ 0 the density is non-negative in contrast to the scalar particle.

We present for later use the projection operator corresponding to the positive and negative

energy bi-spinors,

P+(p) =
2
∑

α=1

u
(α)
p ⊗ ū(α)p =

p/+m
√

2m(m+ ωp)

1 + γ0

2

p/+m
√

2m(m+ ωp)
=
p/+m

2m
(207)

and

P−(p) = −
2
∑

α=1

v
(α)
p ⊗ v̄(α)p =

p/−m
√

2m(m+ ωp)

1− γ0
2

p/−m
√

2m(m+ ωp)
=
m− p/
2m

, (208)

respectively either by the help of the definition (150) or simply by using eqs. (202).

The four linearly independent plane wave solutions of the free Dirac equation corresponding to

a given (canonical) energy-momentum pµ represent the two spin polarization states of a fermion of
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spin half and its anti-particle. The separation of the particle and the anti-particle modes is achieved

in the spinor space as in the case of the first order formalism of the Klein-Gordon equation. The

momentum-dependence of the projectors (207)-(208) indicates that the particle and anti-particles

axes in the spinor space are momentum-dependent, too.

The spinors of the standard and the chiral representation are related by ψ = U †ψch. It is

advantageous to use the parametrization ψ = (φ+, φ−) in standard representation because the

combinations φ± = η ± ξ are such that φ+ (φ−) is made up dominantly by particle (anti-particle)

modes for non-relativistic particles, |p| ≪ m, according to (203). The space inversion which

preserves the piece iγ∇ of the Dirac equation should not change the eigenvalue of γ0 neither in

order to keep the covariance of the equation. Furthermore, time inversion and charge conjugation

change the sign of ∂0 and should therefore flip the eigenvalue of γ0.

2. Spin density matrix

The state of the spin is represented by the spin density matrix, usually written in the non-

relativistic case as

ρ =
1

2
(11 + aσ), (209)

giving the expectation value

〈S〉 = tr[ρS] =
a

2
, (210)

and the state is mixed if

trρ2 =
1

4
tr(11 + a2 + 2aσ) =

1 + a2

2
< trρ = 1, (211)

i.e., a2 < 1. The relativistically covariant generalization for the particle state (205), is the density

matrix

ρ = u
(α)
p ⊗ ū(α)p . (212)

The expectation value of the spin operator, given by eq. (200),

〈S〉 =
∫

d3xψ†(x)Sψ(x) =

∫

d3xψ̄(x)γ0Sψ(x), (213)

leads to the relativistically covariant expression

〈S〉 = tr[ργ0S]. (214)
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It is sometime useful to express this expectation value in a different form whose derivation starts

with an expression of γ5 involving the Levi-Civita tensor,

γ5 = iγ0γ1γ2γ3 = − i

4!
ǫµνρσγ

µγνγργσ, (215)

where the minus sign arises from ǫ0123 = 1, ǫµνρσ = −ǫµνρσ. This equation, multiplied by two Dirac

matrices,

γ5γκγλ = − i

4!
ǫµνρσγ

µγνγργσγκγλ, (216)

and evaluated by permuting the indices µ and ν to the rightmost poisition in the Levi-Civita

symbol results in

γ5γκγλ = − i
2
ǫµνλκγ

µγν , (217)

according to eq. (150). This result is now used in the third step of the chain of equations

i

2
ǫµνρσσρσ =

i

2
ǫµνρσ

i

2
[γρ, γσ] = −

1

2
ǫµνρσγργσ = γ0γ1γ2γ3γµγν = γ5σµν , (218)

allowing us to bring the spin operator into the form

Sj =
1

2
ǫjkℓσkℓ =

1

2
ǫ0jρσσρσ = −i1

2
γ5σ0j = γ5γ0γj. (219)

Finally the anti-commutator, {γ5, γµ} = 0, yields an alternative form

〈S〉 = −tr[ργ5γ] (220)

for the spin expectation value.

To find the relativistic generalization of the density matrix (209) we introduce a pseudo-vector,

aµ = (a0,a) which remains invariant under space inversion and becomes aµ0 = (0, 2〈S〉) in the

rest frame, pµ0 = (m,0). Such a structure yields the orthogonality, ap = 0, and invariant length

square a2 = −4〈S〉2. Though the explicit form of aµ is not needed below one can easily find it by

performing the Lorentz boost,

a0 =
a00 − va0‖√

1− v2
, a‖ =

a0‖ − va00√
1− v2

, (221)

with velocity v = −p/p0 where a0‖ = a0p/|p|. The result of the boost is

a0 = 2
|p|
m
〈S‖〉, a⊥ = 2〈S⊥〉, a‖ = 2

p0

m
〈S‖〉 (222)
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where

S‖ =
Sp

|p| , S⊥ =

(

11− p⊗ p

p2

)

S. (223)

The simplest example is the density matrix of an non-polarized state, 〈a〉 = 0 of a particle. It

should be a linear expression of the four momentum, pµ. The form of the projector operator (207)

suggests the form

ρ =
p/+m

4m
. (224)

The equations

tr[γµ1 · · · γµ2n+1 ] = 0, tr[γµγν ] =
1

2
tr[{γµγν}] = 4gµν (225)

can be used to check 〈S〉 = 0. The density matrix of a partially polarized state is more involved,

it will be sought in the form,

ρ =
1

8m2
(p/+m)ρ0(a)(p/ +m) (226)

where ρ0(0) = 11. By assuming that ρ0(a) is a linear function of aµ we write

ρ0(a) = 11 + zγ5a/ (227)

cf. (220) and determine the scalar coefficient z by evaluating the spin average in the rest frame

where aµ0 = (0,a0) and

ρ =
1

8
(11 + γ0)(11− zγ5aγ0)(11 + γ0) =

1

4
(11 + γ0)(11− zγ5a/0). (228)

