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Statistical physics usually deals with the dynamics of large systems. The interplay of the simple Newton equation
for three particles may already produce a very complex motion. Thus one expects no hope to recover any regularity
in studying large systems. But what helps is that a negative power of the number of degrees of freedom, N , ǫ = N−α

where α is a fixed positive number plays the role of small parameter in an expansion scheme where the dynamics,
obtained in the leading order is remarkably simple. The radius of convergence is rather small for isolated systems and
N should be very large to have clean and precise predictions. But open systems may follow simple dynamics even for
N = 1 because it is the number of degrees of freedom of their environment which enters in simplifying their dynamics.
The simplification mentioned above, universality, holds for certain observables only. To see this point clearer we

should distinguish four time scales. τmicr and τrel denote the microscopic and the relaxation time scales, respectively,
characterizing our system. The measurement introduces two other time scales. twait stands for the waiting time
between the preparation of the system and the start of the observation which lasts time tobs. We see universal
equilibrium phenomena for τmicr ≪ τrel ≪ twait, tobs. These are formally described by the ensembles of equilibrium
statistical physics, imaginary closed systems with given probability distribution. The other extremity, twait, tobs ≪
τmicr, is not at all universal and difficult to address. The compromise, τmicr ≪ tobs ≪ τrel ≪ twait is called non-
equilibrium physics and presents a treatable problem as long as the system we follow within its relaxation time is not
too large.
We start our discussion with simpler equilibrium processes and the more involved case of non-equilibrium will be

treated later.

I. EQUILIBRIUM ENSEMBLES

The ensemble method to reproduce the observable, average quantities of large systems consists of the construction
of formal closed systems obeying certain probability distribution. We shall have a closer look at the origin of the
inherent randomness and universal features of the ensembles.

A. Closed systems

Let us consider a system of N classical particles in complete isolation. We further assume that the only conserved
quantity is the energy, H(p1, . . . ,pN , q1, . . . , qN ) whose energy is know to us. In lacking of any other information we
postulate that the micro states of our system, the points (p1, . . . ,pN , q1, . . . , q) in the phase space are distributed in
a uniform manner within a given energy shell,

PE(p1, . . . ,pN , q1, . . . , q) = δ(E −H(p1, . . . ,pN , q1, . . . , q))). (1)

This assumption is not as harmless as it seems at the first sight. The point is that nonlinear coordinate trans-
formations map uniform distribution into nonuniform one. Why do we privilege the Cartesian coordinate system
when the basic laws of classical mechanics remain the same in curvilinear coordinates? A possible answer relies on
Liouiville theorem, stating that the density of states of closed systems is preserved in the phase space during their
time evolution. If we impose stationarity on the unknown probability distribution then the form (1) is unique.
The experimental results correspond the average of some observable A over a time span τobs ≪ τmicr, τrel,

〈A〉 = lim
τobs→∞

1

τobs

∫ τwait+τobs

τwait

dt′A(t). (2)

The ergodic hypothesis states that such a time average agrees with the ensemble average. This assumption allows us
to reproduce the observations by ensemble averages.
One furthermore introduces the dimensionless Boltzmann entropy by the definition

SB(E) = ln
Ω(E)

Ω0
, (3)

where

Ω(E) =
N∏

j=1

∫

d3pjd
3qjδ(E −H(p1, . . . ,pN , q1, . . . , qN )) (4)

denotes the distribution of the phase space volume as the function of the energy E. The dimension of the argument of
the logarithm function is removed by a reference volume Ω0 in the phase space which is usually chosen to be (2π~)N .
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As a result, the entropy is well defined up to a constant only. In most of the textbooks one finds the dimensional
entropy kB lnΩ but the expressions are simpler when dimensionless entropy is used with temperature

kBT =
1

β
, (5)

counted in energy dimension.
We follow the dynamics of few well chosen degrees of freedom in statistical physics and ignore the rest of the system.

The probabilistic nature of the resulting laws is the result partially from loosing information. But there is something
more than lost information as soon as our phenomena depends on quantum scales. Because Quantum Mechanics
comes with internal uncertainties and the corresponding probabilistic features are not related to loss of information.
We simply can not possess all information about a quantum system.
Statistical Physics is based on the following postulates:

1. All state accessible by the dynamics and consistent with the known macroscopic averages, of an isolated system
in equilibrium is equiprobable. The statistical average over this microcanonical ensemble of uniformly dis-
tributed states is supposed to reproduce the averages over the large number of interactions with the ever present
environment. The system-environment coupling is supposed to be realized by sufficiently small energy exchanges
in order to keep the energy of the system conserved as far as macroscopic resolution is concerned. Notice the
nontrivial role the interaction plays: the elements of the ensembles are closed, isolated copies of our system but
their uniform distribution is the result of the weak interaction between our system and the environment.

2. The time averages are equivalent with the ensemble averages. This ergodic hypothesis not only opens the way
of calculating the measured bulk quantities related to fast, microscopic processes but lends physical, testable
importance to the averages and fluctuations of the formal elements in an ensemble.

3. The thermodynamical entropy of an isolated system of energy E is given by Eq. (3). Boltzmann’s hypothesis
represents a bridge between the microscopic foundation and the phenomenology accumulated in thermodynam-
ics.

The validity of these postulates comes from the success of their application to experimental data.
Example: As a simple example let us consider a system of N independent particles moving in a harmonic potential,

given by the Hamiltonian

H =
∑

j

p2
j

2m
+
mω2

2

∑

j

x2
j (6)

when the phase space volume available at the energy E is

Ω(E) =

N∏

j=1

∫

d3pjd
3qjδ



E −
N∑

j=1

p2
j

2m
− mω2

2

N∑

j=1

x2
j



 . (7)

We can use 3N dimensional momentum and coordinate variables p and q to write

Ω(E) =

∫

d3Npd3Nqδ

(

E − p2

2m
− mω2

2
x2

)

(8)

which gives after the change of integral variable |p| → K = p2

2m , |x| → U = mω2

2 x2

Ω(E) = C

∫ ∞

0

dKdUK3N/2−1U3N/2−1δ(E −K − U) (9)

where C = S2
3N (4/ω2)3N/2/4, Sd being the solid angle in dimension d. The integration over U can be carried out

yielding

Ω(E) = C

∫ E

0

dK[K(E −K)]3N/2−1

= C

∫ E

0

dKe(
3N
2 −1) ln[K(E−K)]. (10)
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The integrand is proportional to the probability distribution p(K) of the kinetic energy. The down-turned parabola
K(E−K) in the logarithm function has a maximum at Kmax = E/2 and the large, O (N) coefficient of the logarithm
function makes a sharp peak in p(K) at Kmax. Therefore, it is good approximation for large N to approximate
the logarithmic function in the exponent by its leading order expansion around its maximum and choosing more
convenient lower integration limit,

Ω(E) = C

∫ E/2

−E/2

dke(
3N
2 −1)[ln E2

4 +ln(1− 4k2

E2 )] ≈ Ce(
3N
2 −1) ln E2

4

∫ ∞

−∞

dke−( 3N
2 −1) 4k2

E2 (11)

where k = K − E/2. Straightforward Gaussian integral gives

Ω(E) = C

(
E2

4

) 3N
2 −1

E

√
π

6N − 4
∼ EO(N) (12)

displaying the extensive nature of the entropy.
One can easily obtain the average value and the fluctuation of the kinetic energy,

〈K〉 =

∫
dk(
(
E
2 + k

)
e−( 3N

2 −1) 4k2

E2

∫
dke−( 3N

2 −1) 4k2

E2

=
E

2
= O (N)

〈(K − 〈K〉)2〉 =

∫
dkk2e−( 3N

2 −1) 4k2

E2

∫
dke−( 3N

2 −1) 4k2

E2

= − 1

6N − 4

∂

∂E−2
ln

∫

dke−( 3N
2 −1) 4k2

E2 =
E2

12N − 8
= O (N) (13)

showing that average fluctuation of the kinetic energy of a single particle is

√

〈(K − 〈K〉)2〉
N

= O
(

1√
N

)

, (14)

the average can safely be replaced by the position of the maximum of the probability distribution in the thermo-
dynamical limit. This is the simplification which emerges in the limit N → ∞ and leads to simple, deterministic
equations for the peak of the probability distributions.

B. Randomness and macroscopic physics

The ergodic hypothesis suggests the presence of some fluctuations in the system, described by the ensembles. There
is no problem accepting these fluctuations in the case of an open system. But where do such fluctuations come from
in a closed system? We shall see that there are no macroscopic isolated systems, more precisely the impossibility of
isolation and macroscopic behavior are equivalent. This is the genuine quantum effect.
Let us consider 1g gas of hydrogen, pressed into V = 1cm3 and isolated in a box at temperature T = 100K. It

contains N ≈ 6 · 1023 atoms, each having approximately

K =
3

2
kBT ≈ 1.5 · 1.4 · 10−16 · 100 ≈ 10−14erg (15)

kinetic energy. We use CGS units in this section. Thus the average velocity square is

v2 =
3kBT

m
≈ 3 · 1.4 · 10−16 · 100

1.7 · 10−24
≈ 1010cm2s−2 (16)

and the average velocity turns out to be v ≈ 105cms−1. The average separation between the atoms is

r0 =

(
V

N

)1/3

≈ 10−8cm. (17)

Therefore, the microscopic time scale, separating two consecutive collision of an atom is

τmicr =
r0
v

≈ 10−13s. (18)
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The number of interactions in a second with the environment, the container, is

Ne =
1

τ micr

V 2/3

r20
≈ 1029. (19)

Let us assume that a very small fraction, say 10−10, of these collisions are inelastic, this gives us 1019 energy changing
elementary interactions with the environment per second. Each of them involves approximately ∆K = kBT =
10−14erg energy exchange.
Suppose that the gas is in a stationary state, one of the egienstates of its Hamiltonian which does not include the

interaction with the environment, the wall of the container. The importance of the interaction with the environemnt
which generates a non-trivial evolution for this state in time can be measured by the average time needed to reach
another stationary state of the gas. In fact, the stationary states are orthogonal and the interaction with the envi-
ronment is efficient if this time is short compared to the observational time. We shall estimate the inverse of this
time, the average energy levels traversed by the gas in one second. The gas changes its energy by approximately
∆E = 1019∆K and the density of the energy levels,

Ω(E) ≈ Ω0

E1

(
E

E0

)N

, (20)

a generalization of the behavior, found for noninteracting oscillators yields

Ntr = Ω(E)∆E = 1019∆K
E1

Ω0

(
E

E0

)N

≈ 10c·10
23

, (21)

with c = logE/E0 ≫ 1 as the number of energy levels traversed in a second. Sucha double (streched) exponential is
an unusually large number and shows the paramount importantce of the interaction with the environment for such a
macroscopic amount of gas.
Such a large, double exponential number of collision renders isolation illusory in macroscopic physics. The environ-

ment can never be ignored, the apparent isolation of large system is due to the order of magnitude of the observed
quantities only. As soon as our observation starts to resolve quantum scales the environment becomes inseparable.
This mechanism, the decoherence, which is at the heart of the transition from quantum to classical physics is actu-
ally the driving force of the universal, statistical features of systems which are weakly coupled to their macroscopic
environment.

C. Heat exchange

The postulates, introduced so far for closed systems are not too realistic and we have to go beyond them and
to allow at least energy exchange. For this end we split our system into subsystems and study the effects of the
interactions among them. The average distance where the particles making up the system interact is crucial in our
simple considerations. The range of interaction should be neither too short nor too long.

• Particles should interact at long enough distances to assure relaxation which drive each subsystem towards its
local equilibrium.

• We would like to characterize the subsystem by their energies. These energies are useful only if they are
individually conserved. But interactions between the subsystems lead of the exchange of some energy. If this
interaction energy is negligible compared to the subsystem energy the latter is approximately conserved. This
is certainly the case if the range of the particle interaction is short enough.

A well known, realistic case where this latter condition is not met is gravitation interaction. Gravity is not screened
at long distances like the Coulomb interaction and may rule out thermal equilibrium.
Let us now split our system into two subsystems. Relying on the assumptions mentioned above we introduce the

Hamiltonians Hj , j = 1, 2 of the two systems whose equilibrium before attaching them to each other can be described
by two microcanonical ensembles, characterized by the Boltzmann entropies Sj(E, V ) = lnΩj(E)/Ω0. When the two
systems are brought into contact then the total Hamiltonian is supposed to be H = H1+H2, by ignoring the numerical
value of the interaction energy with respect to the individual energies. What is the probability distribution of the
system energies Ej in the common equilibrium state? Let us calculate the probability distribution of the energy of
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the total system. The joint system is closed and its equilibrium state can be described by a microcanonical ensemble
where the probability is proportional to the accessible phase space volume,

Ω(E) = Ω0e
S = ∆E

∑

n

Ω1(n∆E)Ω2(E − n∆E) (22)

for sufficiently small ∆E. We assume that the subsystems are sufficiently large thus their individual phase space
distribution is strongly peaked. In this case a lower and an upper bound can easily be obtained for the sum of
nonnegative contributions. It must at least as large as the largest contribution at the peak and can not be bigger that
this contribution multiplied by the number of terms in the sum. Furthermore, it is better to work with the logarithm
of such a fast varying terms and we find

ln[Ω1(Emax)Ω2(E − Emax)] < S(E) < ln
E

∆E
+ ln[Ω1(Emax)Ω2(E − Emax)], (23)

for large enough systems where the term ln∆E/Ω0 can be neglected. Let us estimate the different terms in this
inequality. We have E = O (N) and lnΩ(E) = O (N) according to the estimate (20). Thus lnE/∆E is negligible and
we have

S(E) = [S1(Emax) + S2(E − Emax)]

(

1 +O
(
lnN

N

))

(24)

and the uncertainty due to the choice of the width of the energy shell is negligible for macroscopic systems. Considering
the right hand side as the function of Emax we have

∂S1(E)

∂E |E=E1

=
∂S2(E)

∂E |E=E2

(25)

at the maximum. The definition

1

T
=
∂S(E)

∂E
(26)

of the inverse temperature shows that the energies of the subsystems settle where the temperature of subsystems
agrees. Since the entropy is a monoton function of the temperature for macroscopic systems the temperature could
be used to control the energy. This is realized in such a manner that the reaching of the equilibrium of the energy
exchange between two systems is indicated by the agreement of their temperature.
Let us suppose that we are interested in the sub system 1 which is mauch smaller than the total system. Then

E1 ≪ E2, S1 ≪ S2 and the dominance of the available phase space volume (22) by the maximal contribution
establishes the approximation

Ω(E) = Ω0e
S ≈ Ω0e

S2 ≈ Ω(E)e−
E1
T

[

1 +O
((

E1

E

)2
)]

. (27)

The dependence of the available phase space on the energy of the observed system is interesting, yielding the non-
normalized probability distribution of the canonical ensemble,

p(E1) = e−
E1
T (28)

in the thermodynamical limit of the full, isolated system since the available phase space is proportional to the
probability. One can construct similar argument for any interaction which can affect an additive quantity and
construct an intensive potential for each extensive thermodynamical variable which controls the equilibrium with
respect to the exchange of the extensive quantity.
This argument seems too general and raises the question of its limit of applicability. We decided to monitor

certain quantities, called thermodynamical variables and ignore the remaining degrees of freedom. Such a restricted
description allows us to control a small fraction of the possible interactions only in a deterministic manner. The
remaining interactions are responsible of the probabilistic nature of our description and the eventual irreversibility.
One can nicely separate these two channels of interactions by considering the thermodynamical variables as expectation
values of some random variables. The detailed, deterministic part of our description identifies the possible values,
the spectrum of the random variables and the probabilistic features yield the probability distribution. In fact, let us
consider the change of the energy

E = 〈H〉 =
∑

n

pnEn (29)
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written as

∆E = ∆W +∆Q, (30)

where

∆W =
∑

n

pn∆En = 〈∆E〉 = ∆〈E〉 (31)

is due to the shift of the energy levels, the part of the energy exchange which is used to change the deterministic,
controlled part of the system and will be called work performed by the system. The second term,

∆Q =
∑

n

∆pnEn = ∆E −∆W, (32)

the part of the energy received which is turned into the uncontrolled, ”random” components of the system is called
heat. Note that Eq. (30) is actually the first law of thermodynamics. Our argument about the origin of temperature
as the control of thermal equilibrium is applicable to the heat exchange.
The approximate result (20) for the entropy allows us to establish a simple relation between the temperature and

the average energy of a degree of freedom. In fact, we have

S(E) = N lnE (33)

up to an energy independent constant which yields together with Eq. (26)

E

N
= T. (34)

The equipartition theorem states that the kinetic energy of a degree of freedom of a harmonic system is

Ekin

N
=

E

2N
=
T

2
. (35)

D. Information

The postulates enumerated in Section IA are rather unusual. They might be rendered more plausible by introducing
the information content of a probability distribution. We start with the intuitive construction of the quantity of our
missing information, I[p] by considering a series of independent trials whose outcome j ∈ [1, . . . , n] follows the
probability distribution p = (p1, . . . , pn). We shall use discrete random variables for the sake of simplicity. We need
probability when information is missing about a deterministic, classical system. In other words, the emergence of
probability indicates that we lack some informations. The quantity of the missing information, if well defined, can
depend only on the probability distribution. For instance, the probability distribution pj = δj,1/n corresponds to a
deterministic situation and no information is missing. Any spreading of such a peaked distribution reflects the loss of
some informations.
To be more specific, let us consider the case of a ball which can be placed in one of n equivalent urns. Once the

ball is hidden in one of the urns, in each if them with the same probability pj = 1/n, our missing information, In,
can be obtained by requiring the following properties:

1. In′ > In for n′ > n

2. I1 = 0

3. Composition law: let us place in each of the n urns m smaller urns. Then we miss not only the information
concerning the large but the small urn, too,

Inm = In + Im. (36)

The solution is clearly

I = lnΩ (37)
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among the continuous functions where Ω = n denotes the number of accessible states. This solution is unique up
to a multiplicative constant which allows us to use choose the base of the logarithm function by convenience. The
similarity of Eqs. (3) and (37) suggests that the missing information can be identified with the entropy, at least in
the microcanonical ensemble. We shall argue below that this equivalence remnains valid inother ensembles, as well.
Let us now make one step further and consider the case of inhomogeneous probability distributions. First we

follow a heuristic argument generalizing point 3 above. Assume that a ball placed into one of N positions with equal
probability and we regroup the positions into ℓ groups each of them containing nj positions, j = 1, . . . , ℓ,

∑

j nj = N .

The group j is chosen to place the ball with probability pj = nj/N . We now seek the missing information I[p] about
the positioning of the ball with respect to the groups. This information must be the function of the probability
distribution pj alone. The total information missing because the ball is placed at any position is It = lnN . To arrive
at I[p] we should take out from It the information Ig which is missing due to the different positioning within the
groups because we are interested in the group only. The average of the remaining missing information due to the
unknown location within the groups is

〈Ig〉 =
ℓ∑

j=1

pj lnnj (38)

according to Eq. (37) and we find

I[p] = It − 〈Ig〉 = −
ℓ∑

j=1

pj ln pj. (39)

The argument which is closer to the spirit of statistical physics is based on counting the number of available states.
Consider a series of N exchangeable (order is irrelevant) numbers, j1, . . . , jN , jk ∈ {1, . . . , n}, in such a manner that
P (jk = j) = pj and define the missing information, the information residing in this series as

I[p] = lnΩ[p], (40)

where the number of possible series which yield the same distribution is

Ω[p] =
N !

∏

j(Npj)!
. (41)

We use Stirling’s formula, lnn! ≈ n lnn− n, to write the

I[p] = N lnN −N −N
∑

j

pj lnNpj +N
∑

j

pj

= −N
∑

j

pj ln pj . (42)

Note that the quantities as expectation values are well defined for numerical random variables only. But the
information should be possible define for non-numeric variable, eg. for the distribution of the eye or hair color of a
given set of people. The missing information per symbol,

S[p] =
I[p]

N
=
∑

j

pj ln pj = −〈ln p〉, (43)

is the expectation value of ln p up to a sign and is well defined for non-numeric random variables, too.
Is it possible to give a more definite, quantitative definition of the information I[p]? Let us suppose that we receive

a string of bits, each of them is 0 or 1. What is the minimal number of questions to pose in order to find out the
actual string? The answer naturally depends on what do we know already about the string. Let us consider now the
worst scenario, the absence of any knowledge. The optimal strategy of questions is obviously that one which splits
the possibilities into two equal parts, therefore we can reconstruct a binary series of length at most N = 2NQ by NQ

questions. In the language of statistical physics we have a microcanonical ensemble, Ω = 2NQ and each string has the
same probability in lacking of other informations. How does this result change if we know the probability distribution
of 0 and 1 in the string? The number of strings, compatible with the known probability distribution is given by Eq.
(41). By asking NQ optimized questions we can identify the actual string in this reduced phase space, 2NQ = Ω[p].
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We use now the freedom of choosing a multiplicative factor in Eq. (37) by using the logarithm function with base 2
and write

Ω[p] = 2I[p] = 2−N
∑

j pj ln2 pj (44)

showing that we can recover the missing information by asking

missing information

character
=
I[p]

N
= S[p] = −

∑

j

pj ln2 pj (45)

appropriate questions per bit (Shannon). This quantity can be identified by the information we gather by each optimal
question, the logarithm of the accessible volume per symbol.
Few important properties of the missing information are the following.