The corresponding spin expectation value,

〈S〉 = −tr[ργ5γ] = −1

4
tr[(11 + γ0)(11− zγ5a/)γ5γ], (229)

can be brought into the form

〈S〉 = z

4
tr[(11 + γ0)γ5a/γ5γ] = −z

4
tr[(11 + γ0)a/γ] = −z

4
tr[a/γ] = za (230)

by the help of eqs. (225). The comparison if this result with eq. (210) yields z = 1
2 ,

ρ =
1

8m2
(p/+m)

(

11 +
1

2
γ5a/

)

(p/+m), (231)

and the identity a/p/ = ab− p/a/ = −p/a/ leads to the form

ρ =
1

4m
(p/+m)

(

11 +
1

2
γ5a/

)

(232)
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of the density matrix. By starting with a given density matrix of this form the parameter aµ can

be extracted by the equation

aµ = −2tr[ργ5γµ]. (233)

To prove this result we start with the identity,

tr

[

(p/+m)

(

11 +
1

2
γ5a/

)

γ5γµ
]

= tr
[(

p/+
m

2
γ5a/
)

γ5γµ
]

. (234)

To simplify it we use the equation tr[γ5γµγν ] = 0 which can easily be checked separately for the

cases µ = ν and µ 6= ν and leads to

tr

[

(p/+m)

(

11 +
1

2
γ5a/

)

γ5γµ
]

= −m
2
tr[a/γµ] = −2maµ (235)

Q.E.D. As a cross check we calculate the density matrix in the rest-frame and int the standard

representation,

ρ =
1

4
(11 + γ0)

(

11 +
1

2
γ5a/

)

=
1

4





2 0

0 0







11− 1

2





0 1

1 0









0 aσ

−aσ 0







 =
1

4





2 0

0 0







11− 1

2





−aσ 0

0 aσ









=
1

2





11 + aσ 0

0 0



 (236)

Finally we add that the density matrix for an anti-particle is given by

ρ(−) = UCρ
(+)U∗C . (237)

3. Helicity, chirality, Weyl and Majorana fermions

A Dirac fermion is described by a four component, complex bi-spinor and there are different

ways of splitting this eight dimensional vector into two four dimensional ones. We discuss three of

them below.

The helicity is defined as the projection of the total angular momentum of a particle on its

momentum,

hp =
Jp

|p| . (238)

The orbital angular momentum drops from this expression,

hp =
Sp

|p| , (239)
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owing to J = L + s and Lp = 0, hence the helicity of a Dirac fermion is ±~/2. The helicity

commutes with the Hamiltonian (145), [αp + βm,Sp] = 0, and is thereby conserved, c.f. Table

II. It is furthermore invariant under spatial rotations and offers a natural basis to handle the spin

orientations of a free particle. However it changes under Lorentz boosts which mixes the helicity

component. This can be anticipated by noting that it changes sign when we perform a Lorentz

boost with a velocity which is parallel to and larger than the particle velocity. The spin projection

on the direction of the velocity arises from the components of the tensor σkℓ which are orthogonal

to the velocity and thus remain unchanged. But the velocity of the particle changes sign during

the boost, together with the helicity. Thus a massive fermion can not be composed exclusively

from a given helicity components.

TABLE II: Invariance properties of the splitting of the bi-spinor space.

Invariance Helicity Chirality Majorana fermion

L↑
+ × X X

Time evolution of a free particle X m 6= 0 : ×; m = 0: X X

The spinor representation of the special Lorentz group in which a massless particle is found can

be equipped with a quantum number, called chirality. It is defined as the eigenvalue of the Dirac

matrix γ5 according to the form (191) in chiral representation. Thus

R =
1

2
(11 + γ5), L =

1

2
(11− γ5), (240)

project onto chirality +1 and −1, called right-handed and left-handed states, respectively. Chi-

rality is a Lorentz invariant quantity but is conserved by massless particles only.

Both the helicity and the chirality are conserved by masless particles hence one wonders whether

there is a relation between these quantities. The equation of motion for massless particles,

(∂0 −∇σ)η = 0, (∂0 +∇σ)ξ = 0, (241)

cf. eqs. (186), written in the form

i∂0η = −pση, i∂0ξ = pσξ, (242)

shows that the helicity and the chirality are identical for positive energy massless excitations. The

name helicity refers to the opposite direction of the rotation of the helicity (S = σ/2) for the left

and the right handed spinors.
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Weyl fermions, the left or right handed spinors of the special Lorentz group, ξ = Rψ and

η = Lψ, are massless fermions which respect no space inversion. They can be described either by

a spinor ξ or η exclusively and the corresponding equation of motions, (241), can be derived from

the Lagrangian

Lη = η†(i∂0 − i∇σ)η, Lξ = ξ†(i∂0 + i∇σ)ξ. (243)

The Weyl fermions are massless and the first equation in (241) was sometime called neutrino

equation, by now a historic name from the time when neutrinos were thought to be massless.

One can find a basis transformation

UM =
1

2





1 + σ2 i(σ2 − 1)

i(1 − σ2) 1 + σ2



 (244)

which brings the gamma matrices into the imaginary form, γµM = UγµchU
†, in particular

γ0M =





0 σ2

σ2 0



 , γ1M =





iσ1 0

0 iσ1



 , γ2M =





0 σ2

−σ1 0



 , γ3M =





iσ3 0

0 iσ3



 , (245)

and thereby renders the Dirac equation real. Its solution preserves the phase and represents a

Majorana fermion.