1. Lower bound: S[p] ≥ 0

2. Minimizing distribution: S[p] assumes its minimum, S[p] = 0, at pj = δj,k, k ∈ {1, . . . , n} where S[p] = 0.

3. Maximizing distribution: Let us consider a generalization, based on a concave function F (x) = xf(x),

F

(∑

j wjxi
∑

j wj

)

≥
∑

j wjF (xi)
∑

j wj
. (46)

Then S[p] =
∑

j F (pj) reaches its maximum at pj = 1/n. Proof: wj = 1, xj = pj

F

(
1

n

)

≥
∑

j F (pi)

n
(47)

and
∑

j F (pj) ≤ nF (1/n). In particular, Imax[p] = lnn for f(x) = − lnx.

4. Additivity: Let P = (p1, . . . , pn) and Q = (q1, . . . , qm) two probability distributions for the independent
random variables A = {a1, . . .} and B = {b1, . . .}. The missing information in these variables is

S(A⊗B) = −
∑

a,b

p(a)q(b) ln p(a)q(b)

= −
∑

a,b

p(a)q(b)(ln p(a) + ln q(b))

= −
∑

a

p(a) ln p(a)−
∑

b

q(b) ln q(b)

= S(A) + S(B). (48)

The property number 3 is valid for any concave function xf(x). The specialty of the choice f(x) = − lnx is the
additivity for factorisable distributions.

5. Unicity: The function S[p] = S(p1, . . . , pn) is necessarily given by Eq. (42) up to a multiplicative constant if it

(a) is continuous for pj ≥ 0,
∑

j pj = 1,

(b) assumes its maximum at pj = 1/n,

(c) satisfies the following composition law: Let us consider the set of n symbol {s1, . . . , sn}, each of them
realized with probability P (s = sj) = pj , regrouped in ℓ subsets,

{s1, . . . , sn} = {(si1 , . . . , sj1), (si2 , . . . , sj2), . . . , (siℓ , . . . , sjℓ)}, (49)

with i1 = 1 and jℓ = n. The conditional probability for si within the subset k is pi|k = pi/wk, with
wk =

∑

j pj , where the summation is over the elements of the subset. The information represented by a
symbol can be obtained as the sum of information corresponding to its subset and the expectation value
of the information composed by the conditional probability,

S(p1, . . . , pn) = S(w1, . . . , wℓ) +

ℓ∑

k=1

wkS(pik|k, . . . , pjk|k). (50)
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E. Correlations and informations

The relation between two numerical random variable is expressed in terms of correlations. In case of non-numerical
variables we need another way of handling correlations. Information proves to be useful in this problem, as well.
Let us now return to the the variables A = {a1, . . . } and B = {b1, . . .}, introduced above except that they are not
independent, their joint probability distribution being p(a ∩ b). This probability distribution gives rise the missing
informations

S(A⊗B) = −
∑

a,b

p(a ∩ b) ln p(a ∩ b) (51)

and the marginal distributions p(a) =
∑

b p(a ∩ b), p(b) =
∑

a p(a ∩ b) yield

S(A) = −
∑

a

p(a) ln p(a), S(b) = −
∑

b

p(b) ln p(b). (52)

The mutual information S(A : B) is defined by the equation

S(A⊗B) = S(A) + S(B)− S(A : B) (53)

which gives

S(A : B) =
∑

a,b

p(a ∩ b)[ln p(a ∩ b)− ln p(a)− ln p(b)]

=
∑

a,b

p(a ∩ b) ln p(a ∩ b)
p(a)p(b)

. (54)

It satisfies the inequality

S(A : B) ≥ 0 (55)

where the equation holds only if A and B are independent. To prove this it is advantageous to introduce the notation
q(a ∩ b) = p(a ∩ b)/p(a)p(b) which allows us to write

S(A : B) =
∑

a,b

p(a)p(b)q(a ∩ b) ln q(a ∩ b). (56)

In the next step we need the inequality q ln q ≥ q − 1 where the equality is observed for q = 1 only. It can be verified
by observing that q(ln q − 1) + 1 assumes its minimum at q = 1. This inequality assures

q(a ∩ b) ln q(a ∩ b) > q(a ∩ b)− 1 (57)

which in turn gives

S(A : B) ≥
∑

a,b

p(a)p(b)[q(a ∩ b)− 1] =
∑

a,b

[p(a ∩ b)− p(a)p(b)] = 1− 1 = 0 (58)

with equality for p(a ∩ b) = p(a)p(b).
The missing information when the variable b is known,

Sb(A) = −
∑

a

p(a|b) ln p(a|b) (59)

gives on the average the conditional information

S(A|B) = −
∑

b

p(b)Sb(A) = −
∑

a,b

p(a ∩ b) ln p(a ∩ b)
p(b)

. (60)
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S(B)

S(A:B) S(B|A)S(A|B)

S(A)

FIG. 1: Wenn diagram for two random variables.

The conditional information, S(A|B) represents the information in S(A ∩B) beyond P (B) since

S(A⊗B) = −
∑

a,b

p(a|b)p(b) ln p(a|b)p(b)

= −
∑

a,b

p(a|b)p(b) ln p(a|b)−
∑

b

∑

a

p(a|b)
︸ ︷︷ ︸

1

p(b) ln p(b)

= S(A|B) + S(B). (61)

The situation is nicely summarized by the Wenn diagram of Fig. 1.
It is sometime useful to introduce the relative information of two probability distributions corresponding to the

same random variable. Let us consider the probabilities P = {p(a)} and P ′ = {p′(a)}, their relative information is

S(P/P ′) = −
∑

A

p(A) ln
p(A)

p′(A)
. (62)

It is easy to see that S(P/P ′) ≤ 0 and the equation holds for p′(a) = p(a) only. To see this we write the relative
information as

SA′(A) = −
∑

A

p′(A)
p(A)

p′(A)
ln
p(A)

p′(A)
(63)

and use the inequality (46) for the concave function −x lnx,

SA′(A) ≤ −
(
∑

A

p′(A)
p(A)

p′(A)

)

ln

(
∑

A

p′(A)
p(A)

p′(A)

)

= 0. (64)

F. Maximal entropy principle

It is useful to introduce the subjective information, a probability variable represents for us, defined by Is[p] = −I[p].
This definition makes the total information in the subject-object system Is + I = 0 conserved. We can now address
the problem of statistical inference, the extraction of an optimal probability distribution from the knowledge of some
of its expectation values. Suppose that a random event occurs N -times, (x(t1), . . . , x(tN )), x(tj) ∈ {x1, . . . , xn} and
we measure the average of some functions fk(x), k = 1, . . . ,m. What is the best guess for the distribution of the
events assuming the knowledge of the averages

1

N

∑

j

f(x(tj)) = F (65)

of our observed quantities? The principle of maximal entropy (MAXENT) finds the probability distribution p(x|F )
by minimizing our informations Is[p] by keeping the constraints

∑

j

pjf(xj) = F . (66)
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This is obviously equivalent with maximizing the missing information, I[p]. Note that due to the convexity of x ln x
the minim will be absolute. Thus this principle is optimal in what it preserves all information without introducing
other bias.
The explicit construction of the minimal information distribution is achieved by means of Lagrange multipliers, by

maximizing the function

SF = −
∑

j

pj ln pj + (1− λ0)(
∑

j

pj − 1) + λ(F −
∑

j

pjf(xj)) (67)

in the probability distribution {p1, . . . , pn} and the parameters λ0, λ. The extremal conditions for pj fixes the
probability distribution,

∂

∂pj
: 0 = − ln pj − 1− λ0 + 1− λf(xj), pj = e−λ0−λf(xj). (68)

The maximum for λ0 yields the partition function

∂

∂λ0
: 1 = e−λ0Z(λ), Z(λ) =

∑

j

e−λf(xj) = eλ0 , (69)

and finally the maximization over λ gives the sum rules to express expectation values as the logarithmic derivatives
of the partition function,

∂

∂λ
: F = e−λ0

∑

j

f(xj)e
−λf(xj) =

1

Z(λ)

∑

j

f(xj)e
−λf(xj) = −∂ lnZ(λ)

∂λ
. (70)

The value of the maximal entropy is

Smax = −
∑

j

pj ln pj

=
∑

j

e−λ0−λf(xj)[λ0 + λf(xj)]

= λ0 + λF . (71)

What is the relation between the entropy used in MAXENT and in Physics? Entropy is introduced in thermody-
namics as a state function, a sum of the heat exchange weighted by the inverse absolute temperature along a reversible
path over equilibrium states

S =

∫
δQ

T
. (72)

Another proposal, coming from Boltzmann is given by Eq. (3). Finally, Gibbs proposed the form

S = −
∫

d3Npd3NqP (p, q) lnP (p, q) (73)

where P (p, q) denotes the probability density of the system in the phase space. The similarity of this expression with
Eq. (42) shows the equivalence of the Gibbs and the information based entropies. The comparison of Eqs. (3) and
(40) reveals the identity of the Boltzmann entropy with the previous two. The different ensembles will be introduce
below in such a manner that the these three entropies become numerically equivalent with the thermodynamical one.

G. Ensembles

All ensembles of Statistical Physics can be obtained by the application of the Maximal Entropy Principle. The
closed system of particles, considered in Section I is characterized by its energy E, volume V and particle number N .
No other information is available, m = 0, thus the MAXENT principle identifies the uniform probability distribution
which contains no information beyond the known energy value. The partition function is

Z(E, V,N) =
∑

j

δE,Hj → Ω(E, V,N) =

∫
d3Nxd3Np

N !(2π~)3N
δ(E −H(p, x)) (74)
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according to the second equation in Eqs. (69). In the first, formal expressions we sum over different micro states.
In the more detailed expressions the micro states are characterized by continuous variables and the summation turns
into integration. Furthermore, the volume element of a micro state is chosen to be (2π~)3 to comply with Heisenberg
uncertainty relation and the multiplicative factor 1/N ! is inserted to render the entropy an extensive quantity by
identifying micro states obtained by the permutation of the identical particles of the system, to be discussed later.
The Gibbs entropy, given by Eq. (71) is

S(E, V,N) = −
∑

j

pj ln pj → lnΩ. (75)

where the normalization
∑

j pj = 1 was used in the second equation. This relation establishes the numerical equiva-
lence of the Boltzmann and the Gibbs entropies for the microcanonical ensemble.
The natural variable of the Gibbs entropy is the energy and the volume of the system, S(E, V,N). The equivalence

of the thermodynamical and the Gibbs entropy will be reached by defining the inverse temperature by

β =
∂S(E, V,N)

∂E
, (76)

cf. Eq. (72). The flow of the energy caused by the change of the volume defines the pressure,

βp =
∂S(E, V,N)

∂V
. (77)

In the view of the fast orthogonalization of the state by the interactions with its environment mentioned in Section IB
the microcanonical ensemble, derived for isolated systems is a rather idealized concept. It serves as a starting point
to construct more realistic ensembles corresponding to certain open interaction channels between the system and its
environments.
Let us first allow energy exchange with the environment. The the energy is not fixed anymore, it is distributed by

some probability and we can control its expectation value only. Then the probability distribution for the micro states
will be chosen by minimizing its information content by keeping the energy average fixed. We have a single function,
f1 = H to keep fixed, m = 1. The corresponding Lagrange multiplier is usually written as λ1 = β = 1/T to convert
Eq. (70) into the usual relation

E = 〈H〉 = −∂ lnZ(β, V,N)

∂β
. (78)

The canonical partition function

Z(β, V,N) = e−βA(β,V,N) =
∑

j

e−βHj →
∫

d3Nxd3Np

N !(2π~)3N
e−βH(x,p) (79)

is obtained by means of the second equation in Eqs. (69). Therefore,

p(E) =
1

Z
e−βE (80)

gives the canonical probability distribution of the energy levels. The Gibbs entropy is expressed as

S = β(E −A) (81)

according to Eq. (71).
It is instructive to write

∆S = ∆(−
∑

n

pn ln pn)

= −
∑

n

(∆pn) ln pn

= β
∑

n

En∆pn

= β∆Q (82)



15

TABLE I: Legendre transformation of the thermodynamical potentials in the energy representation, starting with E(S,N, V ).

Potential Legendre transformation New variable Transformed function Alternative form

Enthalpy −E(S,N, V ) → H(S,N, p) p = ∂(−E)
∂V

H = E + pV H = TS + βµN

Helmholtz free energy −E(S,N, V ) → A(T,N, V ) −T = ∂(−E)
∂S

A = E − TS A = −pV + µN

Gibbs free energy −A(T,N, V ) → G(T,N, p) p = ∂(−A)
∂V

G = E − TS + pV G = µN

Grand potential −A(T,N, V ) → Ω(T, µ, V ) −µ = ∂(−A)
∂N

Ω = E − TS − µN Ω = −pV

where the relation
∑

n ∆pm = 1 was used in the second equation, the canonical probability distribution (80) is used
in the second third equation and finally, the last line follows from Eq. (32). This result and the sum rule (78)
compared with Eq. (72) yield the equivalence of the thermodynamic entropy and inverse temperature with S and β
and identifies A as the Helmholtz free energy.
When both energy and particle exchange are allowed then we keep two expectation values fixed in the minimization

of the information of the probability distributions, the energy and the particle number of the system. Thus m = 2
and we write f = (H,N), λ = (β,−βµ). The corresponding grand canonical partition function is

Z(β, V, µ) = eβp(β,V,µ)V =
∑

j,N

e−β(Hj−µN) →
∑

N

∫
d3Nxd3Np

N !(2π~)3N
e−β(H(x,p)−µN) (83)

and yields the expression

S = β(E + pV − µN). (84)

The sum rule

E = 〈H〉 = −∂βV p(β, V, µ)
∂β

(85)

assures us that the function p introduced in the exponent of the grand canonical partition function of Eq. (83) is
indeed the pressure. This result turns Eq. (85) into the fundamental equation of thermodynamics, the Euler equation.
The Gibbs entropy is given in terms of the probability distribution which is different for different ensembles. The

identification with the Boltzmann entropy mentioned in the case of the microcanonical ensemble must be extended
for the other ensembles. Such an explicit demonstration of the equivalence of the ensembles can be achieved by
means of the asymptotic equipartition theorem of information theory. This theorem applies for distributions p(X)

which peak with width O
(

1/
√
N
)

in the thermodynamical limit. The prediction of the ensembles naturally differ for

finite systems, the unique result is recovered in the thermodynamical limit, N → ∞ only. Let us chose a probability
0 < p < 1, introduce a region R of the phase space around the peak of the distribution function p(X) in such a
manner that the probability of finding the system in R is p,

∫

X∈R

dXp(X) = p (86)

and define the Boltzmann entropy of this probability distribution as

SB(p) = ln
1

Ω0

∫

X∈R

dX (87)

where Ω0 is a reference volume. This entropy can be written as the sum of a p-independent and a p-dependent part.
According to the theorem the p-dependent part of this entropy is o(N), ie. the Boltzmann entropy density,

lim
N→∞

SB(p)

N
= sB (88)

is p-independent. This property allows the identification of the Boltzmann entropy with that which was obtained by
Shannon and is consistent with our information of the system.
Observe that when a new interaction channels opens then the maximum of the entropy is parametrized by the

corresponding Lagrange multiplier instead of a sharply fixed physical quantity. What happens is that we seek the
maximum in terms of a new variable, the derivative of the entropy with respect to the previous one, the physical
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quantity in question. Such a reparameterization of the search of an extremal is described by the Legendre transfor-
mation, introduced in Appendix A. The natural variables of the partition function Z in Eqs. (69) are the λ, the
Lagrange multipliers and Eq. (70) describes the change of variables and the function − lnZ, cf. Eq. (A2). One
talks about the energy or entropy representation of the thermodynamical potentials when the entropy S(E,N, V ) or
energy E(S,N, V ) is used as the starting point for the different Legendre transformations. The potentials, listed in
Table I are based on the energy representation, starting with the functions −βE(S,N, V ). The last column of the
table follows from the Euler relation (85). The table shows the thermodynamical potentials as they were defined
historically. The systematic Legendre transformation would be based on the variable β instead of T and −β times
the potentials, shown.

H. Second law of thermodynamics

The fundamental laws of Physics, weak interactions left aside, remain unchanged when the direction of time is
flipped. Nevertheless, one observes the breakdown of the time reversal invariance, the setting of a time arrow, on
different levels:

1. Radiation: The retarded solutions of the Maxwell equations seem to be in agreement with our epxerience, the
advanced solutions do not fit to our world.

2. Thermodynamics: The second law of thermodynamics,

dS(t)

dt
≥ 0 (89)

prefers the forward going time.

3. Quantum mechanics: The phase difference between macroscopically different states is lost during a measure-
ment or observation.

4. Gravitation: The space-time singularity of the Big Bang sets the motion of the time in one direction.

Presumably these time arrows are not independent, all of them should come from level 4 where the time is actually
constructed. But we now ignore their correlation and consider level 2 only, the breakdown of time reversal invariance
as known from thermodynamics. The main point to underline is that this time arrow which is difficult to understand in
terms of microscopic, reversible equations of motion, comes from the inevitable interactions of a macroscopic system,
with its environemnt. These interactions, together with the boundary conditions in time, imposed for the environment
lead to a preferred direction of time in statistical physics.
Let now consider systems A and B in thermal equilibrium, at temperature TA and TB. The probability distributions

are chosen by minimizing their free energy A = E−TS. Then we bring them into contact with each other by allowing
exchange of energy between them. The Liouville theorem states that the evolution of a classical system always
preserves the phase space volume and with it the informational entropy. The time evolution is unitary in quantum
mechanics and the informational entropy is also preserved. Therefore, the Gibbs-entropy which assumes the value
S(A ∩B) = S(A) + S(B) before the contact was established remains a constant of motion.
Let us denote the change of a quantity X before and after the establishment of the contact between the systems

by ∆X = Xfinal −Xinitial. The energy exchange represents heat therefore we have ∆E = Q. The conservation of
the full entropy gives ∆S12 = 0 what can be written by means of Eq. (53) as

∆S(A) + ∆S(B) = ∆S(A : B). (90)

The heat exchange forces the two systems to change their probability distributions, in particular to give up the initial
independent equilibrium states. Since A = E − TS was minimized for each system before the contact the states after
the contact must obey the inequality

βQ −∆S ≥ 0 (91)

for both systems which can be written as

β(A)Q(A) + β(B)Q(B) ≥ ∆S(A) + ∆S(B) = ∆S(A : B). (92)

Energy conservation, Q(A) +Q(B) = 0 yields the inequalilty

Q(A)

(
1

T (A)
− 1

T (B)

)

≥ ∆S(A : B). (93)
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The two systems were independent before bringing them into contact hence Sinitial(A : B) = 0, and ∆S(A : B) =
Sfinal(A : B) ≥ 0. This establishes the second postulate of thermodynamics: (i) The sum of entropies of the two
systems is non-decreasing, ∆S(A) + ∆S(B) ≥ 0 and (ii) the inequality (93) assures that heat flows from the warmer
to the colder system.
One should keep in mind that the correlations between the two components, A and B are crucial in these consid-

erations. Since the total entropy S(A ∩B) is conserved the system entropies, S(A) and S(B) display non-decreasing
nature if and only if S(A : B) is non-decreasing. The entropy increase in a sub-system is always balanced by the same
increase of the mutual entropy of the system and its environment. One may say that it is this latter, the ever increas-
ing entanglement among sub-systems which drives the increase of the sub-system entropies. As soon as the mutual
entropy decreases the system entropies decrease, as well and the thermodynamical time arrow is flipped. One suspect
that by starting with specially rearranged initial conditions where the sub-systems are strongly correlated the mutual
information may decreases. What kind of independence is needed in the initial conditions to remain in conform with
the second postulate of thermodynamics? It is argued below that the independence we need for the second postulate
between a system and its environment is the existence of (thermodynamical) variables which characterise the state of
the system in a unique, reproductible manner.
The see how this happens let us assume that our system is in equilibrium with its environment at the initial time

t and this equilibrium state can be characterized by Φ, a collection of thermodynamical variables. Furthermore we
define macro and micro states. A micro state is a point in the phase space, it denotes a fully identified state of our
system, including all information about it. The macro state represents our partial information about the system, it
is defined for each set of thermodyanmical variables, Φ, and it consists of micro states which are compatible with
Φ. The volume of the macro state in the phase space is denoted by Ω(Σ(Φ)). The entropy, or the volume where
the probability, given by the maximal entropy principle is concentrated is well defined according to the asymptotic
equipartition theorem.
Let us now suppose that the time evolution brings our system, considered isolated from its environment, from the

thermodynamical state Φi at time ti into another equilibrium state Φf at time tf in a reproducible manner. Each
observation carried out on the system follows the time evolution of a single micro state and reproductibility of the
experiment is the claim that any micro state of Σ(Φi) evolves into a micro state of Σ(Φf ). To phrase this in a
mathematical statement we introduce the time evolution map, Uf : R6N → R

6N for the points, the micro state in
the phase space by the definition Ut′,t(x(t), p(t)) = (x(t + t′), p(t+ t′)), where the trajectory (x(t), p(t)) is generated
by the detailed, elementary equations of motion with couplings to the environment ignored. Reproductibility is the
inclusion

Utf ,ti(Σ(Φi)) ⊂ Σ(Φf ), (94)

where U(Σ) denotes the image of the phase space region Σ after the time evolution. According to Liouville theorem,
based on the equations of motion of the isolated system the volume of the macro state is,

Ω(Σ(Φf )) = Ω(Utf ,ti(Σ(Φi))). (95)

The comparison with Eq. (94) yields

Ω(Σ(Φi)) ≤ Ω(Σ(Φf )). (96)

By taking the logarithm of this inequality we arrive at the second law,

S(Φi) = lnΩ(Σ(Φi)) ≤ ln Ω(Σ(Φf )) = S(Φf ). (97)

In the absence of environment the system dynamics is reversible, the inclusion in (94) would hold for the time
reversed system in the opposite direction, as well, leading to Utf ,ti(Σ(Φi)) = Σ(Φf ) and the conservation of entropy.
But the interactions with the environment, the leakage of information, allows that the macro state Σ(Φf ) becomes
“polluted”, to contain micro states which are not the result of a possible experiments, starting with Φi, without
contradicting to our experimental finding, the reproductibility of the transition Φi → Φf . Therefore the equality in
(97) holds for reversible reproducible processes.
Several remarks are in order at this point.