One may wonder if the four real functions of a Majorana fermion could be compressed in a Weyl

fermion. The difficulty is that the realness of the Dirac fermion wave function, ψ∗ = ψ, is not a

Lorentz invariant condition. But the bi-spinor

ψM =





ξ

−iσ2ξ∗



 , (246)

given in the chiral representation is brought into a real bi-spinor by the basis transformation (244).

While a Weyl fermion can not have mass the Majorana fermion which has the same number of real

components can. In fact, the Lagrangian

LM =
1

2
ψ̄M (i∂/ −m)ψM , (247)

is manifest Lorentz invariant and becomes

LM =
1

2
[ξ†i(∂0 −∇σ)ξ −mξtriσ2ξ] + c.c. (248)

in the chiral representation becomes where c.c. stands for complex conjugation. The corresponding

equation of motion is massive,

(∂0 −∇σ)ξ −mσ2ξ∗ = 0. (249)
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The precision tests of the Standard Model should soon reveal if the neutrino masses are generated

for Weyl or Majorana neutrinos.

The construction of the Majorana fermions shows the highly non-trivial structure of the Dirac

matrices, arising from the identity (169). One may go even further and use eq. (171) to represent

the space-time coordinate vectors by spinors, xµ ↔ Xaȧ(x) ↔ νaν̃ ȧ. To have four dimensional

objects one sets ν̃ = ν∗ and parametrizes the coordinate in terms of the twistor ν,

Xaȧ(x) = νaν∗ȧ. (250)

However this reduces the dimensionality of X to three because X remains invariant under the

global phase change, ν → eiαν. This is in agreement with the observation that the rank of νaν∗ȧ

is one, giving detX = xµxµ = 0, the twistor parametrization is available for light-like vectors only.

D. Non-relativistic limit

Let us find the non-relativistic limit of the Dirac equation with a vector potential, written as

i

c
∂tψ =

[

α(−i∇− e

c
A) + βmc+

e

c
A0

]

ψ, (251)

where the units c 6= 1 are reintroduced. We shall work in the standard representation, (152), and

write the equation for the bi-spinor ψ = (φ, χ),

i∂tφ = cσπχ+ (eA0 +mc2)φ,

i∂tχ = cσπφ + (eA0 −mc2)χ, (252)

where the momentum π = p− e
cA is used. To find regular time dependence in the non-relativistic

limit for an electron we separate the rest mass energy in the solution and use Φ = eimc2tφ and

X = eimc2tχ in the equation of motion

i∂tΦ = cσπX + eA0Φ,

i∂tX = cσπΦ + (eA0 − 2mc2)X. (253)

As long as we can neglect the time derivative and eA0 in the second equation compared to mc2 we

can use the approximation

X =
σπ

2mc
Φ (254)
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for the small component of the bi-spinor. Inserting this relation into the first equation we arrive

at Pauli equation for the large component,

i∂tΦ =

[

(σπ)2

2m
+ eA0

]

Φ, (255)

suggesting that the influence of the small component is the replacement p→ σπ in the Schrödinger

equation. The identity (166) gives

(σπ)2 = σjσkπjπk = π2 − e

c
Bσ (256)

with B = ∇×A and the Pauli equation,

i∂tΦ =

[

(p− e
cA)2

2m
− e

2mc
σB + eA0

]

Φ. (257)

The first term appears in the Schrödinger equation and it reads for a homogeneous magnetic field,

A(x) = 1
2x×B, as

HSch =
p2

2m
+
eAp

mc
=

p2

2m
− eLB

2mc
. (258)

This form reveals an angular momentum-magnetic field interaction with energy

HL = −µB
LB

~
, (259)

where µb = e~/2mc is the Bohr magneton. The second term in the equation of motion, (257), can

be written as

HS = −gSµB
SB

~
(260)

where gS = 2 is the gyromagnetic factor. The lesson of the Pauli equation is that the magnetic field

can distinguish the orbital and the spin contribution to the total angular momentum, J = L+S,

because the angular momentum-magnetic field coupling is

HJ = −µB
(L+ 2S)B

~
(261)

in the non-relativistic limit. An electron continuously emits and absorbs photons during its prop-

agation and these processes change its angular momentum and generate a small non-trivial value

for gS − 2. This value in known experimentally up to twelve decimals and has been checked by

O
(

α4
)

perturbation calculation. The agreement represents one of the precision tests of quantum

electrodynamics.
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Such a treatment of the non-relativistic limit is flowed. One problem is the issue of the velocity:

The Heisenberg equation for the coordinate operator,

i

c
∂tx = [x,αp + βmc2] = iα, (262)

shows that the particle moves with the speed of light because the spectrum of αj is ±1. The

average speed becomes small in the non-relativistic limit due to the frequent flip of sign of the

eigenvalues of αj as the state oscillates between the different eigenstates of β. This is actually the

context how Zitterbewegung has been identified as the result of the interference between positive

and negative energy solutions of the Dirac equation.

This result is reasonable, argued Dirac, since the velocity is obtained by two successive mea-

surement in time of the coordinate. The Heisenberg uncertainty principle introduces a large spread

for the momentum when the two coordinate measurements are carried out in short time difference.

The practically uniformly distributed momentum is dominated by large values of momentum, cor-

responding to the velocity of light. There must obviously a way to get through this complication

and arrive at the usual description of a non-relativistic electron in Schrödinger’s wave mechanics.

Another problem of the derivation of the Pauli equation is that the time derivative of the

small component, neglected in the derivation, would introduce higher order time derivatives in the

equation of motion. Such higher order derivative terms, whatever weak they are in the equation

of motion, produce important effects in sufficiently long time. This can be seen by recalling

Ostrogadsky’s theorem, stating that the energy of a classical system whose equation of motion is

canonical, i.e. can be derived from a Lagrangian or Hamiltonian, is unbounded from below. Thus

we loose the stability of the classical equations of motion higher than second order. Since we do

not know the fundamental equations in physics, all we have are effective equations, valid in certain

resolution window. These equations are always non-local in time. The non-local equations represent

a far too hard problem to solve hence one usually applies the gradient expansion, truncated at a

certain order. The lesson of Ostrogadky’s theorem is that this procedure is acceptable in dealing

with non-localities in space but can not be applied in time.

A more physical approach of the non-relativistic limit is offered by the Foldy-Wouthuysen

transformation which is a basis transformation, |ψ〉 → S|ψ〉 to decouple the small and the large

components. We look for the the similarity transformation of the form

S = e
−γp

|p|
θ
= 11 cos θ +

γp

|p| sin θ, (263)
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where the sign of the sinus is positive owing to (γp)2 = −p2. It transforms the Hamiltonian into

S(αp + βm)S−1 =

(

11 cos θ +
γp

|p| sin θ
)

(αp+ βm)

(

11 cos θ − γp

|p| sin θ
)

= (αp+ βm)

(

11 cos θ − γp

|p| sin θ
)2

= (αp+ βm)

(

11 cos 2θ − γp

|p| sin 2θ
)

= αp

(

cos 2θ − m

|p| sin 2θ
)

+ β(m cos 2θ + |p| sin 2θ), (264)

where the equation pjpk{γj , αk} = pjpkγ0[γj , γk] = 0 was used in changing the order of the frist

two factors and in arriving at the second line. The choice

sin 2θ =
|p|
ωp
, cos 2θ =

m

ωp
, tan 2θ =

|p|
m
, (265)

decouples the positive and negative energy modes since

HFW = βωp. (266)

The form of the projectors eqs. (207)-(208) in this base,

SP±(p)S
−1 =

(

11 cos θ +
γp

|p| sin θ
)

m± (βωp − γp)

2m

(

11 cos θ − γp

|p| sin θ
)

=
m∓ γp

2m
± βωp

2m

(

11 cos θ − γp

|p| sin θ
)2

=
m∓ γp

2m
± βωp

2m

(

11
m

ωp
− γp

|p|
|p|
ωp

)

=
11± β
2

, (267)

shows explicitly that the positive and negative energy plane wave belong to exactly the upper or

lower components of the bi-spinor in this representation.

The velocity operator in this basis, given by the Heisenberg equation of for the coordinate,

1

c
∂tx = −i[x, βωp]

= β∇pωp (268)

is the group velocity up to the sign of the energy, the eigenvalue of β.

The momentum dependence of the basis transformation indicates that the coordinate operator

of the Foldy-Wouthuysen representation belongs to

xFW = SxS−1

=

(

11 cos θ +
γp

|p| sin θ
)

x

(

11 cos θ − γp

|p| sin θ
)
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= x+ ia (269)

in the original Dirac basis with

a = − 1

2ωp

[(

1− m

ωp

)

p
γp

p2
+ γ − (11 + γ ⊗ γ)p

ωp −m
p2

]

= − 1

2mc

[

γ − (11 + γ ⊗ γ)
p

2mc
+O

(

p2

m2c2

)]

. (270)

E. External field

The mixing of the particle-anti particle modes are considered below in the presence of an external

potential.

1. Klein paradox

The first example to consider is the one-dimensional motion in the presence of a potential

barrier, U(z) = U0Θ(z), shown in Fig. 3. The wave function,

ψ(t, z) = χ(z)e−itE , (271)

satisfies the Dirac equation,

[γ0(E − U(z)) + iγz∇z −m]χ(z) = 0. (272)

We assume that U0 > 2m and m < E < −m + U0 to assure the extended incoming particle and

transmitted anti-particle modes in the stationary state. The wave function for z < 0 is the sum of

the incident and the reflected waves, χ = χi + χr, with

χi(z) = eipz

















1

0

p
m+E

0

















χr(z) = be−ipz

















1

0

− p
m+E

0

















+ b′e−ipz

















0

1

0

p
m+E

















, (273)
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according to eq. (205). The solution for z > 0 describes the transmitted wave,

χt(z) = deip
′z

















1

0

p′

m+E−U0

0

















+ d′eip
′z

















0

1

0

− p′

m+E−U0

















. (274)

The momenta are defined by the equations E2 = m2+ p2 and (E−U0)
2 = m2+ p′2. The potential

is spin independent and the spin flip is excluded, b′ = d′ = 0.

To find the matching condition at the singularity of the potential we write the Dirac equation

as

∇zχ(z) = iγz [m− γ0(E − U(z))]χ(z) (275)

and integrate within the interval −ǫ < z < ǫ. The result is that the discontinuity of the wave

function is given by

Discχ(0) = iγz lim
ǫ→0

∫ ǫ

−ǫ
dz[m− γ0(E − U(z))]χ(z). (276)

The right hand side of vanishing for bounded potential therefore we have the matching condition

is

1 + b = d (277)

for the first component of the spinor and

(1− b) p

m+ E
= d

p′

m+ E − U0
(278)

for the third component. We write the latter as

1− b = dξ (279)

with

ξ =
p′

p

m+E

m+ E − U0
, (280)

yielding

b =
1− ξ
1 + ξ

, d =
2

1 + ξ
. (281)
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The reflection and transmission coefficients are defined by means of the current,

jz = ψ̄γzψ = ψ†γ0γzψ = χ†





0 σz

σz 0



χ, (282)

as

R = −jr
ji
, T =

jt
ji
. (283)

Since

ji = 2
p

m+ E
, jr = −2|b|2

p

m+ E
, jt = 2|d|2 p′

m+ E − U0
, (284)

we have

R = |b|2, T = |d|2 p
′

p

m+ E − U0

m+ E
. (285)

Note that the current is conserved,

ji(0) + jr(0) =
2(1 − |b|2)p
m+ E

=
2(1− |b|2)p′

ξ(m+ E − U0)
= jt(0)

1− |b|2
ξ|d|2 = jt(0), (286)

and R+ T = 1. Since ξ < 0 in the considered energy interval we have R > 1 and T < 0, known as

the Klein paradox. Such a process is absent in the second quantized formalism of quantum field

theories.