1. The argument presented above is not relying on any specific feature of the thermodynamical variables Φ. What
was important is that the set of parameters Φ provides a sufficiently detailed specification of the system for
reproducibility. The most natural experimental way to make sure the sufficiency of Φ is to wait until the system
”forgets” the special features of its initial condition, in other words to assume that the initial and final states of
the second law correspond to equilibrium and use the time honored set of thermodynamical variables as Φ.
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FIG. 2: The second law of thermodynamics: phase space volume of a macro state can not decrease during reproducible changes
Φi → Φf of the thermodynamic variables.

2. Statistical physics is based on the construction of two levels of the physical world, based on the micro and the
macro states. The maximal entropy principle is a bridge between these levels: For each macro state, Φ, we
construct the ensemble of micro states, Σ(Φ), as the best representation of our partial information.

(a) One finds a fully specified system at the fundamental level of micro states, requiring an inhuman quantity
of information to handle. The elementary blocks of the other level, defined by our observations, are the
macro states, comprising the the limited informations, gathered by us, observers.

(b) The volume Ω(Σ(Φ)) is subjective, i.e. an artificial, a mental construction to characterize the system,
based on our partial information. Different experimental setups define different phase-space volumes, in
function of what is controlled, “‘known” experimentally. These volumes are constructed by us and are not
obeying Liouville’s theorem. Hence the entropy is an anthropomorphic, auxiliary construction, based on
the existence of observers.

(c) The maximal entropy principle makes us possible to use our partial information in an optimized and consis-
tent manner. Optimization is provided by removing any preference without actual information possessed,
by the maximization of the entropy. Consistency denotes the property that any observers, possessing the
same information assign the same entropy and make the same predictions. Thus the probability density
and the entropy are objective in this sense and are well defined elements of scientific discussions.

(d) The reproducibility as used above stands for a deterministic law. One may interpret the inequality (97) by
saying that any deterministic law, imposed on quantities which are fixed by partial informations is always
loosing information and produces less predictive results.

3. One might think that the second law of thermodynamics, applied to isolated systems, implies a dynamical
breakdown of the time inversion invariance. But this interpretation is incorrect on the following counts.

(a) The closed system retains its time reversal dynamics and the impression of irreversibility comes rather from
our inability to possess all information. What makes the entropy non-decreasing is the loss of information
about the non-thermodynamical variables. As soon as we possess all information Φ identifies the system
in a unique manner and Ω(Σ(Φ)) = (2π~)3N = Ω0 becomes a constant of motion.

(b) The argument about the non-decreasing of the entropy works in reversed time, too. Once the final state
is specified and the time evolution is used to ”predict” the corresponding initial state then the entropy is
non-increasing in the time which flows backward. The time evolution in phase space preserves the time
reversal invariance, it is our partial information about the system, used to designate the macro states,
becomes obsolete only.

The thermodynamical time arrow, set by the inequality (89) does not originate from the system, it comes rater
from the imposition of the initial conditions for the environment, what we do not know or control.

I. What is entropy after all?

We can now have a more precise view of the entropy. We have seen one part of the picture in Section I F, the
proposition of identifying entropy with our missing information. This reproduces equilibrium thermodynamics. The
other part is dynamics presented briefly in Section IH, concerns the role of entropy played in the time dependence
and we consider now this side more closely. In a process of interaction we trace the energy exchange because the sum
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of the energy is conserved. But the amount of energy exchanged is not sufficient to qualify the consequences of the
interaction because the given exchange may or may not take place, according to the sign of the change of entropy
involved.
Let us start with a closer look on the energy. It is not a directly measurable quantity despite its fundamental use

in the formal weaponry of mechanics. It is useful because it is conserved and characterizes the motion. When we
intend to perform certain task by an engine then we want to send it onto a certain trajectory in the phase space. The
energy is a useful quantity in this process not due to its conservation but rather because it characterizes conveniently
the phase space available for the system. When we say that we give some energy to the system then we give a certain
”push”, come into an interaction with it in such a manner that it is put on the desired phase space trajectory.
The complications start in the thermodynamical or statistical description when we do not wish to follow the complete

dynamics in a detailed manner but we still want to keep some control over the phase space. The energy dE exchanged
between two systems,

dE = λdF + δQ, (98)

is split into two parts, corresponding to the macroscopically identifiable forms of the energy and the rest, called
heat. Macroscopically identifiable energy is controllable and manipulable. The key point is that the uncontrolled
energy exchange channels are less useful because there might be cancellations among unwanted microscopic processes,
decreasing the efficiency of our effort of putting the system on a fixed phase space trajectory. For example we can
convert electric energy into mechanical work with better efficiency than heat because the disordered motion of the
molecules carrying heat leads to strong cancellations whenever the conversion into another form of energy is attempted.
The thermodynamical equation (72), written as

δQ

T
= d lnΩ =

dΩ

Ω
, (99)

shows that the relative change of the accessible phase is to be compared with the amount of the exchanged, uncontrolled
energy. The proportionality constant, the intensive variable controlling the heat exchange is a measure of the efficacy
of the phase-space injection. A given amount of energy yields more gain in relative phase space when the energy
comes in an ordered manner. Energy, injected in a disordered fashion is less efficient to enlarge the phase space due
to the cancellations among the uncontrolled microscopic processes.
Looking from the point of view of tracing the thermodynamical, macroscopic variables then this ”leakage” of energy

into the new phase-space region represents a loss of information. This loss is naturally increasing as the time passes
in whatever direction from the initial state due to the macroscopically undetectable microscopical processes taking
place incessantly.

J. Grand canonical ensemble, quantum case

The discussion so far has been confined into the classical regime. But there are several indications that the basic
postulates of Statistical Physics can be justified on the quantum level. For instance, the order of magnitude estimate
of Section IB relies on the discreteness of the excitation spectrum, a hallmark of Quantum Physics. We shall be
satisfied here to outline the generalization of the maximum entropy principle and the equilibrium ensembles for the
quantum domain.
The extension of the classical ensembles for quantum systems is made by means of the density matrix whose prop-

erties are summarized briefly in Appendix B. A straightforward generalization of the classical Shannon information
is Neumann’s expression

SG[ρ] = −Trρ ln ρ. (100)

The advantageous feature of this expression is its invariance under unitary transformations, ρ → UρU † with U † =
U−1, expressing the conservation of the information of a closed system. Let us denote by fj the observables whose
expectation values,

〈f〉 = Trfρ = F , (101)

are known. The list {fj} usually includes all conserved quantity. The maximization of the function

SF = −Trρ ln ρ+ (1− λ0)(Trρ− 1) + λ(F − Trfρ) (102)
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in ρ is achieved by making the infinitesimal variation ρ → ρ + δρ. To calculate the variation of Trρ ln ρ we use the
identity

eAeB =

(

11 +A+
A2

2
+ · · ·

)(

11 +B +
B2

2
+ · · ·

)

= 11 +A+B +
A2 +B2

2
+AB + · · ·

= 11 +A+B +
(A+B)2

2
+

1

2
[A,B] · · ·

= eA+B+ 1
2 [A,B]+··· (103)

where the dots stand for multiple commutators, like [A, [A,B]] etc. in the last equation. It allows us to write

δTr[ρ ln ρ] = Tr[δρ ln ρ+ ρ ln(ρ+ δρ)− ρ ln ρ]

= Tr[δρ ln ρ+ ρ ln ρ(1 + ρ−1δρ)− ρ ln ρ] (104)

which gives by means of the previously derived identity

δTr[ρ ln ρ] = Tr

[

δρ ln ρ+ ρ ln ρ+ ρ ln(1 + ρ−1δρ) +
1

2
ρ[ln ρ, ln(1 + ρ−1δρ)]− ρ ln ρ

]

= Tr

[

δρ ln ρ+ δρ+
1

2
ρ(ln ρ)ρ−1δρ− 1

2
δρ ln ρ

]

= Tr[δρ ln ρ+ δρ] (105)

by using that ρ and ln ρ commute and by ignoring terms O
(
δρ2
)
. Finally, together with the variation of the parameters

λ0, λ one finds the extremal conditions

∂

∂ρmn
: 0 = −(ln ρ)nm − λ0δnm − λfnm, ρ = e−λ0−λf

∂

∂λ0
: 1 = e−λ0Z(λ), Z(λ) = Tre−λf = eλ0

∂

∂λ
: F = e−λ0Tre−λff = −∂ lnZ(λ)

∂λ
. (106)

The value of the maximal entropy is

SFmax = −Trρ ln ρ

= Tre−λ0−λf [λ0 + λf ]

= λ0 + λF (107)

as expected.
The procedure of determing the state of a quantum system by means of available informations is called the quantum

inference problem. The naturalness of using the maximisation of the missing entropy in the quantum inference problem
hints at possible relations between information theory and quantum mechanics. The attemtp to interpret quantum
mechanics as a set of rules to treat partial informations in an optimised and systematic manner is made more
attractive by Heisenberg’s uncertainty relation which exculdes the possibility of acquiring full informations about
physical systems by observations.

K. Noninteracting particles

We work out now the partition function of the grand canonical ensemble for noninteracting particles, as the an
example which already contains some of the usual complications of a quantum many-body system. A basis for a
system of N particles can be constructed by a complete set of states φk(x) as

ψ(x1, . . . , xN ) = N−1
∑

π∈SN

ξσ(π)φk(1)(xπ(1)) · · ·φk(N)(xπ(N)) (108)



21

●

●

●

●

●

●

●

●

●

●

FIG. 3: Graphical representation of the permutation
(

1,2,3,4,5
3,5,4,2,1

)

.

where N is a normalization factor, π denotes a permutation of N objects, ξ is the exchange statics, +1 or −1 for
bosons or fermions, respectively and σ(π) is its parity, defined in the following manner. Any permutation

π =
(

1 ,..., N
π(1),...,π(N)

)

(109)

can be visualized as a set of N curves, connecting N dots, representing the N particles as drawn in Fig. 3. Each curve
corresponds to a particle and we find a series of crossings, particle exchanges, as the dotted vertical line is moved
from the right to the left. Each crossing generates a multiplicative factor ξ in the state (108). It is obvious that the
number of crossings is not defined in a unique manner, the continuous deformation of the curves may induce more
or less crossings. But it is clear, as well, that such a change of the the number of crossing occurs in pairs only. This
argument shows that (i) any permutation can be decomposed into the product of exchanges of neighboring objects
and (ii) the number of exchanges ℓ is not unique but its parity, σ(π) = ℓ(mod2) is well defined. For example, for
N = 3 we have

1 = σ

((

1,2,3
1,2,3

))

= σ

((
1,2,3
3,1,2

))

= σ

((
1,2,3
2,3,1

))

−1 = σ

((
1,2,3
1,3,2

))

= σ

((
1,2,3
3,2,1

))

= σ

((
1,2,3
2,1,3

))

. (110)

The state (108) has the desired transformation property under particle exchange. To prove this we start with the
identity

∑

π∈SN

F (π) =
∑

π∈SN

F (ππ′). (111)

It holds because the map π → ππ′ of SN for a given π′ ∈ SN is bijective (onto and one-to-one), hence we have the
same quantities on both sides summed up in different order. Addition is commutative therefore Eq. (111) follows.
This identity allows us write

ψ(xπ′(1), . . . , xπ′(N)) = N−1
∑

π∈SN

ξσ(π)φk(1)(xππ′(1)) · · ·φk(N)(xππ′(N))

= ξσ(π
′)ψ(x1, . . . , xN ) (112)

where the equations σ(ππ′) = σ(π) + σ(π′), σ(π′−1) = σ(π′) have been used in arriving at the second line.
We simplify first the notation of the state (108) by means of the Dirac-notation,

|ψ〉 = N−1
∑

π∈SN

ξσ(π)|k(π(1)), . . . , k(π(N))〉 (113)

where a state is labeled by the function k(j), j = 1, . . . , N . We can render a state more recognizable in the second step
by placing particles in the same state beside each other by an appropriate permutation, eg. |1122213〉 = ξ|1112223〉.
The phase of the state is determined by using an arbitrary but fixed order of the quantum number k. The occupation
number n(k) is defined for each quantum number k as the number of particles found in the one-particle state k,

|k(1), . . . , k(N)〉 → |n(k1), n(k2), . . .〉 = |n(k)〉, (114)
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eg. |1112223〉 → |3, 3, 1, 0 . . .〉. The momentum p is a preferred quantum number for free particles and ψp(x) = e
i
~
px.

Additive quantum numbers can easily be constructed, such as the particle number

Q|n(p)〉 = N [n]|n(p)〉, N [n] =
∑

p

n(p) (115)

and the energy

H |n(p)〉 = E[n]|n(p)〉, E[n] =
∑

p

n(p)ǫ(p), ǫ(p) =
p2

2m
. (116)

The partition function

Z = eβpV =
∑

{n(p)}

e−β(E[n]−µN [n])

=
∑

{n(p)}

e−β
∑

p
n(p)(ǫ(p)−µ)

=
∏

j

∑

n(pj)

e−βn(pj)(ǫ(pj)−µ)

=
∏

j

{
1

1−e−β(ǫ(pj )−µ) bosons

1 + e−β(ǫ(pj)−µ) fermions
(117)

gives rise the pressure

βp =

{

−
∫ d3p

(2π~)3 ln[1 − e−β(ǫ(pj)−µ)] bosons
∫ d3p

(2π~)3 ln[1 + e−β(ǫ(pj)−µ)] fermions
(118)

in the thermodynamical limit. The expectation value of the particle number,

〈〈N〉〉 =
1

βZ

∂Z

∂µ
=
∑

j







e−β(ǫ(pj )−µ)

1−e−β(ǫ(pj )−µ) bosons

e−β(ǫ(pj )−µ)

1+e−β(ǫ(pj )−µ) fermions
=
∑

j

n(pj) (119)

identifies the average occupation number

n(ǫ) =
1

eβ(ǫ−µ) − ξ
(120)

as a function of the single particle energy, cf. Fig. 4.

II. PERTURBATION EXPANSION

A rudimentary version of the perturbation expansion for the partition function will be presented briefly. It is
assumed in this scheme that the system Hamiltonian can be written as a sum of the free and the interactive terms,
the former dominating the latter.
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Some caution is needed in using the word “interaction, specially in quantum physics. A special feature of statistical
physics is that one always needs some interactions between the observed system and its environment. In fact, this
interactions should be weak enough to be able to consider the system and to leave the influence of the environment for
the choice of certain ensemble. In the same time, it should be strong enough to generate relaxation and equilibrium
for the system. What we mean by an ideal gas is a system of particles having no interactions among themselves but
still interacting with the thermal, chemical, etc. baths in their environment.
Interaction of two subsystems is handled in classical physics by introducing a part of the total energy which depends

on the degrees of freedom of both sub-systems. As long as this contribution is negligible compared to the rest the
interaction is considered weak. Take now a gas of non-interacting point particles in a solid vessel where the interactions
of the particles with their environment, the vessel wall, are described by some elastic, energy conserving, particle-
vessel wall collision dynamics. In the limit of infinitely massive vessel the interaction energy between the particles
and the vessel tends to zero, indicating the insufficiency of the interaction energy as measure of the importance of the
interaction in the dynamics.
The tradition view of interactions, based on the interaction energy proves to be even less useful in the quantum

domain. When two indistinguishable particles form a common system then the (anti)symmetrization of their state
introduces correlations, known as exchange interactions as long as their wave-functions overlap in three-space even
if the particles are strictly non-interactive. These correlations may make the eigenvalues of the total Hamiltonian
complicated, non-additive functions of the single-particle quantum numbers. Such states which can not be factorized
as a simple product of vectors corresponding to the two sub-systems are called entangled. The distinguished feature
of correlations observed in entangled state are non-locality and selectivity. The former stands for the insensitivity of
the correlations on the separation of the particles. The latter can be explained in case of three particles, A, B and C
entangled with each other. The insensitivity of the correlations of entangled state on the separation explains that the
correlation between A and B may differ substantially from that of A and C even if B and C are close to each other,
both of them being far from A.
The correlations due to the (anti)symmetrization of states of indistinguishable particles can approximatively be

described by using the classical description extended a suitable chosen interaction potential. This method is described
first below, followed by the perturbative treatment of genuine interactions, represented by some interaction energy in
the Hamiltonian.

A. Exchange correlations for free particles

The non-interacting particles are correlated when they are indistinguishable. For example the Pauli exclusion
principle generates repulsion when the wave functions of the fermions with the same spin overlap. Such kind of
exchange correlations can be treated perturbatively when the system is approximately classical which happens to be
the case at high temperature.
The partition function is given as the trace of the density matrix. Instead of a direct calculation of the matrix

elements of the density matrix we shall rely an a surprising and useful relation between quantum mechanics and
quantum statistical mechanics, namely that the density matrix of a canonical ensemble can be obtained by continuing
analytically the propagator for imaginary time. To see this relation we start with a free particle whose propagator,

G(x,y; t) = 〈x|e− i
~
H0 |y〉, (121)

is constructed by going over momentum space,

G(x,y; t) = 〈x|e− it
2m~

p2 |y〉

=

∫
d3q

(2π)3~3
〈x|e− it

2m~
p2 |q〉

︸ ︷︷ ︸

〈x|q〉e−
it~
2m

q2

〈q|y〉

=

∫
d3q

(2π)3~3
e−

it
2m~

q2+ i
~
q(x−y)

=
( m

2πi~t

)3/2

e
im
2t~ (x−y)2 . (122)

The single particle density matrix can be found by Wick rotation, t ↔ −i~β, where β = 1/kBT . In fact, such a
transformation changes the heat equation

∂tp = D∆p (123)
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into the Schrödinger equation

i~∂tψ = − ~
2

2m
∆ψ (124)

and the density matrix ρ(β) = e−βH into the time evolution operator U(t) = e−
i
~
tH . In particular, the transition

probability for Brownian motion, satisfying the heat equation is

〈x|e− β
2mp2 |y〉 = λ−3

T e
− π

λ2
T

(x−y)2

, (125)

where

λT =

√

2π~2

mkBT
(126)

denotes the thermal de Broglie wave length satisfying ~
2/2mλ2T = kBT/2π. The matrix elements of the density matrix

for N distinguishable particles are therefore

〈x1, . . . ,xN |e− β
2mp2 |y1, . . . ,yN 〉 = λ−3N

T e
− π

λ2
T

∑

j(xj−yj)
2

. (127)

The physical states of equivalent particles are (anti)symmetrized with respect to their exchange,

|x1, . . . ,xN 〉 → 1√
N !

∑

π∈SN

ξσ(π)|xπ(1), . . . ,xπ(N)〉 (128)

and the density matrix for equivalent particle is

〈x1, . . . ,xN |e− β
2mp2 |y1, . . . ,yN 〉 =

∑

ππ′

F (π, π′) (129)

where

F (π, π′) = ξσ(π)+σ(π′) 1

N !λ3NT
e
− π

λ2
T

∑

j(xπ(j)−yπ′(j))
2

. (130)

An important property of the function F (π, π′) is that it remains invariant under the simultaneous permutations of
the coordinates,

F (ππ′′, π′π′′) = F (π, π′) (131)

which follows from the identity

∑

j

(xπ(j) − yπ′(j))
2 =

∑

j

fj =
∑

j

fπ′′(j) =
∑

j

(xπ(π′′(j)) − yπ′(π′′(j)))
2 (132)

containing the sum of the same terms in different order on the two sides, cf. Eq. (111). We choose π′′ = π′−1 and
find

∑

ππ′

F (π, π′) =
∑

ππ′

F (ππ′−1, 11) = N !
∑

π

F (π, 11) (133)

where the last equation holds because it contains the sum of the same terms in different order on the two sides. We
find finally the canonical partition function

ZN = Tre−βH0

=
1

N !λ3NT

∑

π

ξσ(π)
∫

d3Nxe
− π

λ2
T

∑

j(xπ(j)−xj)
2

(134)

where the multiplicative factor 1/N ! is to compensate that for each non-degenerate set of coordinates, xj 6= xk the
same (anti)symmetric state appears N ! times in the integration.
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It is instructive to consider the high temperature limit, λT → 0, when the average interparticle distance becomes
large compared with the thermal wave length, V/N ≫ λ3T and one expects that the particles behave classically. The
dominant contribution to the partition function is then π = 11, the next order corresponds to permutations consisting
of a single exchange of two particles, the n-th order being the sum over permutations which exchange n particles,

ZN =
1

N !λ3NT

∫

d3Nx



e
− π

λ2
T

∑

j(xj−xj)
2

+ ξ
∑

i<j

e
− 2π

λ2
T

(xi−xj)
2

+ · · ·



 . (135)

Let us re-express the factor λ3NT in front of the the sum by the Gaussian integral over the momenta write the integral
over the momenta,

ZN =
1

N !(2π~)3N

∫

d3Nxd3Npe−β
∑

j

p2
j

2m



1 + ξ
∑

i<j

e
− 2π

λ2
T

(xj−xi)
2

+ · · ·



 . (136)

The first term,

Z
(0)
N =

1

N !(2π~)3N

∫

d3Nxd3Npe−β
∑

j

p2
j

2m , (137)

dominates the partition function and shows the approach of the classical behavior with increasing temperature. To
see the role of the next order we write

ZN =
1

N !(2π~)3N

∫

d3Nxd3Npe
−β

[

∑

j

p2
j

2m+
∑

i<j UT (xi−xj)+···

]

(138)

where the statistical potential

UT (x) = −kBT ln

(

1 + ξe
− 2π

λ2
T

x2
)

(139)

has been introduced. It represents a repulsive force for fermions, arising from the Pauli exclusion principle and an
attractive force for bosons.
It is possible to recover all orders in the series by factorizing the permutations as

π = (i1, j1) · · · (im2 , jm2)
︸ ︷︷ ︸

m2 two−cycles

(k1, ℓ1,m1) · · · (km3 , ℓm3 ,mm3)
︸ ︷︷ ︸

m3 three−cycles

· · · (140)

where
∑

ℓ ℓmℓ = N . The contribution of the ℓ-cycle to the partition functions is

Cℓ =

ℓ∏

j=1

∫
d3xj
λ3T

e
− π

λ2
T

[(x1−x2)
2+(x2−x3)

2+···+(xℓ−x1)
2]

(141)
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The integration can be carried out successively by means of the following identity for Gaussian integrals,

∫
d3y

(2π
√
τ1τ2)3

e
− (x−y)2

2τ1
− (y−z)2

2τ2 =
e
− x2

2τ1
− z2

2τ2

(2π
√
τ1τ2)3

∫

d3ye
−y2

2 ( 1
τ1

+ 1
τ2

)+y( x
τ1

+ z
τ2

)

=
1

(2πτ1τ2)3/2

(
τ1τ2
τ1 + τ2

)3/2

e
− x2

2τ1
− z2

2τ2
+ 1

2( 1
τ1

+ 1
τ2

)
( x
τ1

+ z
τ2

)2

=
1

[2π(τ1 + τ2)]3/2
e
− x2

2τ1
− z2

2τ2
+

τ2
τ1

x2+
τ1
τ2

z2+2xz

2(τ1+τ2)

=
1

[2π(τ1 + τ2)]3/2
e
− (x−z)2

2(τ1+τ2) , (142)

showing that the elimination of a coordinate leaves behind the same kind of integral. Applying such an elimination
ℓ− 1 times we find

Cℓ =

ℓ∏

j=1

∫
d3xj

(2π
λ2
T

2π )
3/2

e
− 1

2
λ2
T

2π

[(x1−x2)
2+(x2−x3)

2+···+(xℓ−x1)
2]

=

∫
d3x1

(2π
ℓλ2

T

2π )3/2
e
− 1

2
ℓλ2

T
2π

(x1−x1)
2

=
V

(ℓλ2T )
3/2

(143)

The canonical partition function is

ZN =
1

N !λ3NT

∑

π

ξσ(π)
∫

d3Nxe
− π

λ2
T

∑

j(xπ(j)−xj)
2

=
1

N !

∑

π

(ξCℓ)
mℓ (144)

The number of permutations corresponding to a given decomposition, ie. set of numbers {mℓ} satisfying
∑

ℓ ℓmℓ = N
is N !/

∏

ℓmℓ!ℓ
mℓ . In fact, there areN ! permutations altogether and the permutation of the cycles and the performance

of a cyclic permutation on the symbols in a cycle preserves the decomposition. We have finally

ZN =
1

N !

∑

{mℓ}

′ N !
∏

ℓmℓ!ℓmℓ
(ξCℓ)

mℓ

=
∑

{mℓ}

′∏

ℓ

1

mℓ!

(
ξCℓ

ℓ

)mℓ

(145)

where the prime on the sum is the reminder of the constraint
∑

ℓ ℓmℓ = N . The grand canonical partition function
is therefore

Z =

∞∑

N=0

zNZN

=
∏

ℓ

∑

{mℓ}

1

mℓ!

(
zℓξCℓ

ℓ

)mℓ

= eξ
∑

ℓ
zℓ

ℓ Cℓ , (146)

and we have a series representation of the pressure of the ideal gas,

pV

T
= ξ

∑

ℓ

zℓ

ℓ
Cℓ = ξ

V

λ3T

∑

ℓ

zℓ

ℓ5/2
. (147)
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FIG. 6: A ninth order Meyer graph.

B. Interacting classical systems

Let us now consider a system of particles described by the classical Hamiltonian

H =
∑

j

p2

2m
+
∑

i<j

vij , (148)

where

vij = V (xi − xj). (149)

denotes a genuine interaction, described by a pair potential. The canonical partition function is

ZN =
1

N !

∏

j

∫
d3pj

(2π)3~3
d3xje

−βH

=
1

N !λ3NT

∫

d3Nxe−β
∑

i<j vij . (150)

We introduce the function fij by the expression

1 + fij = e−βvij (151)

and write the partition function as a series

ZN =
1

N !λ3NT

∫

d3Nx
∏

i<j

(1 + fij)

=
1

N !λ3NT

∫

d3Nx



1 +
∑

i<j

fij +
∑

i<j,k<ℓ

fijfkℓ + · · ·



 (152)

where each contributions is represented by a Meyer graph. A numbered graph for n particles consists of n numbered
bubbles, some of them connected by lines. The corresponding mathematical expression contains integration for n
coordinates and the integrand is the product of fij , one factor for line connecting two bubbles. The ninth order graph
of Fig. 6 stands for the contribution

∫

d3x1 · · · d3x9f12f13f14f23f42f43f87f89. (153)

The partition function is the sum over all different graphs,

ZN =
1

N !λ3NT

∑

[N particle graphs] (154)

To simplify the expressions one considers connected graphs, clusters, which do not fall into the product of two
independent factors and define the ℓ-cluster integral as

bℓ =
1

ℓ!λ3ℓ−3
T V

∑

[ℓ particle connected graphs] (155)

where the coefficient is chosen in such a manner that bℓ is dimensionless and converges in the thermodynamical limit
where the integration over the coordinates of a connected graph produces a volume factor. The first few cluster
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FIG. 7: The second and third order Meyer graphs.

integrals,

b1 =
1

V

∫

dx = 1

b2 =
1

2!λ3TV

∫

d3x1d
3x2f12 =

1

2λ3T

∫

d3xf(x)

b3 =
1

3!λ6TV

∫

d3x1d
3x2d

3x3[three particle graphs of Fig.7] (156)

with

f(x) = e−βV (x) − 1 (157)

and shown in Fig. 7.
Any graph can be factorized into the product of its connected components. Let us denote the number of ℓ-

particle connected components in a graphs by mℓ. This partition of N particles satisfies the relation
∑N

ℓ=1 ℓmℓ =
N . For a given set {mℓ} we have to sum over different distributions of the particles in the bubbles of the graph.
There are altogether N ! ways of distributing the particles but the connected components can be exchanged and
within a connected component the particles can be redistributed without producing new graphs. Therefore there are
N !/

∏

ℓmℓ!(ℓ!)
mℓ different distribution of the particles corresponding to the same graph and the contribution of the

graph with a given set {mℓ} is

∫

d3Nxe−β
∑

i<j vij =
N !

∏

ℓmℓ!(ℓ!)mℓ

∏

ℓ

(
V ℓ!λ3ℓ−3

T bℓ
)mℓ

= N !λ3NT
∏

ℓ

1

mℓ!

(
V

λ3T
bℓ

)mℓ

and we find the canonical partition function

ZN =
∑′

{mℓ}

∏

ℓ

1

mℓ!

(
V

λ3T
bℓ

)mℓ

. (158)

The grand canonical partition function is free of the constraint on the particle number and reads as

Z =
∑

N

zNZN

=
∏

ℓ

∑

{mℓ}

1

mℓ!

(
V

λ3T
zℓbℓ

)mℓ

= e
V

λ3
T

∑

ℓ z
ℓbℓ

(159)

where z = eβµ. We have finally the expressions

p

T
=

1

λ3T

∑

ℓ

zℓbℓ (160)

and

n =
N

V
=

∂

∂µ
p =

dz

dµ

∂

∂z
p = βz

∂

∂z
p =

1

λ3T

∑

ℓ

ℓzℓbℓ (161)

for the pression and the density.
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The resummed cluster expansion provides results with arbitrary precision for sufficiently dilute gas but is unable to
handle phase transitions eventually occurring at higher densities. It is useful to organize the expansion using explicitly
the density as small parameter. The equation of state in such a virial expansion is

pV

NT
=

∑

ℓ z
ℓbℓ

∑

ℓ ℓz
ℓbℓ

=

∞∑

ℓ=1

aℓ(λ
3
Tn)

ℓ−1 (162)

The second equation allows us to write

∑

ℓ

zℓbℓ =
∑

ℓ

ℓzℓbℓ

∞∑

ℓ′=1

aℓ′(λ
3
Tn)

ℓ′−1

=
∑

ℓ

ℓzℓbℓ

∞∑

ℓ′=1

aℓ′

(
∑

ℓ′′

ℓ′′zℓ
′′

bℓ′′

)ℓ′−1

(163)

and the identification of the coefficients of the same powers of the fugacity yields the virial coefficients aℓ. In the first
order we have b1 = b1a1 and a1 = 1. The second order gives b2 = 2b2a1 + b21a2 and a2 = −b2, etc.

C. Interacting quantum systems

The expansion of the quantum system can easily be reduced to the classical case. The canonical partition function,

ZN = Tre−βH (164)

can be rewritten by using the resolutions of one

11 =
∑

n

|n〉〈n|,

=
1

N !

∫

d3Nx|x1, . . . , xN 〉〈x1, . . . , xN |, (165)

where H |n〉 = En|n〉 as

ZN =
1

N !

∫

d3Nx
∑

α

∫

d3N 〈x1, . . . , xN |e−βH |x1, . . . , xN 〉

=
1

N !λ3NT

∫

d3NxWN (x1, . . . , xN ), (166)

where

WN (x1, . . . , xN ) = λ3NT
∑

α

〈x1, . . . , xN |e−βH |x1, . . . , xN 〉

= λ3NT
∑

n

〈x1, . . . , xN |n〉e−βEn〈n|x1, . . . , xN 〉

= λ3NT
∑

n

|〈x1, . . . , xN |n〉|2e−βEn . (167)

Note that

W1(x) =
λ3T
V

∑

p

e−
i
~
px〈p|e− β~

2m∆|p〉e i
~
px

= λ3T

∫
d3p

(2π)3~3
e−

β
2mp2

= 1 (168)

and the functions WN (x1, . . . , xN ), the unnormalized probability distributions are symmetric with respect to the
permutations of the coordinates.
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The connected components of the correlation functions WN are identified by means of their clusterisation,

WM+N (x1, . . . , xM , xM+1, . . . , xN+M ) →WM (x1, . . . , xM )WN (xM+1, . . . , xN+M ) (169)

as |xj −xk| → ∞ for 1 ≤ j ≤M and M +1 ≤ k ≤M +N . This property allows us to introduce the ”connected part”
CN of any correlation function WN in the following, iterative manner. The first step is obvious, C1(x) =W1(x) = 1.
The connected two-point correlation function is defined by

W2(x1, x2) = C1(x1)C1(x2) + C2(x1, x2). (170)

The connected three-point function is introduced by

W3(x1, x2, x3) = C1(x1)C1(x2)C1(x3) + C2(x1, x2)C1(x3) + C2(x1, x3)C1(x2) + C2(x2, x3)C1(x1) + C3(x1, x2, x3).
(171)

The higher order connected functions are defined in a similar manner,

WN (x1, . . . , xN ) =
∑′

{mℓ}

∑

π

C1 · · ·C1
︸ ︷︷ ︸

m1

C2 · · ·C2
︸ ︷︷ ︸

m2

C3 · · ·C3
︸ ︷︷ ︸

m3

· · · (172)

where the summation is varied out over such permutation π ∈ SN which correspond to different distribution of the
particles among the argument of the connected correlation functions. (No need of permuting the variables of a given Cℓ

because it is already (anti)symmetric). As usual, the prime denotes that the summation is over partitions satisfying
∑

ℓ ℓmℓ = N . It is a deep dynamical postulate, that the connected parts, defined in this manner are vanishing,
CN (x1, . . . , xN ) → 0 if any of the variables is separated from the rest. One expects that this clusterization is valid
due to the assumed absence of genuine long range correlations in a system which has convergent thermodynamical
limit. This assumption can be verified by means of the perturbation expansion or by numerical simulation.
The ℓ-cluster integral is defined by

bℓ =
1

ℓ!λ3ℓ−3
T V

∫

d3ℓxCℓ(x1, . . . , xℓ) (173)

which yields

ZN =
1

N !λ3NT

∫

d3NxWN (1, . . . , N)

=
1

N !λ3NT

∑′

{mℓ}

N !
∏

ℓ(ℓ!)
mℓmℓ!

∫

d3NxC1 · · ·C1
︸ ︷︷ ︸

m1

C2 · · ·C2
︸ ︷︷ ︸

m2

C3 · · ·C3
︸ ︷︷ ︸

m3

· · ·

=
1

λ3NT

∑′

{mℓ}

∏

ℓ

1

mℓ!

[
1

ℓ!

∫

d3ℓxCℓ(x1, . . . , xℓ)

]mℓ

=
1

λ3NT

∑′

{mℓ}

∏

ℓ

(V λ3ℓ−3bℓ)
mℓ

mℓ!

=
∑′

{mℓ}

∏

ℓ

1

mℓ!

(
V

λ3
bℓ

)mℓ

(174)

and

Z =
∑

N

zNZN = e
V

λ3
T

∑

ℓ z
ℓbℓ
. (175)

The calculation followed here aims at the thermodynamic potentials. In a similar manner one can calculate averages
of other quantities, as well.

III. PHASE TRANSITIONS

Thermodynamics was developed by remarkable intuitions and lead to the phenomenological description of large
systems in a time when no direct indications were known about the existence of the underlying microscopic structure
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of matter. This phenomenology was developed for stable matter but can easily be extended to the description of
phase transitions. The possibility of such an extension is even more remarkable because the phase transitions bring
new universal behavior compared to the stable state and depends more heavily on the microscopic details.
Phase transitions, eg. the freezing or evaporation of water, refer to a non-analytical dependence of the thermody-

namical potential for certain values of the phenomenological parameters. The main problem in this phenomenon is
the understanding of the origin of singularity in simple quantities as temperature, pressure, density, etc. when these
quantities appear in an analytic manner in our microscopic expressions. The key observation is that this analytic
dependence of the microscopic laws on the parameters in question guarantees analyticity of the observables for finite
system only. Phase transitions arise in the thermodynamical limit only where the diverging particle number generates
singularities for certain equilibrium states.
The construction of the microscopic, dynamical picture is a real challenge because one can not rely on kinetic theory

to describe a highly non-equilibrium process. What is left in classical physics is the detailed solution of the equations
of motion for a large but finite closed system and the extrapolation to the thermodynamic limit with care. A large
closed system follows a rather complicated path in its classical phase space. After some time it usually arrives at
a certain basin, a coordinate space area surrounded by potential barriers where it reaches an equilibrium state and
develops an analytical dependence of the long time averages on the control parameters, appearing analytically in the
Hamiltonian. But the motion takes place on a complicated potential landscape and there might be narrow valleys
leading to different other basins where the system could display different equilibrium dynamics. For a large but finite
system the cross section of the valley is finite, the total energy is sufficient to traverse the valley and the system always
explores a number of different basins in its equilibrium and there is no phase transition. But the valley cross section
might become a singular function of the energy in the thermodynamical limit. How can this happen?
The best is to imagine an effective theory for the collective coordinate parameterizing the path along the valley.

Most of the degrees of freedom are fast changing compared to this coordinate and provide a background noise only.
The effective theory, obtained by solving the equations of motion numerically for all other coordinates, has a Langevin-
like equation for our collective coordinate which contains an effective potential. This effective potential depends an
the total energy of the system and opens the passage in the valley only if the system energy/temperature reaches a
certain threshold. The fluctuations which are strong for finite systems round off this transition as a function of the
energy/temperature but the opening of the valley becomes sudden in the thermodynamic limit when the fluctuations
in forming the effective potential become weak.
How such a mysterious valley effects can show in quantum mechanics? The detailed response is rather involved,

it involves functional analysis and C∗ algebraic methods in quantum field theory. But the qualitative picture is
simple. The quantum description is based on the representation of the basic canonical variables and observables in
Hilbert spaces. Neumann’s theorem states that this representation is unique for finite systems. This implies that the
expectation in a given eigenstate of the Hamiltonian are analytic functions of control parameters as long as these
parameters appear in the Hamiltonian in an analytic manner. But the escape of this triviality is offered by the
thermodynamical limit. For infinite systems there might be several non-equivalent representations. Each of them
provides analytical dependence of the expectation values on the control parameters but the physical system belongs
to the representation which maximizes the entropy. Phase transition occurs when the system changes representation.
The representations correspond to the equilibrium basins of the classical description and the entropy maximization
mechanism stands for the valley.
A compromise between the simple phenomenology of thermodynamics and the heavy mathematical formalism

of infinite systems is offered by the renormalization group where the singular features of the phase transitions are
established by simple but convincing arguments for large, finite systems as the thermodynamical limit is sought.
The common element of the quantum and classical origin of phase transitions is the inherent ambiguity in the

determination of the domain of certain integrals, the path integrals for quantum physics and the partition function
in the classical case. The expected relations, such as the equation of motions equation of state, etc., can be derived
from these integrals as long as the integration is carried out on a topological trivial, connected domain. But whenever
the accessible phase space becomes the union of disconnected pieces further information is needed to reconstruct the
desired physics. Phase transitions can be observed at this point.
A phase transition, the singular dependence of the partition function on the parameters may have two qualitatively

different origins. The thermodynamical phase transitions stand for the singularities of the partition function in the
thermodynamical variables. The partition function depends on the microscopic parameters of the dynamics, too.
The average over quantum fluctuations may generate singular dependence on these parameters independently of the
thermal environment. These are the quantum phase transition.
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FIG. 8: A typical phase diagram.

A. Thermodynamics

What is singular at the phase transition? Our influence of the material is a local effect, as any other interactions.
A small modification of our control parameters induces qualitatively different responses at the two sides of the phase
boundary. How does this appear in thermodynamical quantities? Recall that the Euler relation,

E = TS − pV +
∑

j

λjFj (176)

where (λj , Fj) stands for a pair of intensive and extensive pairs of variables, results from the extensive properties of
the variables E, S and Fj alone and is valid in any phase. It is the first law of thermodynamics,

dE = TdS − pdV +
∑

j

λjdFj (177)

which expresses the response of the system for small changes of the extensive parameters and contains the equation of
state which may change at the phase boundary. Another appearance of the phase difference is in the Gibbs-Duheim
relation,

SdT = V dp−
∑

j

dλjFj (178)

which is the difference of the first law and an infinitesimal change of the Euler relation,

dE = dTS + TdS − dpV − pdV +
∑

j

dλjFj +
∑

j

λjdFj . (179)

Each phase is characterized its own equation of state or Gibbs-Duheim relation. A system with n conserved
quantities beyond energy has n+2 thermodynamical parameters, say the temperature, the pressure and one extensive
or intensive parameter per conservation law. The system with p coexisting phases must satisfy p constraints, the
Gibbs-Duheim relation for each phase and has 2 + n − p free parameters. This is Gibb’s phase rule, stating for
example that a simple system without conserved quantity other than the energy and the particle number the possible
phase boundaries form one-dimensional lines. Such a typical phase diagram is shown on Fig. 8.
Let us denote the n + 2 pairs of thermodynamical variables by (Xj , Yj), j = 1, . . . , n + 2 and suppose that the

interaction channels of our system with its environment allows the exchange of quantities Aj ∈ {Xj , Yj}. Then the
other partner of the pairs, Bj ∈ {Xj, Yj}, where {Aj , Bj} = {Xj, Yj} are the natural variables of the thermodynamical
potential of this problem. For a simple gas with no conserved quantity other than the energy and the total particle
number the usually the energy and the volume exchange is possible leaving us the Gibbs potential µ = µ(T, p), the
function of the temperature and pressure to describe the phase structure.
The internal points of a phase represent stable systems. According to the maximal entropy principle the natural

variables of the entropy, the extensive thermodynamical variables, are chosen in an equilibrium by maximization. This
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amounts to the minimization of the total energy as the function of the extensive variables. The thermodynamical
potential Φ(B) corresponding to the given interaction channels is obtained from the entropy by Legendre transfor-
mation and its variables are determined in each phase by minimizing or maximizing the thermodynamical potential.
Therefore, the second partial derivative matrix of the thermodynamical potential Sjk(B) = ∂2Φ/∂Bj∂Bk is positive
or negative definite and the thermodynamical potential itself is a convex or concave function for stable systems.
At the phase boundary the second derivative matrix acquires a zero eigenvalue but the first derivatives ∂Φ/∂Bj,

the response of the system for a slight change of the control parameters may differ in the neighboring phases. A
phase transition is called discontinuous or first order if the some of these first derivatives differ on the two sides. The
discontinuity of the first derivatives, eg. the latent heat ∆(∂FG(T, p)/∂T , indicates first order phase transitions. In
the continuous phase transitions the higher order derivatives differ only. Note that the thermodynamical potential
itself, Φ(B), is always continuous.
What determines the shape of the phase boundaries? The simplest is to answer this question in the case when

the phase boundary is a one dimensional curve what we shall take in the (p, T ) plane for the sake of simplicity. The
corresponding thermodynamical potential is chosen to be the Gibbs free energy which of our simple one component
system is G = Nµ(p, T ) and the phase transition line is the solution of the equation

µ1(p, T ) = µ2(p, T ). (180)

We seek the slope of the phase boundary and for this end we calculate the derivative of this equation along the phase
boundary using the temperature as a parameter of the boundary curve,

∂µ1

∂T |P
+
∂µ1

∂P |T

dp

dT
=
∂µ2

∂T |P
+
∂µ2

∂P |T

dp

dT
. (181)

This equation gives the Clausius-Clapeyron equation,

dp

dT
=

∂µ1

∂T |P
− ∂µ2

∂T |P

∂µ2

∂P |T
− ∂µ1

∂P |T

=
s1 − s2
v1 − v2

=
1

T

∆h

∆v
, (182)

the slope of the transition line in terms of the specific latent heat h and the change of the specific volume ∆v = v2−v1
where the relations

∂µ1

∂T P
= − S

N
= −s, ∂µ1

∂P T
=
V

N
= v (183)

and

∆h =
T∆S

N
(184)

have been used in the last equation.
The more detailed analysis of the continuous and discontinuous phase transitions will be embarked later, in the

framework of the mean-field approximation.