2. Spherical potential

The solution Dirac equation with a time-independent potential,

i∂0ψ(x) = [αp+ βm+ U(x)]ψ(x), (287)

is sought by factorizing an oscillatory time dependence by the help of the ansatz

ψ(t,x) = ψ(x)e−iEt. (288)

The space-dependent wave function satisfies the stationary Dirac equation,

[αp+ βm+ U(x)]ψ(x) = Eψ(x). (289)

In case of a spherically symmetric potential, U = U(r), one obviously uses polar coordinate

system and the directional dependence of the wave function is provided by using the spinor spherical

harmonics

Yℓ
J,M =

∑

m+σ=M

(ℓ,m,
1

2
, σ|J,M)Y ℓ

m(θ, φ)φ(σ), (290)
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where the usual spherical harmonics satisfy the equgenvalue conditions

L2Y ℓ
m = ℓ(ℓ+ 1)Y ℓ

m, L3Y
ℓ
m = mY ℓ

m, (291)

and the spin states are defined by the conditions

S2φ(σ) =
3

4
φ(σ), S3φ(σ) = σφ(σ). (292)

The rule of addition of angular momentum, ℓ ⊗ 1
2 = ℓ − 1

2 ⊕ ℓ + 1
2 , shows that a given total

angular momentum state, characterized by a given J,M quantum number pair corresponds to a

two-dimensional subspace with orbital angular momentum ℓ = J± 1
2 . Owing to the transformation

rules under space inversion,

PY ℓ
m(θ, φ) = (−1)ℓY ℓ

m(θ, φ), PSP−1 = S (293)

these two states with different orbital angular momentum have different parity,

PYℓ
J,M (θ, φ) = (−1)ℓYℓ

J,M(θ, φ). (294)

This is an indirect justification of regrouping two irreducible representations of the proper Lorentz

group together to find a representation of the space inversion. In particular,

P





φ(t,x)

χ(t,x)



 = iγ0





φ(t,−x)
χ(t,−x)



 = i





φ(t,−x)
−χ(t,−x)



 (295)

in the standard representation. Hence the space-dependent component of the bi-spinor with definite

parity, π = (−1)J± 1

2 , can be written into the form

ψ
(±)
J,M(r, θ, φ) =

1

r





uJ± 1

2

(r)YJ± 1

2

J,M (θ, φ)

ivJ∓ 1

2

(r)YJ∓ 1

2

J,M (θ, φ)



 . (296)

To write the stationary Dirac equation in terms of this bi-spinor we need a more appropriate

expression for pα. By the help of the radial unit vector, n = x/r, one can write

(nα)(pα) =





0 nσ

nσ 0









0 pσ

pσ 0





= [np+ i(n× p)σ] =

(

np+
i

r
Lσ

)

=

(

−i∂r +
i

r
Lσ

)

, (297)

yielding

pα = (nα)2(pα) = nα

(

−i∂r +
i

r
Lσ

)

. (298)



65

The next step is to work out the action of nα and Lσ on the spherical harmonics. We start with

the eigenvalue equation for the bi-spinor,

L2ψ
(±)
J,M =





(J ± 1
2 )(J ± 1

2 + 1)

(J ∓ 1
2 )(J ∓ 1

2 + 1)



ψ
(±)
J,M =





J2 + 1
4 ± J + J ± 1

2

J2 + 1
4 ∓ J + J ∓ 1

2



ψ
(±)
J,M

=

[

J(J + 1) +
1

4
± β

(

J +
1

2

)]

ψ
(±)
J,M , (299)

giving

Lσψ
(±)
J,M = (J2 −L2 − S2)ψ

(±)
J,M =

[

−1∓ β
(

J +
1

2

)]

ψ
(±)
J,M . (300)

The action of the matrix nσ on YJ± 1

2

J,M is found in three steps.

1. First we relate in actions of nσ and Lσ. The equations

(nσ)(Lσ) = i(n ×L)σ =
i

r
σaǫabcxbǫcdexdpe =

i

r
[x(xp)− px2]σ,

(Lσ)(nσ) =
i

r
ǫabcxbpcǫadexdσe =

i

r
(ǫabcxbǫadexdpc − iǫabcxbǫace)σe

=
i

r
[x2pσ − (xσ)(xp) + 2ixσ], (301)

serve to establish

(Lσ)(nσ) = −(nσ)(Lσ) − 2nσ. (302)

2. We apply this equation on YJ∓ 1

2

J,M and use the lower block of eq. (300) to find

(Lσ)(nσ)YJ∓ 1

2

J,M =

[

−1∓
(

J +
1

2

)]

nσYJ∓ 1

2

J,M . (303)

The comparison of this result with the upper block of eq. (300),

LσYJ± 1

2

J,M =

[

−1∓
(

J +
1

2

)]

YJ± 1

2

J,M , (304)

shows that nσYJ∓ 1

2

J,M and YJ± 1

2

J,M satisfy the same non-degenerate eigenvalue equations hence

nσYJ∓ 1

2

J,M = aℓY
J± 1

2

J,M . (305)

3. The eigenvalues of nσ are ±1 which requires |a| = 1. In the special caseM = J this equation

reads

nσ





1

0



Y
J− 1

2

J,J = aℓ





0

1



Y
J+ 1

2

J,J , nσ





0

1



Y
J+ 1

2

J,J = aℓ





1

0



Y
J− 1

2

J,J (306)
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since the spin is parallel and anti-parallel with the orbital momentum on the two sides of

the equation. The form Y ℓ
ℓ ∼ [−(x+ iy)]ℓ of the spherical harmonics gives aℓ = a = −1 and

nσYJ∓ 1

2

J,M = −YJ± 1

2

J,M . (307)

We have now all the necessary elements to work out the Dirac equation in terms of our ansatz.