B. Spontaneous symmetry breaking and order parameter

Phase transitions are characterized by a finite or singular response of the system to some infinitesimal, external
perturbations and the phase boundary separates regions where the thermodynamical potentials are analytic functions.
In some of cases the symmetry properties of the system differ on the two sides of a phase transition. An example is
ferromagnetism which can be identified as a finite response of magnetization, 〈M〉 6= 0, to an infinitesimally weak
external magnetic field, h, below the Curie point. The Hamiltonian of the ferromagnet is symmetric with respect
to spatial rotations and this symmetry prevents the appearance of non-vanishing magnetization because the latter
chooses a preferred direction. This kind of symmetry breaking is to be contrasted with the explicite breaking of the
symmetry by an external magnetic field which generates magnetization, as well. The difference between the two kinds
of magnetisation can be revealed by introducing an external magnetic field and letting its strength to vanish gradually.
The magnetization vanishes with the external magnetic field the rotational symmetry is normally recovered in the
absence of external field above the Curie point. The magnetisation survives the removal of the external magnetic
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FIG. 9: (a): A flexible ruler is shown in its normal state as a horizontal straight line line. (b): A certain force F is applied to
push the rule along its direction while its other end is fixed.

U

z

U

z

−z0 0z

(a) (b)

FIG. 10: The internal energy of the ruler (a): in relaxed and (b): streched state.

field in the ferromagnetic phase. The system is extremely sensitive for the presence of any external breakdown of
the rotational symmetry in this phase because an infinitesimal amount of symmetry breaking leaves behind a finite
average of a vector.
Let us suppose that the Hamiltonian remains invariant under certain symmetry group. Do all observables reflect

this symmetry? It is easy to see what happens in classical mechanics, the planetary orbits around the Sun are not
necessarily circular though the Newtonian gravitational field is spherically symmetric. In a similar manner, the eigen-
states of the electrons in the Hydrogen atom are not spherically symmetric for non-vanishing angular momentum. But
what happens in the ”most important” state, in the ground state? When it reflects all symmetries of the Hamiltonian
then the symmetries are somehow more completely preserved. Spontaneous symmetry breaking is the pheonomenon
when the ground state dsiplays a smaller symmetry group than the Hamiltonian. At finite temperature the expecta-
tion values of the ground state are replaced by thermal averages. The rotational symmetry is therefore broken in a
spontaneous manner by the thermal fluctuations in a ferromagnet below the Curie point. As soon as an infinitesimal
amount of fluctuations induces a preferred spatial direction the singular sensitivity of the system, witnessed by the
sensitive response to an external field, generates spontaneously a preferred direction develops magnetization along it.
It is usually easy to find a simple diagnostic device for spontaneous symmetry breaking. In fact, it is enough to

consider a local quantity, call order parameter, whose non-vanishing values transform in a non-trivial manner under
the would be broken symmetry. This is the magnetization in the case of ferromagnetism. The order parameter
must have vanishing average in the symmetric phase. The non-vanishing average of the order parameter signals the
spontaneous breakdown of the symmetry in question.
A simple demonstration of symmetry breaking can be given by a flexible, plastic ruler. Let us consider a straight

ruler as shown in Fig. 9(a). Its dynamics is supposed to be invariant under the reflection z → −z, hence its internal
energy, U(z) is a symmetric function with minimum at z = 0 as shown in Fig. 10(a). When a force is applied and
the ruler is gently pushed as shown in Fig. 9(b) then the ruler bends. The corresponding energy, shown in Fig. 10(b)
has two symmetrical minima at non-vanishing z. How is the minimum of the internal energy is chosen among the two
symmetrical position ±z0? Let us apply the force very carefully, by keeping the ruler at the symmetrical but by now
unstable position, z = 0. As the force increases the microscopic fluctuations may destabilize this minimum easier.
The fluctuation are symmetric, as well but in average only. When a fluctuation happens to be large enough then it
pushes the ruler into the valleys, corresponding to its sign. Therefore the choice of the sign of the stable minimum
position, ±z0 is made spontaneously, by random, microscopic fluctuations. The condition of spontaneous symmetry
breaking is having symmetrical but non-degenerate minima in the internal energy.
The simplest way to identify a spontaneous symmetry breaking is based on static observations in equilibrium. One

usually starts with the static case in equilibrium where the breakdown of the symmetry induced by an explicitly non-
symmetrical term with a coefficient g by hand in the Hamiltonian, H → Hsym + gHasym. The dynamics is obviously
not symmetrical for g 6= 0. If the symmetry is recovered in the limit g → 0 then the original system, described by
g = 0 is manifestly symmetrical. When the symmetry is not recovered as g → 0 then the original system breaks the
symmetry spontaneously. This strategy always leads to manifest symmetry when realized in a finite system because
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such dynamical systems do not support phase transitions. Therefore, we have to carry out the thermodynamical
limit, V → ∞, too. But the two limits, the restoration of the formal symmetry g → 0 and the infinitely large system
V → ∞ do not commute. In fact, limV →∞ limg→0 produces a symmetric system. To give a chance the dynamics to
signal the eventual dynamically driven breakdown of the symmetry we have to perform the thermodynamical limit
first and search for possible phase transitions. When the point g = 0 falls on a phase boundary then the symmetry is
spontaneously broken.
There is another, dynamical way of finding spontaneous symmetry breaking which offers a more detailed picture.

Such a signature of symmetry breaking is the slowing down of a collective mode in the thermodynamical limit. The
averaging over the phase space of this mode restores the symmetry but the slowing down renders the approximation
where this mode is fixed acceptable for any measurement carried out in a finite length of time. Such a subtle dynamical
process is coded in the equilibrium ensemble description as a violation of ergodicity. Ergodicity is introduced in
Statistical Physics as an assumption which identifies the long time and ensemble averages. Symmetry breaking means
the under certain conditions the order parameter which is bounded to be canceled by the summation in the partition
function becomes non-vanishing. This corresponds to a restriction of the domain of integration or summation in
the partition function. For instance, in the case of ferromagnetism the summation over order local magnetization
configurations M(x) is restricted into the functional space

∫

d3xnM(x) > 0 (185)

where n is arbitrarily chosen unit vector.
There is an important feature of system where a continuous symmetry is broken spontaneously by a non-vanishing

expectation value for a local order parameter φ(x) which is supposed to be a local parameter of the symmetry
transformation in question, called Goldstone mode. Consider a gas of molecules with trajectories ξ(t,x0) where x0 is
the position of the molecule at t = 0. A possible order parameter, monitoring translation invariance in direction n is
φ(t,x) = nξ(t,x). In general, the local order parameter of a continuous symmetry group is the value of a symmetry
transformation, translations in this case, performed locally. The important point is that for the homogeneous, x-
independent transformations belong to symmetry and preserve the energy of the system.
Let us now find the energy of infinitesimal fluctuations of the parameter. Due to translation invariance the normal

modes are the Fourier transform of φ(x), φ̃(k), k being the wave vector and the energy of the Goldstone modes is a
regular function, E(k) which should respect the space-time symmetries of the system. We know that homogeneous
fluctuations with k = 0 cost no energy, E(0) = 0, hence

E(k) = c2k
2 +O

(
k4
)
, (186)

due to rotational invariance. Thus the excitation spectrum of the Goldstone modes starts without gap, infinitesimal
energy is enough to excite a large number of modes. According Special Relativity the energy of a particle of momentum
p is E = c

√

(mc)2 + p2. Therefore the energy spectrum without gap must be

E(k) = c|k|+O
(
k2
)
, (187)

because p and k should be proportional due to rotational invariance and we can associate the Goldstone modes
with particles. This is a simplified and special case of Goldstone theorem stating that there is a massless particle
mode for each spontaneous broken continuous symmetry. Phonons are gapless due the spontaneous breakdown of the
continuous translation symmetry by the crystal. One can show that photons are Goldstone particles, as well, they
signal the spontanous breakdown of a four-dimensional subgroup of the gauge symmetry of electrodynamics.

C. Singularities of the partition function

Let us consider a system of hard sphere particles interacting with an attractive, finite range potential and denote
its canonical partition function by ZN (V ). The number of particles is clearly bounded by N < M = V/V0 where V0
is the volume of a particle. We may introduce the grand canonical partition function,

Z(z, V ) =
M∑

N=1

zNZN (V ). (188)

The first theorem proven by Lee and Yang for the hard sphere model is that the partition function converges in the
thermodynamical limit for each value of the fugacity z,

lim
V→∞

1

V
lnZ(z, V ) = F (z) (189)
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FIG. 11: A region R on the complex fugacity plane where the partition function is analytic. The dots indicate the zeros of the
partition function.

to a non-decreasing function. Furthermore, this limit is independent of the shape of the volume as long as its surface
is not increasing faster than V 2/3.
This first theorem assures the existence of the thermodynamical potential, F , for the infinite system and leaves

open the issue of phase transitions. In fact, let us follow carefully how the situation changes as the thermodynamic
limit is reached. For a fixed, finite volume the parametric form of the equation of state is

p

T
=

1

V
lnZ(z, V ), n =

1

V
z
∂

∂z
lnZ(z, V ). (190)

Being a finite system, the partition function is an analytic function of its parameters, the volume in our case and no
phase transition can occur. For the infinite system we have

p

T
= lim

V→∞

1

V
lnZ(z, V ), n = lim

V →∞

1

V
z
∂

∂z
lnZ(z, V ). (191)

If the analytic property of the right hand sides is preserved in the limit then no phase transition can occur. What is
the mathematical condition to preserve the analyticity during a limit which exists point by point? The uniform limit
of analytical function is analytic and the derivative converge as well if the convergence is uniform. The difference
between point-wise and uniform convergence is that the size of the interval in which the value of the function must be
found for large enough volume for the convergence is dependent or independent of the point at which the convergence
is tested, respectively. For example, the function fn(x) = xn converges point-wise in the interval 0 ≤ x ≤ 1 but
not uniformly as n → ∞. Therefore, as long as the thermodynamic limit is uniform then both the pressure and the
density remain analytic function and phase transition is excluded.
The second Lee-Yang theorem states that the partition function converges uniformly in any region of the complex

fugacity plane which contains no zeros of the partition function. Note that the partition function is strictly positive
for physically acceptable, ie. real and positive values of the fugacity thus the zeros can not be found on this semi-axis.
Consider now a region including a part of the positive fugacity axis, as shown in Fig. 11. The phase transitions are
excluded in the region R according to the second theorem. But in the case shown on Fig. 12 the zeros approaching
z0 cut the positive semi-axis of the fugacity into two parts and there are two different analytic functions, one in R1

and the other one in R2.
Another result interesting result of Lee and Yang concerns the lattice gas model where particles can be found on

an infinite spatial lattice and their interaction potential is the sum of pair potentials. For each pair the potential is
infinite if the two particles are on the same site and negative otherwise. The zeros of the grand canonical partition
function lie on the unit sphere of the complex fugacity plane,

Z =

∏

n(z − e−iθn(T ))
∏

n(−e−iθn(T ))
. (192)

Let us introduce the distribution function of the zeros, ρ(θ), by

1

V

∑

n

f(θn) =

∫ 2π

0

dθρ(θ)f(θ). (193)
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FIG. 12: The partition function realizes two different analytic functions in regions R1 and R2 which are joined continuously at
z = z0.

The physical partition function is real, therefore ρ(−θ) = ρ(θ). and write the logarithm of the partition function as

p

T
=

∫ π

0

dθρ(θ) ln(z − e−iθ)(z − eiθ)

=

∫ π

0

dθρ(θ) ln(1 − 2z cos θ + z2) (194)

and

n = 2z

∫ π

0

dθρ(θ)
z − cos θ

1 − 2z cos θ + z2

= 2z

∫ π

0

dθρ(θ)
z − cos θ

(1 − z)2 + 2(1− z cos θ)
. (195)

The only singularity can occur at z = 1 and there is no phase transition when ρ(0) = 0.

IV. SPIN MODELS ON LATTICE

We have contradictory goals in physics. On the one hand, we want to understand the basic rules of physical
phenomena and this is possible if we can identify few simple enough basic laws. On the other hand, the bewildering
complexity of the world around us oblige us to use the simple laws in more and more complex situations and to
describe complexity in terms of simple concepts. A pragmatic compromise, developed in the last decades, is the
strategy of effective theories. We give up, at the time being, the hunt for the ultimate laws in physics and look for
limited theories only, which are supposed to be valid in a given range of (length, time or mass) scale. The degrees of
freedom are certainly not elementary but neither very rough, their structure reflects our need, the scale regime where
we intend to use them. The central assumption in this enterprise is the hope that once the appropriate (effective)
degrees of freedom are found then the dynamics should have ”islands” of simplicity, there ought to have family of
phenomena governed by universal and simple rules.

A. Effective theories

Let us take a piece of ferromagnet as an example. It consists of a large number of atoms and electrons coupled
into a solid. At a very fine resolution we may see the nuclei within the atoms and its more microscopic constituents
and the dynamics is based on the Standard Model of High Energy Physics. But from at the energy scale which
characterizes solid state physics these degrees of freedom can be considered frozen. What is excited at the scales of
solid state physics are mainly the ions, few outer electrons of the atoms and phonons. The effective theory of the
solid can be based on certain local excitations of the ion core, on the electrons in conducting band and phonons, say
as far as magnetism is concerned. These degrees of freedom are ”dressed” by the more elementary interactions and
their dynamics can be quite complicated. The transition of the ions among different conformations or the polarization
due to an electron can be rather complex issues. But there are important phenomena, mainly second order phase
transitions, which show a remarkable simplicity and universality in these complex systems. These offer the hope
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of finding simple enough rules for well chosen degrees of freedom and a wide range of phenomena, an assumption
which has already been tested in a detailed manner by the renormalization group method. We shall follow now a the
construction of a simple effective theory in the context of ferromagnetism.
The excitations of a solid can be elementary, such as the motion of a single particle or collective where a large number

of particles contribute to the excitation in a coherent manner. Naturally these are the end points of a spectrum of
possibilities, even the elementary excitations have some collective components due to the polarization effects. The
low energy collective excitations of a crystal which determine the long range correlations and the phase structure of
the system can be approximated by keeping the particles fixed at lattice sites and retaining the short range, mainly
exchange interactions between the particles only. One can construct quantum or classical spin models on the lattice
in this manner.

B. Spin models

The first and simplest spin model was constructed by Ising for the ferromagnetic transition. One assumes spin 1/2
particles sitting on cubic lattice and approximates the total energy by the sum of exchange interactions for nearest
neighbors. The classical energy in the presence if an external magnetic field coupled to the spins is

βH = −
∑

〈i,j〉

Ji,jsisj −
∑

i

hisi (196)

where si = ±1 is called the spin variable at the lattice site i. The Helmholtz free-energy, A(T ) is given by the partition
function

e−βA =
∑

{si}

e−βH . (197)

What is clear without any calculation is that the positive or negative values of J encourage parallel or anti-parallel
ordering of the spins.
In a realistic solid with some disorder these parameters are inhomogeneous in an unknown and uncontrollable

manner and the calculation of the free-energy is specially difficult. But it is a natural simplification to ignore the
inhomogeneities and the interaction among far separated spins which amounts to the use of the Hamiltonian

βH = −J
∑

〈i,j〉

sisj − h
∑

i

si (198)

where the summation in the first term is over the nearest neighbor sites.
It is instructive to consider few different physical realization of the Ising model. The simplest is the lattice gas

model where hard sphere particles can occupy the lattice sites. Their hard core allows at most one particle per site
and their short range interactions is characterized by the homogeneous parameter J . The grand canonical partition
function is

Z =
∑

{si}

eJ
∑

〈i,j〉
1+si

2

1+sj
2 +µ

∑

i
1+si

2

= const ·
∑

{si}

e
J
4

∑

〈i,j〉 sisj+
Jd+µ

2

∑

i si (199)

in dimension d. Another realization is the binary alloy where the elementary cell has two different low energy state
and the two values of si labels these two states at the site i. Finally, the most natural application is for the description
of the magnetic properties of local spin-1/2 spin variables distributed on the lattice. In this case the coefficients J
and h represent the energy scale of the exchange interaction and the local magnetization, respectively.
The simplest generalization of the Ising model from spin 1/2 to vector spin S variables is based on the Hamiltonian

βH = −J
∑

〈i,j〉

~si~sj − ~h
∑

i

~si (200)

where the vectors are of dimension 2S + 1 and ~s is of unit length, ~s2i = 1. The partition function is

Z =
∏

i

∫

d2S+1sjδ(~s
2
i − 1)e−βH . (201)
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The case of S = 1 is called Heisenberg model and is used to describe the magnetic properties of spin one magnetic
moments. The vector spin model which is formally S = 1/2 is called X − Y model and the parametrization ~s =
(cos θ, sin θ) its partition function is

Z =

(
∏

k

∫

dθk

)

eJ
∑

〈i,j〉 cos(θi−θj)+h
∑

i cos θi . (202)

This model is particularly useful to describe superfluids or Bose condensates.
Another class of generalization of the Ising model is the family of Potts models. The q-state Potts model has basic

variable si which can take q different values, say sj ∈ {1, . . . , q} and the Hamiltonian is

βH = −J
∑

〈i,j〉

δsi,sj . (203)

Finally one should mention the quantum spin models, too. They have a quantum spin variable, [sj , sk] = iǫjkℓsℓ
attached at each lattice site and the Hamiltonian is

H

T
= −J

∑

〈i,j〉

~si~sj − ~h
∑

i

~si. (204)

The partition function is

Z = Tre−βH . (205)

The Hamiltonian preserves the spin S of the state at each site therefore on can talk about spin S quantum spin models
where the site has state with a given spin. Notice that for high spin, S → ∞ the expectation value of the right hand
side of the canonical commutator is O (S) and is negligible to compared to the product of two spin variable which
yields O

(
S2
)
numbers. Thus the spin dynamics becomes classical and the classical vector spin models are applicable.

C. Ising model in one dimension

It is easy to calculate the partition function for the one dimensional Ising model, where the spins are placed at the
sites i ∈ {1, . . . , N} with periodic boundary conditions, sN+1 = s1,

Z =
∑

{si}

eJ
∑N

i=1 si+1si+h
∑N

i=1 si

=
∑

{si}

eJ
∑N

i=1 si+1si+
h
2

∑N
i=1(si+1+si). (206)

The spin variables at the end points have h/2 as external magnetic field, a modification of the original Ising partition
function which can be neglected in the thermodynamic limit. We introduce the transfer matrix T , a 2× 2 matrix

〈s|T |s′〉 = eJss
′+h

2 (s+s′), (207)

that is

T =

(
eJ+h e−J

e−J eJ−h

)

. (208)

It allows us to write the partition function as

Z = tr TN . (209)

The power of the transfer matrix formalism is the easy calculation of the trace in the basis where it is diagonal. Its
eigenvectors, λ± satisfy the characteristic equation

det

(
eJ+h − λ e−J

e−J eJ−h − λ

)

= (eJ+h − λ)(eJ−h − λ)− e−2J

= λ2 − λ(eJ−h + eJ+h) + e2J − e−2J

= 0, (210)
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FIG. 13: Magnetization of the one dimensional Ising model for T1 < T2.

therefore,

λ± = eJ(coshh±
√

cosh2 h− 1 + e−4J)

= eJ(coshh±
√

sinh2 h+ e−4J), (211)

and we have

Z = λN+ + λN−

≈ 〈f |+〉〈+|i〉λN−1
+ (212)

in the thermodynamical limit because λ+ > λ−. The Helmholtz free energy

lim
N→∞

βA

N
= − lim

N→∞

lnZ

N
= − lnλ+ = −J − ln(coshh+

√

sinh2 h+ e−4J) (213)

gives the magnetization per spin

M = − 1

N

∂βA

∂h

=
sinhh+ coshh sinhh√

sinh2 h+e−4J

coshh+
√

sinh2 h+ e−4J

=
sinhh

√

sinh2 h+ e−4J
, (214)

shown qualitatively in Fig. 13. Note the absence if singularity or phase transition.
The phase transition, the appearance of spontaneous magnetization would show up as a singularity at h = 0 where

the magnetization curve would acquire infinitely large slope. In other word, we would have M0 = limh→0+ M(h) =
− limh→0− M(h) 6= 0 in the absence of external magnetic field h. The formal symmetry of the Hamiltonian, corre-
sponding to the change of sign of the magnetic field, si → −si and h→ −h would be broken in this case.
It is easy to understand the absence of spontaneous magnetization or spontaneous symmetry breaking in the one

dimensional Ising model. Let us imagine a spin configuration, {si} of the model. We shall call the regions with the
same spin orientation domains. The two neighboring domains are separated by a pair of spins with opposite directions.
If we fix one spin in the lattice the remaining spins can be reconstructed if we know the location of the domain walls.
Thus we can imagine the summation over the spin configuration as a summatino over the location of domain walls.
The energy of a domain wall is 2ǫ = 2J/β and its entropy is kB ln(N − 1). Thus its free energy,

Adw = E − TS = 2ǫ− kBT ln(N − 1), (215)

calulated by ignoring the presence of other domain walls, tends to −∞ in the thermodynamical limit. Hence the
domain walls dominate the system for non-vanishing temperature and prevent the emergence of an ordered phase.
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D. High temperature expansion for the Ising model

It is easy to establish a high temperature expansion in arbitrary dimensions. Let us start by calculating the partition
function

Z =
∑

{s}

eJ
∑

〈i,j〉 sisj (216)

for small J by expanding the exponential functions,

Z =

∞∑

n=1

Jn

n!

∑

{s}




∑

〈i,j〉

sisj





n

. (217)

Due to the identity
∑

s=±1 s
2k+1 = 0 the non-vanishing O

(
Jℓ
)
contributions come from ℓ pairs of spins placed on

even number par site on closed loops. The O
(
J2
)
leading order comes from (sisj)

2, a term belonging to a link on the
lattice. The site i can be chosen anywhere on the lattice therefore the number of such contributions is O (N). The
O
(
J4
)
contributions contain O (N) and O

(
N2
)
terms. The latter comes two links, both contributing by a factor

(sisj)
2. They can be chosen independently of each other except when the two links touch each other or are separated

by one lattice spacing only,

Z = 2N
[

1 +
J2

2!
dN +

J4

4!

4!

22
(dN)2

(

1 +O
(

1

N

))

+O
(
J6
)
]

= eN [ln 2+ 1
2dJ

2+O( 1
N )+O(J4)] (218)

in d-dimensions. The linked cluster theorem assures that the logarithm of the partition function remains extensive
and all contributions proportional to the higher powers of the volume cancels.
One can calculate in this scheme more illuminating averages, for example the correlation function

〈sxsy〉 =
∑

{s} e
J
∑

〈i,j〉 sisjsxsy
∑

{s} e
J
∑

〈i,j〉 sisj
. (219)

This function displays the way a pair of spins becomes less correlated when their separation is increased. In fact,
sxsy = 1 for completely correlated spins, sx = sy, and one expects 〈sxsy〉 ≈ 1 for x ≈ y. For two, statistically
independent spin we have 〈sxsy〉 = 0. Clusterisation requires the asymptotics

〈sxsy〉 → 〈sx〉〈sy〉 = 〈s〉2 (220)

as |x− y| → ∞.
The expansion of the numerator involves spins placed along a line connecting the points x and y and on closed loops.

These latter contributions produce a multiplicative factor which cancels against the denominator. (The overlapping
open and closed line cases can be ignored in the thermodynamical limit.) We find

〈sxsy〉 = 2(2J)|x−y|(1 +O
(
J2
)
). (221)

This result, together with clusterisation (220) implies 〈s〉 = 0, the absence of ordered phase. The free energy and
the correlation functions are analytic in the temperature when the high temperature expansion is truncated at any
finite order because they involve loops with bounded perimeter which test correlations up to finite distances only.
One can show that the high temperature expansion has a finite radius of convergence in J . This result proves that
the Ising model is in the disordered phase for sufficiently small J in any dimensions. We shown next that in two
dimensions where one can find exact results easier there is an ordered, ferromagnetic phase at sufficiently large J .

E. Ordered phase in the Ising model in two dimension dimensions

The phase transition is detected by the increased sensitivity of the magnetization on the boundary conditions. In
order to test this sensitivity we set the spin to + on the boundary. This boundary condition brakes the spin up-spin
down symmetry and the model has a symmetry broken phase if the average magnetization is non-vanishing in the
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FIG. 14: Domain walls in the two dimensional Ising model.

thermodynamic limit. To show that the magnetization is non-vanishing for sufficiently low temperature we give an
upper bound for the ratio of the average number of spin 〈N−〉 with value −1 over the total number of spin variables
N which is less that 1/2, implying 〈s〉 = 〈N+ −N−〉/N = 〈N − 2N−〉/N = 1− 2〈N−〉/N > 0.
Following the intuitiv picture of the one-dimensional Ising model where the domain walls were useful to clarify the

fate of the ferromagnetic phase we shall use domain structure here, as well, to identify the spin configurations. Let us
define the domain walls as rectangles traversing the middle of the bounds with opposite spins, as shown in Fig. 14.
Due to the periodic boundary conditions the domain walls are closed curves, their orientation is defined by having the
- spin at the left side. In case of ambiguities the domain wall line turns to left. The domain walls do not cross. Since
the spins are all +1 on the boundary the domain walls identify all spins within the lattice. Let us consider domains
with a given perimeter ℓ. There are finite number of such domains on our finite lattice, they will be distinguished
from each other by means of an index j = 1, . . . ,m(ℓ).
We establish now several inequalities, the last being a lower bound for 〈s〉.

1. The maximal area of a rectangular for a given length is realized by the square. Thus the area of the domain
(ℓ, j) is not bigger than ℓ2/16.

2. An upper bound for m(ℓ), the number of self avoiding closed loops on the lattice with length ℓ, can be found by
counting the number of paths of length ℓ. There are N possibility to place the initial point of the path. Then
we have 4 possibility to choose its first link. Each further new link can be placed on three different manner at
the end of a path by avoiding to step back along the same path. Therefore the number of lines of length ℓ is
N · 4 · 3ℓ−1, yielding the inequality

m(ℓ) ≤ N · 4 · 3ℓ−1. (222)

3. Let us introduce the characteristic function of the domain (ℓ, j),

χ{s}(ℓ, j) =

{

1 the domain (ℓ, j) occurs in {s}
0 otherwise

(223)

on the spin configuration space. Since the spin is + on the boundary every - spin is in a domain, therefore N−

satisfies the inequality

N− ≤
∑

ℓ

ℓ2

16

m(ℓ)
∑

j=1

χ{s}(ℓ, j). (224)

4. Let us find an upper bound for the average

〈χ{s}(ℓ, j)〉 =
∑′

{s}e
−βH[{s}]

∑

{s} e
−βH[{s}]

(225)

where the prime indicates the that the sum is carried over the spin configuration where the domain (ℓ, j) occurs.
We introduce the spin configuration {s}(ℓ,j) which is obtained from {s} by flipping each spin inside the domain
(ℓ, j). If the domain occurs in {s} then it is absent in {s}(ℓ,j). The energy increase due to a link at the domain
wall is 2J , thus we have

βH [{s}] = βH [{s}(ℓ,j)] + 2Jℓ (226)
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for configuration continaing the domain (ℓ, j). An upper bound for 〈χ{s}(ℓ, j)〉 can be found by restricting the
sum in the denominator for the flipped version of configurations entering in the numerator,

〈χ{s}(ℓ, j)〉 ≤
∑′

{s}e
−βH[{s}]

∑′
{s}e

−βH[{s}(ℓ,j)]
= e−2Jℓ. (227)

In fact, the partition function in the denominator is the sum of positive terms which becomes smaller when
some of the contributions are omitted.

5. The bound for the magnetization arises finally as

〈N−〉
N

≤
∑

ℓ

ℓ2

16N

m(ℓ)
∑

j=1

〈χ{s}(ℓ, j)〉

≤ 1

12

∞∑

ℓ=2

(2ℓ)232ℓe−4Jℓ

=
z2

3(1− z)

(

1− 3

4
z +

1

4
z2
)

, (228)

with z = 9e−2J and it is less than 1/2 for sufficiently large large J .

The high temperature expansion which has finite convergence radius predicts a phase which respects the symmetry
si → −si and produces 〈si〉 = 0 and 〈N−〉/N = 1/2. The inequality obtained above proves that the magnetization
is non-vanishing for sufficiently low temperature, 〈si〉 6= 0, and the spin-flip symmetry is broken. A symmetry can
not break gradually and there must be a well defined critical temperature where it happens. The value of the critical
temperature is known exactly for d = 2 and can be determined by numerical simulations in higher dimensions.

V. CRITICAL PHENOMENA

The partition function always remains a continuous function of the thermodynamical variables and the microscopic
parameters if the dynamics but its derivatives develop singularities at phase transitions. A phase transition is of
first order or discontinuous when some first derivatives of the thermodynamic potential and certain thermal averages
develop a jump. In higher order, or continuous phase transition higher order derivative become singular. The
distinguishing feature of these phase transitions, called critical points, is that the system supports large amplitude
fluctuations with strong correlations at well separated points in space. The existence of correlations at large separation
indicates that the correlation length reaches arbitrarily large values in the vicinity of a critical point. The amplitude
of the long range fluctuations are large because the energy of a fluctuation mode with a given amplitude tends to
become smaller with its wave vector.
Let us consider a ferromagnet with Helmholtz free energy A(T, h), desribed by the Ising model,

e−βA(T,h) =
∑

{s}

e−β(H[s]+h
∑

x sx). (229)

First let us show that the amount of correlation in the energy is measured by the specific heat, c, defined by

V c = T 2∂
2G(T, 0)

∂T 2
= 2β

∂G(T, 0)

∂β
+ β2 ∂

2G(T, 0)

∂β2
. (230)

The last term,

∂2 lnZ

∂β2
=

∂

∂β

1

Z

∂Z

∂β

= − ∂

∂β

∑

{s}H [s]e−βH[s]

∑

{s} e
−βE[s]

=

∑

{s}H
2[s]e−βH[s]

∑

{s} e
−βH[s]

−
(∑

{s}H
2[s]e−βH[s]

∑

{s} e
−βH[s]

)2

= 〈H2〉 − 〈H〉2 = 〈(H − 〈H〉)2〉, (231)



44

calulated at h = 0 gives the fluctuation of the energy and becomes singular at the critical point. Since the contribution
of a spin to the energy is bouded, large fluctuations imply correlations among a large number of spin.
The critical phenomena display the following surprising properties:

1. Critical exponents: It was found that the singularities, characterising critical phenomas are of power singu-
larity. Let us consider the apporach of the critical point, eg. the Curie temperature in terms of the dimensionless
reduced temperature, t = (T − Tc)/Tc. The divergence which develops at the critical point is usually a power
singularity of the reduced temperature. The power of the singularity, called critical exponent, characterizes the
phase transition. Few critical exponents, identified experimentally already in the early stage of developments in
critical phenomena are coming from the diverging heat capacity,

c ≈ |t|−α, (232)

the singularity of the order parameter,

M = −∂G(T, 0)
∂h

≈ |t|β , (t < 0), (233)

and the diverging susceptibility,

χ =
1

V

∂M

∂h
≈ |t|−γ , (t < 0). (234)

Other singularities can be observed, too, such as the equation of state just at the critical point,

M ≈ sign(h)|h|1/δ, (t = 0). (235)

The approximation in these equations consists of ignoring less singular functions, such as polynomials or power
singularities with lower powers.

2. Universality: The critical exponents are universal, ie. are independent of most of the microscopic details
of the system. The universality class, systems with identical critical exponents are characterised by some
generat features, like the space dimensions, the number of order parameters, the symmetry becoming broken
spontaneously.

3. Hyperscaling relations: The critical exponents satisfy certain simple relations.

A. Correlation length

Some of these remarkable features, namely the scaling relations can be understood in simple terms. Let us start
with the definition of the correlation length by considering the correlation function,

C(x− y) = 〈Φ(x)Φ(y)〉 − 〈Φ(x)〉〈Φ(y)〉 (236)

of a local order parameter Φ(x) in a homogeneous system. The disconnected part, the second term is subtracted
and the clusterization property of a stable phase imposes the limit lim|x−y|→∞ C(x − y) = 0. It is advantageous to
consider the Fourier transform of the correlation function,

C̃(k) =

∫

d3xe−ikxC(x), (237)

which is a regular function at k = 0 for non-critical system. Rotational and spatial inversion symmetry yield the form

C̃(k) = a+ bk2 +O
(
k4
)
. (238)

We have to improve this form in the vicinity of a critical point. The reason is that the susceptibility

V χ =
∂2 lnZ

∂h2
=

∑

{s}(
∑

x sx)
2e−β(H[s]+h

∑

x sx)

∑

{s} e
−β(H[s]+h

∑

x sx)
−
(∑

{s}

∑

x sxe
−β(H[s]+h

∑

x sx)

∑

{s} e
−β(H[s]+h

∑

x sx)

)2

= 〈(
∑

x

sx)
2〉 − 〈

∑

x

sx〉2 = 〈(
∑

x

sx − 〈
∑

x

sx〉)2〉, (239)
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of a homogeneous system,

χ =
1

V

[

〈
(∫

d3xΦ(x)

)2

〉 −
(

〈
∫

d3xΦ(x)〉
)2
]

=
1

V

[∫

d3xd3y(〈Φ(x)Φ(y)〉 − 〈Φ(x)〉〈Φ(y)〉)
]

=
1

V

[∫

d3xd3y(〈Φ(x+ y)Φ(x)〉 − 〈Φ(x+ y)〉〈Φ(x)〉)
]

=

∫

d3yC(y)

= C̃(0), (240)

is diverging in that region. Such kinds of singularities originate from the thermodynamical rather than k which is our
diagnostic parameter only. Thus we use the Ornstein-Zernike form,

C̃(k) =
1

r + zk2 +O (k4)
(241)

which has the advantage that it diverges at k = 0 when r → 0. This form will be supported by the Landau-Ginzburg
effective theory for the critical point, introduced below. The Fourier transform is supposed to reach its peak at
vanishing wave vector in a monotonous manner, hence sign(r) = sign(a). The susceptibility, the second moment of
a probability distribution function is always non-negative therefore we have r, a ≥ 0. The correlation function of the
Ornstein-Zernike form is

C(x) =

∫
d3k

(2π)3
eikx

r + zk2

=
1

(2π)2

∫ ∞

0

dkk2
∫ 1

−1

d(cos θ)
eik|x| cos θ

r + zk2

=
1

(2π)2i|x|

∫ ∞

0

dkk
eik|x| − e−ik|x|

r + zk2

=
1

(2π)2iz|x|

∫ ∞

−∞

dkk
eik|x|

(k + iξ−1)(k − iξ−1)
, (242)

where ξ =
√

z/r. The integral can be calculated by means of the residuum theorem when the contour of integration
is closed along the half sphere of the upper half plane, yielding

C(x) =
e−

|x|
ξ

4πz|x| (243)

The correlation length ξ is the parameter of dimension of length which must appear in the correlation function C(x)
due to dimensional reason, to remove the length dimension of x. The correlations tend to decrease with separation
and the correlation length characterizes the distance where they become negligible.

B. Scaling laws

As emphasised before, the specific feature of critical phenomena is the divergence of the correlation length diverges
as the critical point is approached. This is a power divergence, as well,

ξ ≈ |t|−ν , (244)

with critical exponent ν. In other words, one finds long range correlations among degrees of freedom in the vicinity
of a critical point. The diverging correlation length can even be considered as the definition of critical phenomena or
second order phase transitions.
The system may have a number of characteristic lengths, such as lattice spacing, size of molecules, etc. beside

the correlation length. What is special in critical points is that the correlation length becomes the largest length
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scale of the system. The dynamics of the order parameter is not important at distances much shorter or longer than
the correlation length. In fact, the order parameter can approximately be considered to be completely correlated or
uncorrelated at these distances, respectively. It seems therefore reasonable to assume that the other length scales,
being too small, decouple from the dynamics of the order parameter around the critical point. In other words, the
only length scale characterizing the dynamics around the critical point is ξ. This length scale is infinite exactly at
the critical point t, ie. disappears from the physical system. Thus one expects that critical systems display scale
invariance, the independence of the physical constants of the critical system from the choice of the unit length, as long
as the other, finite length scales can be ignored. This observation brings dimensional arguments into the discussion
of critical phenomena.
The dimensional analysis is based on the trivially sounding observation that every physical quantity has well defined

dimension. The number of independent dimensions is a convention, based on the numerical values of “physical
constants”. For instance, we might as well meusure time in length unit and set the speed of light to unity, c = 1,
as usually done in special relativity. But whatever conventions one uses, a measuring process can produce quantities
with well defined dimensions only. Let us now consider a quantity A of length dimension [A], constructed by means
of the length scale ℓ = |x| and constants p1, · · · , pn, A = A(ℓ, c1, · · · , cn). There are two ways to describe the effect
of the rescaling cm → s · cm of the unit in which the length is expressed in A. One the one hand, the dimension
of A can be used to find the response A → s−[A]A. On the other hand, the change of A can be found by rescaling
its dimensional constants, ℓ → s−1ℓ, cj → s−[cj]cj , as well. The equivalence of these two responses amounts to the
equation

A(s−1ℓ, s−[c1]c1, . . . , s
−[cn]cn) = s−[A]A(ℓ, c1, . . . , cn), (245)

which can be used to eliminate one variable from A. In fact, by choosing s = ℓ one can eliminate one independent
variable,

A(ℓ, c1, . . . , cn) = ℓ[A]A(1, ℓ−[c1]c1, . . . , ℓ
−[cn]cn). (246)

The function on the right hand side not only has one less variable, one sees, as well, that the dimension of A is
provided by ℓ and the remaining dependence in ℓ comes throught the other parameters only.
Let us apply this argument to the correlation function (241) where the form z = 1 is achieved by the rescaling

Φ → √
zΦ of the order parameter, [C̃]. The length dimension of the Fourier integral, −d, yields [C] = 2 − d in

d-dimensional space. Therefore we have

C(ℓ, r) = s2−dC(s−1ℓ, s2r). (247)

If one ignores r in the vicinity of the critical point where its numerical value is small then the unique solution,
C(x) ≈ c|x|2−d, follows in a trivial manner. In the presence of r we set s = ℓ as mentione above and write

C(ℓ, r) = ℓ2−dC(1, ℓ2r). (248)

Do we really recover scale invariance as the critical point is approached? The power-like dependece, predicted by
the naive dimensional analysis in the apporximation r = 0 is an encouraging sign but the actual value of the power is
a simple length dimension which does not agree with the critical exponents observed. The almost critical correlation
function at large distances, shown for at large ℓ and small r by (247) follows mainly the naive scaling law, given by the
dimension of the correlation function, 2− d. But for ℓ > 1/

√
r the form (241) lead to a faster decrease as the distance

is further increased. One can incorporate this feature without renouncing the power-like structure by assuming that
the presence of the small dimensional constants in the correlation function amounts to a simple modification of the
exponent in the scaling law, the introduction of an anomalous dimension η,

C(s−1x, r) = sd−2+ηC(x, r) + C′(x, r), (249)

where sd−2+ηC′(x, r) → in the limit s→ 0, r = O
(
s2
)
. The anomalous dimension, η, defined in this manner for the

correlation function characterizes the critical point.
The approximation r = 0 in the vicinity of the critical point is based on the intuitive idea that effects, taking place

at highly different length scales, at r and x are not related to each other. The renormalization group, a procedure
to follow the scale dependence in physical laws, actually has identified the violation of this assumption and it is
called anomaly. It reflects the fact that the remaining length scales of the system do play some role in the dynamics
which does not diminish with the separation of the correlation length from the other scales, as the critical point is
approached. As an example one may mention the decay of a neutral π-meson into two photons is possible due to the
existence of a short distance scale under which no electromagnetic interactions take place. The actual value of this
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minial length scale is not known but its existence can safely be infered from the observed pion decay. One reaches at
this point a rather disquieting conclusion which may invalidate the very basic assumption of our scientific thinking,
namely a whole system can be more than the sum of its constituents.
But let us now return to critical phenomena where one can easily calculate the length dimensions needed for the

critical exponents β and γ,
[
M

V

]

ℓ

=
1

2
[C]ℓ =

2− d− η

2

Mℓ =
2 + d− η

2

[χ]ℓ = [C̃]ℓ = [C]ℓ + d = 2− η (250)

As of the exponent α is concerned which is defined by taking derivatives with respect to the temperature one needs
more care because these derivations amplify the dependence of the correlation function on r. Hence one applies
the dimensional argument before taking the derivatives. The logarithm of the partition function is dimensionless,
[βG]ℓ = 0 and [βG]ℓ = −d.

[
βG

V

]

ℓ

= −d. (251)

The scaling hypothesis consists of the following assumptions:

1. The only length scale of the near critical system is the correlation length. The other, much shorter length scale
decouple from the dynamics, leaving anomalous dimensions behind only.

2. The singularities at the critical point are generated by the diverging correlation length alone and physical
quantities, expressed in length units of the correlation length show no singularity anymore at the critical point.