The equations (298) and (300) brings the stationary Dirac equation into the form

[

inα

[

−∂r −
1

r
∓ 1

r
β

(

J +
1

2

)]

+ βm+ U

]

1

r





uJ± 1

2

YJ± 1

2

J,M

ivJ∓ 1

2

YJ∓ 1

2

J,M



 = E
1

r





uJ± 1

2

YJ± 1

2

J,M

ivJ∓ 1

2

YJ∓ 1

2

J,M



 . (308)

The identity (∂r +
1
r )

f
r = f ′

r and eq. (307) allow us to further simplify this result,



−i





0 1

1 0





[

−∂r ∓
1

r
β

(

J +
1

2

)]

+ βm+ U(r)









uJ± 1

2

ivJ∓ 1

2



 = E





uJ± 1

2

ivJ∓ 1

2



 (309)

and finally arrive at the equation

[

−∂r ±
1

r

(

J +
1

2

)]

vJ∓ 1

2

= (E −m− U)uJ± 1

2

,
[

∂r ±
1

r

(

J +
1

2

)]

uJ± 1

2

= (E +m− U)vJ∓ 1

2

. (310)

We can extract an equation for uJ± 1

2

by expressing vJ∓ 1

2

from the second equation and inserting

it into the first equation,

0 =

{

m+ U − E +

[

−∂r ±
1

r

(

J +
1

2

)]

1

E +m− U

[

∂r ±
1

r

(

J +
1

2

)]}

uJ± 1

2

. (311)

It is instructive to check the free case, U = 0,

0 =

[

m2 − E2 − ∂2r +
1

r2

(

J +
1

2

)(

J +
1

2
± 1

)]

uJ± 1

2

(312)

which is identical with that Klein-Gordon case.

3. Spin precession

The non-relativistic dynamics of the spin in the presence of a homogeneous magnetic field, B,

is generated by the modification

H = H0 − µBσB (313)
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of the spin-less Hamiltonian where µB = e~
2mc . The Heisenberg equation for the spin operator,

S = σ/2,

i∂tS = [S,H], (314)

and [Sj , σk] = iǫjkℓσℓ = 2iǫjkℓSℓ leads to the equation of motion

∂tS = 2µBS ×B. (315)

The expectation value a = 2〈S〉 satisfies the equation of motion

∂ta = 2µBa×B (316)

and performs a precession around the magnetic field. The equation of motion for the spatial motion

in the semi-classical limit,

∂t〈v〉 =
e

mc
〈v〉 ×B, (317)

shows that the velocity perform a precession with the same frequency and the angle of 〈S〉 and 〈v〉
is time-independent.

To find the generalization for the relativistic case we assume that the right hand side of the

equation of motion is linear in Fµν , a
µ and at most quadratic in the four velocity, uµ = pµ/m. The

invariance of the equation of motion under spatial inversion prevents the appearance of Fµνuν in

the equation of motion, the anti-symmetry, Fµν = −F νµ, eliminates the term aµF νρuνuρ and the

orthogonality au = 0 excludes the combination Fµνuνau. Therefore one arrives at the equation

∂sa
µ = αFµνaν + βuµF νρuνaρ, (318)

containing the constants α and β. These parameters can be found by inspecting the equation in

the rest frame, in the limit aµ → (0,a), uµ → (1,0) and s→ t,

∂ta = αa×B. (319)

This result imposes α = 2µB . The other parameter is determined by the help of the semi-classical

equation of motion,

u̇µ =
e

m
Fµνuν , (320)

yielding

uȧ = −u̇a = − e

m
aµF

µνuν (321)
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where the time derivative of the orthogonality relation, au = 0, ȧu+ au̇ = 0 was used in the first

equation. Finally eq. (318) is multiplied by u and we arrive at the equation

uȧ = (2µB + β)uµF
µνaν = − e

m
aµF

µνuν (322)

by the help of u2 = 1 which gives

β =
e

m
− 2µB (323)

and the relativistic equation of motion

∂sa
µ = 2µFµνaν +

( e

m
− 2µB

)

uµF νρuνaρ. (324)

Appendix A: Multi-valued wave functions

Schrödinger’s wave function, a complex valued function of the space-time coordinates, may be

multi-valued. It is always an exciting question whether a mathematical possibility is realized by

Nature of remains a dead end street of the formalism. In this case the multi-valued nature of the

wave function is related to observable, physical phenomena, of which the Aharonov-Bohm effect

is the simplest. This is a surprising mechanism of quantum mechanics which generates a new

quantum number, without any classical analogy, and an unexpected dependence of expectation

values on this quantum number which may lead to the violation of eqs. (27).

1. Particle on the circle

Let us consider a particle which is restricted into a circle of radius r. The requirement that the

momentum operator, p = ~

ir∂φ, be Hermitean brings a restriction for the wave functions. In fact,

the matrix elements of the equation p† = p,

〈ψ1|p|ψ2〉 =
∫ π

−π
dφψ∗1(φ)

~

ir
∂φψ2(φ) =

∫ π

−π
dφ

(

~

ir
∂φψ1(φ)

)∗

ψ2(φ) = 〈ψ1|p†|ψ2〉, (A1)

assumes the vanishing of the boundary contribution of the partial integration in the second equation

which can be assured by imposing the boundary condition,

ψ(φ+ 2π) = eiθψ(φ), (A2)

on the wave functions of the Hilbert space, Hθ.
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When the momentum operator and the free Hamiltonian, H = p2/2m, are restricted into Hθ

then its eigenstates are

ψn(φ) = ei(n+
θ
2π

)φ (A3)

with the eigenvalues

pθψ =
~

r

(

n+
θ

2π

)

ψ. (A4)

Hence the free particle Hamiltonian has the spectrum

Hθψn =
~
2

2mr2

(

n+
θ

2π

)2

ψn. (A5)

The θ-dependence is periodic and the eigenstate are simply shifted, ψn(φ)→ ψn+1(φ) as θ → θ+2π.

It is easy to understand the physical origin of the θ-dependence: We see that the particle return

to the same position after a turn around the circle but this fix the wave function up to a phase only

and (A2) follows. In other words, the particle interferes with itself as it turns around the circle

and the phase difference, eiθ, influences the state and thereby the expectation values, too. There

is no classical analogy of θ.

2. Charged particle in a ring, the Aharonov-Bohm effect

We consider now a more realistic problem which turns out to be equivalent with the precedent

one. It is about a charge moving on the ring, R, of radius r and negligible thickness which is

embedded into the three dimensional space. Furthermore, there a static magnetic field, B = ∇×A,

which is vanishing along the ring and represents a magnetic flux Φ for a surface Σ which is bounded

by the ring,

Φ =

∫

Σ
dnB(x) =

∮

R
dxA(x). (A6)

We use cylindrical coordinates, (z, ρ, φ), where the ring corresponds to z = 0 and ρ = r and the

vector potential, A = (Ar, Az, Aφ), is chosen to be Az = Ar = 0 and Aφ = Φ/2πr, a pure gauge

potential, A = ∇α(x) with α = φΦ/2π, in the vicinity of the ring. The wave functions of the

charge satisfy the traditional periodic boundary condition, ψ(φ+2π) = ψ(φ), and the Hamiltonian,

obtained from the free case by the replacement p→ p− e
cA is

HΦ =
~
2

2mr2

(

1

i
∂φ −

eΦ

2π~c

)2

. (A7)
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The relation with the previous problem should be clear by now: The momentum operator and the

Hamiltonian act in H0 but their spectrum is the one in H− e
~c

Φ, c.f. (A5).

How did we end up with the spectrum of Hθ, working in the Hilbert space H0? The answer is

a gauge transformation,

A(x)→ A(x) +
~c

e
∇χ(x), ψ(x)→ eiχ(x)ψ(x), (A8)

with χ = −φ e
~c

Φ
2π which cancels the vector potential on the ring. This transformation preserves

the spectrum of the observables and performs the mapping Hθ → Hθ− e
~c

Φ and Hθ → Hθ− e
~c

Φ. In

particular, it brings the Hamiltonian (A7), acting on H0, into the free Hamiltonian, H− e
~c

Φ, on the

Hilbert space H− e
~c

Φ. The multi-valued gauge transformations, e
~cΦ 6= 2πn, map the dynamical

system, formulated by the multi-valued wave functions into another system which is described by

single-valued wave functions.

The dependence of the expectation values on the magnetic field, called the Aharonov-Bohm

effect, is a surprising result on two counts. The first surprise is that the dynamics of the charge

is influenced by the magnetic field even this latter is vanishing in the region where the particle

propagates. The resolution of this apparent puzzle is that the magnetic field is sufficient to de-

scribe the electromagnetic interactions in a gauge invariant scheme only, the gauge non-invariant

quantities, such as the wave functions, require the use of the vector potential. The second surprise

is that the physical effects are there even if the vector potential in question can be eliminated by an

appropriate gauge transformation. The Aharamov-Bohm effect can properly be understood only

by copparing two different gauges. On the one hand, it is due to the vector potential in the gauge

where the wave functions are periodic. On the other hand, a non-periodic gauge transformation

can eliminate the vector potential but the physics remains the same, it is now described by the

wave functions with non-trivial boundary conditions.

It is easy to see that the Aharamov-Bohm effect, the interference of the particle with itself is

governed by the magnetic flux, a gauge invariant concept. In fact, let us make a full, clockwise

turn, φ→ φ−2π, with the particle along the ring. This rotation is generated by the gauge invariant

momentum operator, P = ~

ir∂φ − eAφ, and it indeed provides the phase factor,

ψ(φ)→ e
i
~
2πrPψ(φ) = eiθψ(φ) = ψ(φ + 2π), (A9)

which defines Hθ.

The representation of discrete symmetries is non-trivial on a Hilbert space with multi-valued

wave function and the classical relations like (27) may change. Consider space inversion, P : x→
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−x, as an example. The transformation of the coordinates in classical physics, P 2 : x→ x, suggests

P 2 = 11 in quantum mechanics. The multi-valued wave functions possess several Riemann-sheets,

ψα(x) with ψα(x) = eiθα,βψβ(x), and the second inversion, performed after the first, may bring

us back to a different Riemann-sheet and P 2 = 11eiθ is possible with θ 6= 2nπ. In fact, if the first

space inversion takes us to the diametrical opposite point along the ring clockwise or anti-clockwise

manner and the second will bring us back to the starting position in either of these two ways, too.

If the orientation is the same for both inversion then a full turn is realized by P 2 and a non-trivial

phase arises, owing to the multi-valuedness of the wave-functions.

3. Dynamics and multi-valued wave functions

A necessary condition for a complex function, f(z), to support several Riemann-sheets and

multi-valuedness is an essential singularity somewhere on the complex plane, where the Riemann-

sheets collapse to a single value, e.g. f(z) =
√
z at z = 0. To avoid the diverging contribution of

the singularity to the kinetic energy the wave function must tend to zero sufficiently fast as the

essential singular point is approached in three-space.