The second point implies that the only anomalous dimension which enters in the scaling relations is that of the
correlation function.
The scaling hyptohesis assures that the expressions of the diverging quantities remain regular as the critical point

is approached if the length is expressed in units of the correlation length, A→ Aξ−[A]ℓ . According to the dimensional
argument presented above this leads to the relations

M ≈ ξ
η−2−d

2 ≈ |t|β ≈ ξ−
β
ν ,

χ ≈ ξη−2 ≈ |t|−γ ≈ ξ
γ
ν , (252)

due to ξ ≈ |t|−ν . To find the expression for α we start with

βG

V
≈ ξ−d ≈ tdν , (253)

and write

c ≈ ∂2

∂t2
βG

V
≈ |t|dν−2 ≈ |t|−α. (254)

We arrive in this manner at scaling relations

α = 2− dν

β =
ν

2
(d+ 2− η)

γ = ν(2− η) (255)

C. Scaling laws from the correlation function

It is instructive to make explicit the dependence of the correlation function C(x, h) on the temperature and the
external field by means of the scaling hypothesis. In the absence of external magnetic field one expects

C(x, 0) ≈ |x|2−d−ηf±

( |x|
ξ
, 0

)

(256)
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for t→ 0± with a regular function f . When the external magnetic field is turned on it tends to align the local magnetic
moments within a distance within a distance ℓalign. It is clear that ℓalign → ∞ as the critical point is approached

therefore one expects an anomalous dimension κ to ℓalign giving ℓalign → ξ1+κ and an amplification factor |t|−dν(1+κ)

to h in the correlation function,

C(x, h) ≈ |x|2−d−ηf±(|x||t|ν , h|t|−∆), (257)

where ∆ = dν(1 + κ). We can now express the susceptibility first in the absence of magnetic field as

χ ≈
∫

ddx|x|2−d−ηf±(|x||t|ν , 0)

= |t|ν(η−2)

∫

ddx′|x′|2−d−ηf±(|x′|, 0), (258)

and find again ν(2− η) = γ because the integral in the last line is temperature independent.
In the presence of the magnetic field one has in a similar manner

χ ≈
∫

ddx|x|2−d−ηf±(|x||t|ν , h|t|−∆)

= |t|−γf1±(H |t|−∆), (259)

whose integral with respect to h gives

M = const.+ V

∫

dhχ(h)

= const.+ V |t|−γ

∫

dhf1±(h|t|−∆)

≈ |t|∆−γf2±(h|t|−∆). (260)

We set first h = 0 and look for the temperature dependence,

M ≈ |t|∆−γ (261)

giving ∆ = β + γ. A further integration yields

G(T, h) = const.−
∫

dhM(h)

≈ |t|∆−γ

∫

dhf2±(h|t|−∆)

≈ |t|2∆−γf3±(h|t|−∆). (262)

Evaluating it at h = 0 we find G ≈ |t|2∆−γ which in turn gives

C = T 2∂
2G(T, 0)

∂T 2
≈ |t|∆−γ−2 = |t|2β+γ−2 (263)

and

α+ 2β + γ = 2. (264)

We now look into the h-dependence. The order parameter is non-vanishing for h 6= 0 at any temperature, thus

f2±(h|t|−∆) ≈ |t|γ−∆ = |t|−β (265)

giving

f2±(s) ≈ sβ/∆, (266)

and

M ≈ |t|β(h|t|−∆)β/∆ = hβ/∆ (267)
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which amount to the relation δ = ∆/β or γ = β(δ − 1) between the critical exponents.
Finally we mention the hyperscaling assumption, stating that the thermal energy stored in a region of size ξ is in

the order of magnitude of kBT in the absence of other length scale. This gives

G ≈ kBT
V

ξd
≈ |t|νd (268)

yielding

νd = 2∆− γ = 2− α. (269)

The origin of the critical exponents and their universal feature, together with the relations satisfied by them can
systematically be clarified in the framework of the renormalization group.

D. Landau-Ginzburg double expansion

The strategy of constructing an effective theory is particularly promising for almost critical systems because a small
parameter helps to organize the dynamics in order of importance. The typical fluctuations take place at the order
of magnitude of the correlation length. Therefore, the fluctuations tend to stretch over long distances as the critical
point is approached. Our small parameter will be the wavelength of the fluctuations which can formally be identified
with the partial derivative with respect to space coordinates.
One may rely on another small parameter, the magnitude of the fluctuations. This is rather dangerous assumption

because of the scale invariant feature of critical systems. In fact, the order parameter has usually nontrivial dimensions
and the scale invariance, recovered at the critical point makes its distribution widely spread. Thus we assumed to be
close to but not exactly on the critical point and should be ready to give up this small parameter in a sufficiently
close vicinity of criticality.
We assume for the sake of simplicity we are given local, single component field Φ(x) as order parameter for a

spontaneous symmetry breaking. The partition function of the system,

Z =
∑

n

e−βEn (270)

can be written as

Z =
∑

n

e−βEn

∏

x

∫

dΦ(x)δ(Φ(x) − 〈n|Φ(x)|n〉). (271)

We exchange the order of summation and integration and write

Z =

∫

D[Φ]e−βF [Φ] (272)

where the integral measure

D[Φ] =
∏

x

dΦ(x) (273)

has been introduced and the effective free energy F [Φ] of the order parameter is defined by

e−βF [Φ] =
∑

n

∏

x

δ(Φ(x)− 〈n|Φ(x)|n〉)e−βEn . (274)

The next step is the determination of the effective free energy. Instead of the frontal attack on the formula let
us follow a simpler phenomenological argument, based on (i) locality, (ii) existence of small parameters and (iii)
symmetry. All fundamental laws of physics are supposed to be local in space-time. The physical quantities may
involve derivatives with respect time and space but all functions are evaluated at the same space-time points in a
fundamental equation. What we are set to construct is not a fundamental theory but it is still reasonable to expect
that non-local effects would remain unimportant to understand the impact of a diverging correlation length. Therefore,
the free energy of the order parameter is assumed ot take the form of an integral of a local free energy density in
space. The structure of this density is determined by means of two small parameters in the vicinity of a critical point,
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FIG. 15: The local potential of the Landau-Ginzburg free energy functional with j = 0 for r > 0 and for r < 0.

the magnitude and the inverse wave length of the fluctuations. Let us onsider first the gradient expansion. The zeroth
order term is an arbitrary function of the local order parameter, U(Φ(x)). The first order term in the gradient must
be a vector which is excluded by rotational symmetry, to be assumed for the free energy. Hence the gradent appears
in the second order as (∇Φ(x))2, being the only invariant under rotation, up to partial integration,

βF [Φ] =

∫

d3x

[
1

2
Z(Φ(x))(∇Φ(x))2 + U(Φ(x)) +O

(
∇

4
)
]

. (275)

Note that invariance under spatial rotations limit the order of the gradient to even. We consider now the universality
class of the ferromagnetic transition whose simplest charaterization is that the symmetry Φ(x) → −Φ(x) is broken
spontaneously. Thus this symmetry is kept intact on the level of the free energy and appears broken by the integration
over the order parameter configurations in the partition function only. Therefore, the relations U(Φ) = U(−Φ),
Z(Φ) = Z(−Φ) follow. We use finally the amplitude of the order parameter, Φ, as small parameter to simplify the
functions in the free energy density,

U(Φ) = jΦ +
r

2
Φ2 +

g

4!
Φ4 +

s

6!
Φ6 +O

(
Φ8
)

Z(Φ) = 1 +O
(
Φ2
)

(276)

where the O (Φ) term represents an external symmetry breaking field, coupled linearly to the order parameter for
diagnostic purposes and O

(
Φ0
)
value of Z is set be the appropriate rescaling of the order parameter. Rather involved

arguments, based on the renormalization group show that the ignored terms are not influencing the universal properties
of critial points in three spatial dimensions.

E. Mean field solution

Since we are interested in an almost critical system where the correlation length is large and the fluctuation are
long range the most natural approximation is assuming the absence of any fluctuation, namely approximating the
integration over all field configuration Φ(x) in the partition function by the contribution of the most important
single configuration Φ0(x) which minimizes the free energy. Since the spatial inhomogeneities contribute to a positive
semidefinite term the minimum corresponds to homogeneous configuration, Φ(x) = Φ0 and Φ0 minimizes the local
potential U(Φ) and βF [Φ0] = V U(Φ0).
We set first j = 0 and note that the local potential, shown in Fig. 15, is a symmetric function, U(Φ) = U(−Φ), and

has a single minimum at Φ0 = 0 which is symmetric with respect to the discrete symmetry transformation. The most
important configuration displays the same symmetry as the free energy, therefore the symmetry is intact for r > 0.
Below the critical temperature, T < Tc and r < 0, the potential has two degenerate minima related by the symmetry
transformation Φ → −Φ, indicating the spontaneous breakdown of the symmetry in this phase. A phase transition is
taking place at r = 0 because the order parameter,

|〈Φ(x)〉| ≈ Φ0 = Φ0,j=0(r) =

{
0 r > 0,
√

−6r
g r < 0,

(j = s = 0) (277)

changes in a singular manner at r = 0. This behavior suggests the identification r ≈ t = (T − Tc)/Tc in the vicinity
of the phase transition in order to recover the typical behavior of the magnetization around the Curie temperature
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T

FIG. 16: The first figure displays the absolute magnitude of the order parameter as the function of r. The second one shows
qualitatively the magnetization around the Curie temperature. The dashed lines correspond to j < 0.

U

φ

FIG. 17: The potential with j > 0 and r > 0. The dashed line indicates the symmetry breaking part, jΦ.

as shown in Fig. 16. We find the mean field value β = 1/2 for the critical exponent of the order parameter. The low
temperature phase is called ordered because the spontaneous symmetry breaking aligns the order parameter. This
transition seems to be of second order because the order parameter is continuous but non-differentiable at that point.
This expectation will be confirmed by the calculation of the correlation length for r ≈ 0.
The condition j = 0 rendered the free energy explicitly symmetric with respect to inversion, Φ(x) → −Φ(x) and

it was the spontaneous symmetry breaking mechanism which generated non-vanishing order parameter. What is the
phase structure on the parameter planes (r, j) when explicit symmetry breaking occurs, too? The symmetry is broken
explicitly by the external field which generates a stable, non-vanishing order parameter value for arbitrary values of
r or the temperature. We keep the identification r = c(T − Tc)/Tc for j 6= 0 and the potential is asymmetric and has
a stable minimum at Φ0 6= Φ0,j=0(r) = 0 for r > 0 and j 6= 0, cf. Fig. 17.
The situation is more complicated below the critical temperature. The order parameter is aligned by two different

symmetry breaking mechanisms, the spontaneous and the explicit one. The two possible values of the order parameter,
preferred by the spontaneous symmetry breaking are not equivalent with respect to the explicit symmetry breaking
mechanism. If the order parameter value chosen spontaneously agrees with the alignment preferred by the external
symmetry breaking field then the two symmetry breaking mechanisms work parallel and the order parameter settles
at a larger value in an absolute minimum of the potential as shown in Fig. 18 and indicated by the dashed lines in
Figs. 16. The order parameter of the absolute minimum as the function of the external symmetry breaking term,

U

φ−φ0 φ0

U

φ0 φ

−φ0

FIG. 18: The potential with j < 0 and r < 0.
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<φ>
r<0

j

r>0

FIG. 19: The order parameter as the function of the strength of the explicit symmetry breaking

r

j

FIG. 20: The phase structure on the planes (r, j) and (〈Φ〉, r). The ordered phase with spontaneous symmetry breaking is the
solid line j = 0, r < 0.

shown in Fig. 19, displays a first order phase transition in function of j in the ordered phase, r < 0. The resulting
phase structure is depicted in Fig. 20. The transition is of second order in r for j = 〈Φ〉 = 0. We shall argue below
that it is of first order in j for fixed r < 0. The order parameter becomes a regular function of r and the second order
phase transition at r = 0 is washed away for j 6= 0. The equation

U ′(Φ0) = 0 (278)

gives the mean field critical exponent δ = 3 for r = j = 0.
The simplicity of Fig. 20 is deceptive, there are differences in the dynamics of the system which are not easy to

identify by following a homogeneous mean field order parameter only. Inhomogeneities should be considered when the
order parameter happens to be around the minimum of the symmetric potential which is not preferred by the external
field. Then the two symmetry breaking mechanisms compete and the order parameter reduces its magnitude. For
weak enough external field the local minimum is the convex part of the potential U(Φ),

√

−2r/g < |Φ0| <
√

−6r/g.
This is indicated in the first graph of Figs. 18 and this region is denoted by N in Fig. 21. The order parameter is
now in a local minimum which is unstable with respect to fluctuations of finite, large enough amplitude.
As the strength of the explicit symmetry breaking is increases then the position of the local minimum reaches the

concave part of the potential, |Φ0| <
√

−2r/g. This is shown in second graph of Figs. 18 and the corresponding
region is denoted by S in Fig. 21. Here the order parameter becomes unstable even with respect to infinitesimal
fluctuations.
We come to the point mentioned above, that the transition is of first order in j for fixed r < 0 in Fig. 20. The

difference between the weak and strong explicit symmetry breaking regimes, denoted by N and S in Fig. 21 can be
understood by considering qualitatively the kind of inhomogeneities which arise around the homogeneous mean field.
The competition between the two almost degenerate minima in the weak explicit symmetry breaking region N creates
domains with 〈Φ(x)〉 ≈ ±Φ0,j=0(r). Let us apply the simple model for the domains where they have a free energy
density f0±f1 with f1 > 0 and the domain wall contributes to the free energy by a finite amount of free energy fs > 0
per unit surface, independently of the shape of the domain. Imagine that the whole system is driven adiabatically into
the unstable minimum of the free energy and a domain in a sphere of radius R with order parameter at the absolute
minimum of the free energy is created by a fluctuation. The free energy of this domain, embedded in the unstable
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FIG. 21: The phase structure on the plane (〈Φ〉, r).

F

R

Rc

FIG. 22: The free energy of a stable, spherical domain embedded into the unstable order parameter state. Rc is the critical
bubble size beyond which the bubble growths without limit.

order parameter state,

F (R) = −8π

3
f1R

3 + 4πfsR, (279)

is depicted in Fig. 22. Thus the creation of small domains with the preferred alignment of the order parameter cost
free energy and are suppressed. The ”wrongly” aligned system is stable against these inhomogeneous fluctuations.
But once a domain with sufficiently large volume is created, R > Rc =

√

fs/2f1 in the case of a spherical bubble,
the free energy is lowered because the gain in the bulk free energy is more important than the loss at the surface.
This is a nucleation phase where the system may be in the ”wrong” domain as long as the thermal fluctuations are
sufficiently weak and the system is kept away from large amplitude disturbances. The overheated or under-cold fluids
are to be found in this state.
As the external symmetry breaking is strengthened the free energy gain in the volume is increased in the ”right”

domains and the critical domain size is decreased until the thermal fluctuations smear out the domain walls and cancel
fs, what happens at |Φ0| =

√

−2r/g in the mean field solution. We enter here the spinodal instability regime where
no domains with finite size are observed and the system is in a mixed state of two competing, homogeneous order
parameter states. This is the mixed phase of a first order phase transition, developed as the function of j.
How does this picture changes when a higher order, φ6 term is added to the free energy? Such term influences the

spontaneous symmetry breaking by developing tree minima for r < 0 as shown in Fig. 23. When the region g < 0 is
explored for j = 0 and r, s > 0, what is possible because the highest power of Φ has positive coefficient, the symmetry
breaking minima shift the homogeneous mean field value of the order parameter in a discontinuous manner, as shown
in Fig. 24, and the second order phase transition at r = 0 of the potential s = 0 changes int a first order transition.
We return finally to the Ising model in d-dimensions which produces a second order phase transition at J = Jc

according to the numerical simulations. The analogous mean field solution, employed around the critical point, is
based on the introduction of a homogeneous magnetization µ. The dependence of the Hamiltonian on a given spin s
is approximated by replacing the neighboring spin variables by this average magnetization,

H(s)

T
= −Js

∑

j

sj − hs→ −2dJµs− hs (280)
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FIG. 23: The symmetric potential free energy for r, s > 0 and g < 0.
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FIG. 24: The order parameter as the function of the coupling constant g for a sixth order potential.

and the partition function for our single active spin variable is

Z = e2dJµ+h + e−2dJµ−h. (281)

The magnetization induced by this variable,

〈s〉 = 1

Z

∂Z

∂h
= tanh(2dJµ+ h). (282)

The self consistency condition.

µ = 〈s〉 (283)

can be solved graphically as shown in Fig. 25 for h = 0 and the resulting magnetization as the function of J is similar
to the second graph of Figs. 16 with Tc = 1/2d.

µ

T<T

T>T

T=T

c

c

c

<s>

FIG. 25: The average spin as the function of free mean field magnetization µ.
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F. Fluctuations and the critical point

As the next, less trivial use of the phenomenological Landau-Ginzburg free energy for the order parameter we cal-
culate the correlation function. For this end we write the order parameter as the sum of a mean field and fluctuations,

Φ(x) = Φ0 + φ(x). (284)

The leading order, O
(
φ2
)
, approximation of the free energy for j = 0 is

βF (2)[φ] =

∫

d3x
[z

2
(∇φ(x))2 +

r

2
φ2(x)

]

, (285)

where r = U ′′(Φ0) and the constantU(Φ0) has been ignored. This expression can be diagonalized by using the normal
modes of the fluctuations which are plane waves in the case of a homogeneous mean field,

φ̃(k) =

∫

d3xe−ikxφ(x) (286)

where the real order parameter requires φ̃∗(k) = φ̃(−k). The free energy turns out to be

βF (2)[φ] =
1

2

∫

d3x
d3k

(2π)3
d3q

(2π)3
ei(k+q)xφ̃(k)φ̃(q)(r − zkq)

=
1

2

∫
d3k

(2π)3
|φ̃(q)|2(zk2 + r) (287)

in terms of the normal modes.
The correlation function,

C(x− y) = 〈Φ(x)Φ(y))〉 − 〈Φ(x)〉〈Φ(y)〉

=

∫
D[Φ]e−βF [Φ]Φ(x)Φ(y)
∫
D[Φ]e−βF [Φ]

−
∫
D[Φ]e−βF [Φ]Φ(x)
∫
D[Φ]e−βF [Φ]

∫
D[Φ]e−βF [Φ]Φ(y)
∫
D[Φ]e−βF [Φ]

, (288)

approximated by means of the quadratic free energy is written as

C(x) ≈
∫
D[φ]e−βF (2)[φ](Φ0 + φ(x))(Φ0 + φ(0))

∫
D[Φ]e−βF [Φ]

−
∫
D[φ]e−βF (2)[φ](Φ0 + φ(x))

∫
D[φ]e−βF (2)[Φ]

∫
D[φ]e−βF (2)[φ](Φ0 + φ(0))

∫
D[φ]e−βF (2)[Φ]

=

∫
D[φ]e−βF (2)[φ]φ(x)φ(0)
∫
D[φ]e−βF (2)[Φ]

(289)

because the discrete symmetry F (2)[−φ] = F (2)[φ] cancels the averages of odd powers of the fluctuations,
∫

D[φ]e−βF (2)[φ]φ2n+1(x) = 0. (290)

The functional integral will be calculated by the help of the normal mode amplitudes as integral variables. Since
φ̃∗(k) = φ̃(−k) it is enough to consider half of the complex variables φ̃(−k) in the integration. A possible choice is to

keep ℜφ̃(k) and ℑφ̃(k)for kz > 0. We do not commit ourself to any specific choice, instead we shall make integration
over all components keeping it mind that we visit each degree of freedom in this process.

Z ≈
∫

D[φ]e−βF (2)[φ]

= C

∫

D[φ̃]e
− 1

2

∫

d3k
(2π)3

|φ̃(k)|2(zk2+r)+
∫

d3xU(Φ0), (291)

where C denotes the Jacobian corresponding to the change of integral variables φ(x) → φ̃(k) and the integral measure
is

D[φ̃] =
∏

k

∫

dφ̃(k). (292)
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The relation ∆k = 2π/L and the Gauss integral

I(a) =

∫ ∞

−∞

dxe−
a
2 x

2

=

√

2π

a
. (293)

allows us to write

Z = C
∏

k

∫

dφ̃(k)e−
1

2V |φ̃(k)|2(zk2+r)

= C

√
∏

k

2πV

zk2 + r
(294)

with V = L3 and the square root is to take into account the double counting of the degrees of freedom in integrating
over all Fourier modes of a real field.
Using I(a) as generating function we have

∫ ∞

−∞

dxe−
a
2 x

2

x2 = −2
dI(a)

da
=

1

a

∫ ∞

−∞

dxe−
a
2 x

2

(295)

and we find
∫

D[φ]e−βF (2)[φ]φ(x)φ(y) = C
∑

q,q′

eiqx−iq′y
∏

k

∫

dφ̃(k)e−
1

2V |φ̃(k)|2(zk2+r)φ(q)φ∗(q′)

= CV
∑

q

eiq(x−y)

zq2 + r

∏

k

2π

zk2 + r

=

∫
d3q

(2π)3
eiq(x−y)

r + zq2

∫

D[φ]e−βF (2)[φ], (296)

and the Ornstein-Zernike form of the correlation function is recovered. It supports the identification r = 0 as the
critical point and the critical exponents ν = 1/2, η = 0 and γ = 1 are found.
The mean field solution together with the quadratic approximation for the fluctuation is reliable if the fluctuations

are weak. As the critical point is approached r → 0 and the ”restoring force” acting on the fluctuations decreases.
Thus one expects that the approximation breaks down in a sufficiently small vicinity of the critical point. This is the
Ginzburg condition. When the space dimensionality is changed on expects stronger fluctuation at lower dimension
because the integral measure qd−1 in the integration over the wave numbers in polar coordinates allows the singularity
1/q2 to be more dominant. Thus there should be critical dimension above which this approximation is applicable.
This critical dimension turns out to be d = 4. Despite these limitations the approximations followed above give a
good guideline to identify the interesting and problematic aspects of critical phenomena.

VI. BOSE SYSTEMS

The particle exchange statistics has a fundamental impact on the properties of a many-particle state. The Fermi-
Dirac statistics renders the multi-fermion systems weakly interacting in the absence of attractive forces and the
Bose-Einstein statistics may produce macroscopically occupied states or symmetry breaking.