Let us consider a free three dimensional particle, in a state defined by the single-valued wave

function, ψ0(z, ρ, φ), given in the cylindrical coordinate system, (x, y, x) = (ρ cosφ, ρ sin φ, z).

The wave function with multi-valued structure with respect to rotation around the z-axis by 2π,

ψθ(z, ρ, φ + 2π) = eiθψθ(z, ρ, φ), can be written in the form

ψθ(z, ρ, φ) = ei
θ
2π

φψ0(z, ρ, φ). (A10)

The expectation value of the kinetic energy,

H = − ~
2

2m

(

∂2z +
1

ρ
∂ρρ∂ρ +

1

ρ2
∂2φ

)

, (A11)

reveals the characteristic role of the three coordinates: φ, is the coordinate of the loop with multi-

valued structure, ρ parametrizes the transverse structure of the tube, the particle wih φ-dependent

wave function is excluded and finally z is a regular coordinate, without connection with the multi-

valued structure. To calculate the kinetice energy we start with the identity [∂φ, f(φ)] = f ′(φ), to

find

[∂2φ, f(φ)] = ∂φf
′(φ) + f ′(φ)∂φ = f ′′(φ) + 2f ′(φ)∂φ (A12)

(by the help of [AB,C] = A[B,C] + [A,C]B). Hence the θ-dependence of the kinetic energy is an
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additive term,

〈ψθ|H|ψθ〉 = 〈ψ0|H|ψ0〉 −
~
2

2m

∫ ∞

−∞
dz

∫ π

−π
dφ

∫ ∞

0

dρ

ρ
ψ∗0(z, ρ, φ)

[

i
θ

π
∂φ −

(

θ

2π

)2
]

ψ0(z, ρ, φ).

(A13)

with 〈ψ0|H|ψ0〉 ≥ 0 shows that the vanishing of the wave function along the z axes, the exclusion

of the particle from ρ = 0 is needed to assure the finiteness of the energy. The general rule is

that the particle must be excluded from some part of the space to support multi-valued wave

functions for rotation by 2π. The remaining, allowed space region where the wave function has

finite, non-vanishing magnitude must be multiply-connected, meaning that not all closed loops of

the coordinate space can be contracted to a point in a smooth, continuous manner, without passing

through excluded regions.

4. Topological symmetry

The quantum mechanics over a topologically non-trivial coordinate space has symmetry prop-

erty without classical analogy. This is based on the homotopy group of the coordinate space, Q,

defined in the following manner. Let us first consider the set of continuous loops, γ : [0, 1] → Q,

based on a given coordinate, x0, γ(0) = γ(1) = x0. One can define an equivalence classes of

loops, {Γ(x0)}, two loop being equivalent, γ1 ∼ γ2 or γ1, γ2 ∈ Γ(x0), if γ1 can continuously be

deformed into γ2. Such an equivalence is expressed by the existence of a continuous function,

f : [0, 1] ⊗ [0, 1] → Q, with the property f(s, 0) = γ1(s) and f(s, 1) = γ2(s), the parameter t

describing the family of the deformed loops, f(s, t). One introduces a group multiplication for the

loops by following on loop after the other,

γ2oγ1(s) =











γ1(2s) 0 < s < 1
2 ,

γ2(2s− 1) 1
2 < s < 1.

(A14)

It is easy to see that this induces a multiplication for the equivalence classes, Γ2oΓ1 consisting of

the loops γ2oγ1, γj ∈ Γj. The group, obtained in such a manner, is called the first homotopy group,

π1(Q). It is independent of the choice of the base point, x0. Note that the transport of the system

over a closed loop is a true symmetry, having no ways to distinguish the system before and after

the transport and π1(Q) is a symmetry group.

The find the physical role of the homotopy group one regards the transport of a system along

a closed loop as a symmetry transformation since the state of the system before and after the

transport are identical. The wave functions are defined up to a global phase hence the transport
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may induce such a path-dependent phase, eiθ. Let us suppose that the wave function supports a

multi-valued structure in a compact coordinate and start with a Hilbert space, H0, consisting of

single-valued wave functions. The multi-valued, extended Hilbert space, Hθ, can be constructed in

a manner, similar to the aperiodic gauge transformations, mentioned above. The highly non-

trivial point is the relevance of topology, i.e. that the phase factor, eiθ, is preserved by the

continuous deformation of the loop. (This can easily be seen in the path integral representation

of the transition amplitudes in the following manner: (i) The Schrödinger equation can be derived

from the path integral expressions by performing infinitesimal variation of the paths. This shows

that the minial functional space to extend the path integration must be closed with respect to

fininitesimal variations. The path integral is well defined within this functional space. (ii) We may

assign arbitraty phase factors to the path integral within disconnected subspaces of the trajectory

space, if they exist, without modifying the Schrödinger equation. (iii) The trajectories, belonging

to different homotopy classes of the coordinate space represent trajectories, within disconnected

path families.) The phases, arising from the multi-valuedness, are chosen in such a manner that

they induce a representation of the homotopy group. The impact of this symmetry on the dynamics

is that the particle states before and after the transport interferes and their relative phase being

θ(Γ). Julian Schwinger expressed this is by saying that while the state of a classical particle is

characterized by its location in the phase space the characterization of a quantum particle requires

not only the knowledge the actual state but also the way how it ended up there. The Aharonov-

Bohm effect is based on the additive group of integers, π1(U(1)) = Z, called winding number,

ν(γ) =

∫ 2π

0

dφ

2π
γ̇(φ), (A15)

and the boson-fermion classification originates from π1(SO(3)) = Z2 = {11,−11}.