A. Noninteracting bosons

The grand canonical partition function for a gas of free, spineless, indistinguishable particles,

Z = e−βF =
∏

p

∑

np

e−β(ǫp−µ)np

=
∏

p

1

1− e−β(ǫp−µ)
(297)
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gives the grand canonical free energy

F (T, µ) =
1

β

∑

p

ln(1− e−β(ǫp−µ)) (298)

which becomes

F =
V

β

∫
d3p

(2π)3~3
ln(1 − e−β(ǫp−µ)) (299)

in the thermodynamical limit. The density

n =
〈N〉
V

= − 1

V

∂F

∂µ

=

∫
d3p

(2π)3~3
ze−βǫp

1− ze−βǫp
(300)

with z = eβµ is a monotonically increasing function of z or µ for z < 1, µ < 0,

n =

∫
d3p

(2π)3~3
ze−

βp2

2m

1− ze−
βp2

2m

=
1

2π2~3

∫ ∞

0

dpp2
ze−

βp2

2m

1− ze−
βp2

2m

=
(2mkBT )

3/2

2π2~3

∫ ∞

0

dxx2
ze−x2

1− ze−x2

=
(2mkBT )

3/2

4π2~3

∫ ∞

−∞

dxx2
∞∑

n=1

zne−nx2

= − (2mkBT )
3/2

4π2~3

∞∑

ℓ=1

zℓ
d

dℓ

∫ ∞

−∞

dxe−ℓx2

︸ ︷︷ ︸√
π/ℓ

=
(2mkBT )

3/2

8π3/2~3
︸ ︷︷ ︸

λ−3
T

∞∑

ℓ=1

zℓ

ℓ3/2
, (301)

and the series in the last equation is convergent for |z| < 1.
The key point is that the density remains finite at z = 1, at the singularity. Therefore the phase transition on the

(T, n) plane is at a line z = 1 or µ = 0,

nc =

(
mkBT

2π~2

)3/2 ∞∑

ℓ=1

1

ℓ3/2
≈ 2.612

λ3Tc

,

kBTc =
2π~2

m

(

n
∑∞

ℓ=1
1

ℓ3/2

)2/3

≈ 2π~2

m

( n

2.612

)2/3

, (302)

shown qualitatively on Fig. 26. This line shows the maximal capacity of accommodating particles with microscopic
occupation numbers. All momentum integrals are well defined and finite under this curve. When the system is pushed
on the other side of the critical curve then the naive idea of occupying each energy level by a microscopic manner, ie.
by having a continuous occupation number

np =
1

eβ(ǫp−µ) − 1
(303)
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FIG. 26: The phase structure of an ideal Bose-Einstein gas on the (n, T ) plane.

turns out to be wrong because the integrals containing the occupation number are divergent. To understand the
origin of the unexpected complication we have to return to the case of the discrete spectrum and consider a simple
sum over momenta,

N =
∑

p

e−β(ǫp−µ)

1− e−β(ǫp−µ)

=
∑

p

1

eβ(ǫp−µ) − 1
. (304)

This shows that the approximation of the sum by an integral is problematic when z ≥ 1 due to the vanishing de-
nominator. The maximal number of particle the system can accommodate with continuous and integrable occupation
number distribution np in thermodynamical limit corresponds to the density 2.612(mkBT/2π~

2)3/2, the critical line
of Fig. 26. The further decrease of the temperature for fixed particle number or increase of the particle number with
fixed temperature is possible only by occupying some energy levels in a discontinuous manner. It is obvious that these
extra particles should be placed in the minimal energy single particle state, p = 0. Therefore above the critical curve
the homogeneous, zero energy state will contain particles with density

ncond(n, T ) = max

(

0, n− 2.612

λ3T

)

. (305)

Such a Bose-Einstein condensate produces genuine macroscopic quantum effects because particles in the condensate
remain coherent over macroscopic distances. The hard core due to the Pauli exclusion principle prevents condensation
for fermions.
It is not difficult to construct an order parameter signaling the onset of the condensation,

η =
ncond(n, T )

n
= max

(

0, 1− 2.612

λ3Tn

)

= max

(

0, 1−
(

T

Tc(n)

)3
)

. (306)

One can upgrade this order parameter to a local field by considering the wave function of the particles in the
condensate,

ψcond(x) =
√

Ncondψ0(x), (307)

where Ncond is the number of particles in condensate, eg. Ncond = V ncond(n, T ) and ψ0(x) = 1
√
V for homogeneous

condensates. This function represents the coherent quantum effects of the condensate and becomes a nontrivial
function of the coordinate x in the presence of inhomogeneous external perturbations.

B. Phases of Helium

Many fermion system systems usually arrive at a solid phase at low temperature where the attractive van der Waals
forces become stronger than forces arising from thermal collisions and a periodic ground state is formed. An exception
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FIG. 27: The localization (zero-point) energy together with the solid or liquid potential energy as the functions of the molar
volume v = V/N .
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FIG. 28: The phase structure of 4He and the specific heat in the fluid phase.

to this rule is the Helium which retains the fluid phase down to T = 0 for sufficiently low pressure. Being a noble
gas, the van der Waals forces are weak. But other noble gas atoms can be solidified, the additional unique feature
of the Helium is its low mass. The localization of a particle into a box of size L requires the energy d~/2mL2 in
d-dimensions, and the lighter the particle we intend to localize the more energy will be stored in the localized state.
For light enough particles, such as the 3He or 4He atoms, the gain in energy from letting the particles extend over
large region dominates the gain from forming a coherent solid around the minimum of the potential energy in the
solid as shown in Fig. 27. On the contrary, the zero-point energy drops slow enough around the minimum of the
potential energy in the liquid phase, rmin ≈ 3A to stabilize the low temperature liquid at r0 ≈ 4.6A with v0 ≈ 46A3.
As a result, the zero temperature He atoms form liquid at low enough pressure.
When the pressure is increased the atoms starts to overlap and to experience the Pauli exclusion principle for their

fermionic constituents which is represented by the hard repulsive core of the potential energy of Fig. 27. When the
atoms are squeezed against this repulsive core their potential energy raises rendering the dynamics semiclassical. This
classical dynamics leads to the formation of a periodic crystal, the solid phase.
The overlap between fermion states of different He atoms is weak below nuclear densities and the exchange statistics

of the atoms is determined by the exchange of the whole bound state. Therefore, the 4He and 3He atoms behave
as bosons or fermions at low densities, where the separation of the atoms is much larger than their size. Thus one
expects the appearance of Bose-Einstein condensate in 4He.
At even lower pression the density drops below the threshold for Bose-Einstein condensate and the normal 4He gas

is recovered.
A similar phenomenon, observed in 3He, can be understood by the formation of loosely bound pairs of two 3He

atoms into a bosonic quasi-particles which condense. Due to this complication we discuss the case of 4He only.
The phase structure and the specific heat of 4He are shown in Figs. 28. The peak in the specific heat, seen at low

pressure when we cross the division line between the Hi I and He II phases suggests a second order phase transition,
He II supporting Bose-Einstein condensate.

C. He II

The most natural, approximate description of the He II phase is Tisza’s two-fluid model where we assume that
the fluid is made up by two fluids, one containing the condensed atoms and the other the atoms corresponding to
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FIG. 29: The dispersion relation for the elementary excitations of He II.

microscopic occupation number. The density and the velocity of the fluid is supposed to be

ρ = ρn + ρs,

ρv = ρnvn + ρsvs. (308)

The He consists of identical He atoms and their separation into two different fluid is formal method, based on the
different correlations the atoms experience in a macroscopically or microscopically populated state.
The distinguishing features of the super-fluid component is its vanishing entropy and viscosity. These give rise to the

mechanocaloric and the fountain effects. Let us consider two containers A and B of He II, connected by a very narrow
tube. This tube acts as a filter for the super-fluid component because the viscosity makes the hole impenetrable for
the normal fluid. If the entropy-less super-fluid flows from A to B then the entropy per particle is increased in A and
decreased in B. As a result, A worms up and B cools down, the super-fluid carries ”cold”. In the inverse experiment
two open vessel (same pressure) are connected by a narrow tube and the temperature difference is increased. This is
followed by the flow of the super-fluid which was so strong in an early experiment that the He II fluid was thrown up
in a jet in the colder vessel.
Another unique phenomenon related to the super-fluid component is the second sound. Many particle systems

usually support sound waves, propagating disturbances of the particle density. The normal sound waves which
have linear dispersion relation for long wavelength excitations, E(k) = ~ω(k) = O (k), are called first sound. A
generalization of the ordinary sound wave, the zero sound, occurs in Fermi liquids, the weakly interacting fermion
systems. In fact, the rearrangement of the particle density at long distances requires the cooperation of a number
of particles due to the conserved particle number. This diffusive cooperative phenomenon slows down the processes
and makes it low energetic. We have a second sound in He II where the two components may establish an oscillatory
motion with opposite phase (the same phase motion is a kind of first sound). The lowest energy realization of this
oscillations keeps the density time independent and entropy is propagating along the wave. Low energy neutron
scattering experiments provide the dispersion relation, the energy as the function of the momentum, for elementary
excitations. In fact, the slow neutrons interact with the He atoms by creating thermal excitations only. The result
supported Landau’s assumption, the presence of new type of excitations at non-vanishing momenta. The qualitative
dispersion relation, shown in Fig. 29, can be approximated as

E(k) =

{

~ck k ≈ 0

E0 +
~
2(k−k0)

2

2m0
k ≈ k0,

(309)

with c = 240m/s, E0 = 8.65K, k0 = 1.92A−1, m0/m = 0.16. The density of state,

n(E) =
k2

2π2 dE
dk

, (310)

is large for the roton excitations with k ≈ k0 thus these two regions cover the important parts of the dispersion
relation from the point of view of low temperature excitations.

D. Energy damping in super-fluid

The vanishing entropy of the super-fluid can easily be understood by noting that the condensate is represented by
a single pure state. The nontrivial features of the super-fluid is its vanishing viscosity. The key to understand it is the
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absence of gap in the elementary excitation spectrum, the fact that long wavelength excitations have linear dispersion
relation. Feynman had a qualitative argument about the absence of other than phonon excitations in He II liquid. A
more systematic way of understanding of the gapless spectrum comes from Goldstone theorem. This theorem assures
in a trivial manner that the phonons have gapless, linear dispersion relation in solids. But for which symmetry is
supposed to be broken by the super-fluid component? The order parameter of the Bose-Einstein condensate, ψ(x), is
the wave function of the lowest lying state weighted by the square root of the number of particles in the condensate.
This quantity corresponds to macroscopic number of particles and as such can be obtained as an expectation value.
The detailed manner this expectation value is calculated is rather involved and requires the formalism of Quantum
Field Theory. It is enough to assume now that this local order parameter is given as an expectation value which
breaks the continuous phase symmetry,

ψ(x) → eiαψ(x) (311)

of Quantum Mechanics. The corresponding Goldstone gapless modes are the phonons of He II.
Once the linear dispersion relation is accepted then the vanishing viscosity of the super-fluid can easily be understood

by following Landau’s arguments. He assumes that the excited states of He II with occupation number nk have the
spectrum

E{n} = Econd +
∑

k

~ωknk, (312)

where E0 denotes the energy of the condensate and

〈nk〉 =
1

eβ~ωk − 1
. (313)

Let us now consider He II flowing through of a straight pipe line at sufficiently low temperature where the normal
excitations have negligible weight. we regard the motion in the rest frame of the He II where we see the wall moving
with velocity V and momentum P = MV . Let us suppose that the moving wall creates phonons with occupation
number np. Then the energy and momentum loss of the tube are

∆E =
∑

p

c|p|np, ∆P =
∑

p

pnp, (314)

satisfying the inequality

|∆P | ≤
∑

p

|p|np =
∆E

c
=

V ∆P

c
. (315)

Thus the energy loss due to creation of gapless phonons is impossible for

|V | < c. (316)

The low momentum phonons give the upper bound |V | ≤ 240m/s and rotons require |V | ≤ 60m/s. This argument
valid for low enough temperatures where the phonon gas is dilute and the phonon-phonon interactions are negligible.
But experiments show that superfluidity is already lost for much slower motion, for velocities few times m/s. Such a
radical decrease of the maximal velocity is related to the dynamics of the vortex lines, to be considered next.

E. Vortices

The current represented by a particle of mass m and wave function ψ(x) is given by the probability flux vector,

j(x) =
~

2im
[ψ∗(x)∇ψ(x)−∇ψ∗(x)ψ(x)] (317)

and the local velocity can be defined by v(x) = j(x)/ψ∗(x)ψ(x). One can introduce the velocity of the condensate
in a similar manner, by identifying ψ(x) in the expression above with the order parameter of the condensate which is
written as

ψcond(x) =
√

ρcond(x)e
iφ(x). (318)
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A further simplification is made by assuming that ρcond(x) is slowly varying compared to the phase φ(x),

vs(x) =
~

m
∇φ(x). (319)

This velocity flow is irrotational,

∇× vs = 0. (320)

What happens if we place a He II in a cylinder which adiabatically brought into slow rotation with angular
velocity ω? Due to the finite temperature there are phonons in the system which contribute to the normal fluid and
they interact. These interactions will slowly accelerate the super-fluid component, too. It has been demonstrated
experimentally that we can bring the whole system into rotational motion in this manner. But the velocity profile in
this case would be

vs(x) = eφωr (321)

and the circulation, defined by

κ =

∮

γ

dxvs (322)

for a closed path γ would be non-vanishing. This is an apparent contradiction with the irrotational nature of the
super-fluid because of the integral theorem

∮

∂Σ

dxvs =

∫

Σ

dn∇ × vs, (323)

where the boundary of the surface Σ is denoted by ∂Σ. The way out for this problem is to recall that the integral
theorem is proven by breaking Σ into infinitesimal squares and summing up their circulation. This strategy, the
cancellation of the line integral on the internal edges requires that the region σ be simply connected, ie. any closed
loop in σ can be contracted into a point without leaving Σ. As soon as Σ is multiply connected and some points
are missing in it the integral theorem is violated. Therefore, a natural way of saving the irrotational nature of the
super-fluid is to assume that the density of the condensate is vanishing along some curves, called vortex lines. The
circulation can be non-vanishing for any surface which is traversed by vortex line.
An important property of the super-fluid vortices is their quantized strength. This is due to the well defined nature

of the phase φ(x) profile, requiring

κ =
~

m

∮

∂Σ

dx∇φ(x) = 2πn
~

m
. (324)

The low energy, long distance excitations of the super-fluid are described by an irrotational, approximately incompress-
ible fluid with quantized vorticity. It is worth recalling that the circulation in an ideal, isentropic fluid is conserved.
Therefore. the vortex lines are such collective degrees of freedom of the super-fluid which acquire time dependence
through the interaction with the normal component only.

VII. NONEQUILLIBRIUM PROCESSES

A. Stochastic processes

Definition: A family of random variables Xt ∈ R, t ∈ R is called stochastic processes. It is characterized by the
joint probability distributions

pℓ(xℓ, tℓ, · · · , x1, t1) = P (Xtℓ = xℓ, · · · , Xt1 = x1) (325)

for tℓ > tℓ−1 · · · > t1 satisfying the following conditions

1. pℓ ≥ 0,

2.
∫
dxℓpℓ(xℓ, tℓ, · · · , x1, t1) = pℓ−1(xℓ−1, tℓ−1, · · · , x1, t1), (ℓ ≥ 2),
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3.
∫
dxp1(x, t) = 1.

Furthermore, one introduces the correlation functions

〈Xt1 · · ·Xtk〉 =
∫

dℓxpℓ(xℓ, tℓ, · · · , x1, t1)x1 · · ·xℓ (326)

and the conditional probabilities

pk|ℓ(xℓ+k, tℓ+k, · · · , xℓ+1, tℓ+1|xℓ, tℓ, · · · , x1, t1) =
pk+ℓ(xl+ℓ, tk+ℓ, · · · , x1, t1)

pℓ(xℓ, tℓ, · · · , x1, t1)
. (327)

The stochastic process is called stationary if

〈Xt1 · · ·Xtk〉 = 〈Xt1+τ · · ·Xtk+τ 〉. (328)

If the fundamental laws are invariant under time translation then the dynamics reaches equilibrium after some time
and the corresponding stochastic process becomes stationary.

Exemple: Our system is a small, classical particle of coordinate x(t) in a classical gas.

B. Markov process

Definition: A stochastic process is called Markov process if

pk|ℓ(xℓ+k, tℓ+k, · · · , xℓ+1, tℓ+1|xℓ, tℓ, · · · , x1, t1) = pk|1(xℓ+k, tℓ+k, · · · , xℓ+1, tℓ+1|xℓ, tℓ) (329)

for tm ≥ tn, m > n. This condition corresponds to first order differential equation as deterministic equation of motion.
In fact, it is enough to specify one data for each degree of freedom to follow its dynamics.

Exemples:

1. Disintegration process: Let Xt the number of radioactive nuclei at time t, w(t) = e−γt denotes the probability
that a radioactive nucleon survives time t and N stands for the total number of nuclei:

p
(N)
1 (n, t) = p(N)(n) = (Nn )e−nγt(1 − e−γt)N−n

p1|1(n, t|n′, t′) = p(n, t|n′, t′) = p(n
′)(n, t− t′) = (n

′

n )e−nγ(t−t′)(1− e−γ(t−t′))n
′−n. (330)

2. Ehrenfest urn: One distributes the balls 1, . . . , N in two urns. In each minutes one generates a uniformly
distributed random number nt ∈ {1, . . . , N} and puts the ball n in the other urn. The transition probability is

p(n, t+ 1|n′, t) =
n′

N
δn,n′−1 +

(

1− n′

N

)

δn,n′+1. (331)

3. Wiener process: A Markov process is specified by the initial probability distribution, p(x, 0) and the transition
probability, p1|1(n, t|n′, t′) = p(n, t|n′, t′). The Wiener process is defined by

p(x, t|x′, t′) = e
− (x−x′)2

4D(t−t′)

[4πD(t− t′)]d/2
, (t > t′). (332)

The physical relevance of this process is assured by the fact that the transition probability satisfies the heat
equation,

∂tp(x, t|x′, t′) = D∆p(x, t|x′, t′). (333)

Theorem: The conditional probability p(x2, t2|x1, t1) = p1|1(x2, t2|x1, t1) of a Markov process for a numerical
variable Xt ∈ R

n satisfies that Chapman-Kolmogorov equation,

p(x2, t2|x1, t1) =
∫

dzp(x2, t2|z, t)p(z, t|x1, t1) (334)
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where t1 ≤ t ≤ t2. This equation can be proven by comparing the first and last line in

p(x3, t3) =

∫

dx1p(x3, t3|x1, t1)p(x1, t1)

=

∫

dx2(x3, t3|x2, t2)p(x2, t2)

=

∫

dx2p(x3, t3|x2, t2)
∫

dx1p(x2, t2|x1, t1)p(x1, t1)
︸ ︷︷ ︸

p(x2,t2)

. (335)

Exemple: Ornstein-Uhlenbeck process,

pt(x, y) =
e
− (x−ye−t)2

2(1−e−2t)

√

2π(1− e−2t)
(336)

is a non-trivial realization of the Chapman-Kolmogorov equation.

Theorem: (Doob) The Ornstein-Uhlenbeck process is the only Markov stationary and Gaussian process.

Definition: A Markov process is homogeneous if p(x, t|x′, t′) = pt−t′(x, x
′), and stationary if it is homogeneous and

p(x, t) = p(x) (equilibrium).

C. Markov chain

We can not carry out measurement with arbitrary precision and must be satisfied by reproducing the observed
phenomena in terms if discrete variables. The Markov chain is a simplified Markov process which is based on discrete
rather than continuous variables.

Definition: The Markov process Xt is a Markov chain ifXt ∈ N and t = n∆t. The transfer matrix of the Markov
chain is Tℓ,m(n∆t) = P (ℓ, (n+ 1)∆t|m,n∆t).
Remark: For a homogeneous Markov chain with transfer matrix T (n∆t) = T we have

P (ℓ, n∆t|m, 0) = (T n)ℓ,m (337)

Definition: The matrix M is called stochastic if Mj,k ≥ 0 and
∑

j Mj,k = 1.

Remark: T is a stochastic matrix.

Exemples:

1. Two-state system:

T =

(
1− p p
q 1− q

)

. (338)

2. Random walk:

p2(n, t+∆t|n, t) = p, p2(n± 1, t+∆t|n, t) = q =
1− p

2
(339)

Tabs. bound. =













1 q 0 · · · 0 0 0
0 p q · · · 0 0 0
0 q p · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · p q 0
0 0 0 · · · q p 0
0 0 0 · · · 0 q 1













, Trefl. bound =













p+ q q 0 · · · 0 0 0
q p q · · · 0 0 0
0 q p · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · p q 0
0 0 0 · · · q p q
0 0 0 · · · 0 q p+ q













(340)
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3. Ehrenfest urn:

T =














0 1
N 0 · · · 0 0 0

1 0 2
N · · · 0 0 0

0 N−1
N 0 · · · 0 0 0

...
...

...
. . .

...
...

...
0 0 0 · · · 0 1−N

N 0
0 0 0 · · · 2

N 0 1
0 0 0 · · · 0 1

N 0














(341)

D. Master equation

The the Chapman-Kolmogorov equation describes the evolution of the transition probability during a finite time.
The simplification when the evolution over infinitesimal time is considered is that the system can not make a finite
jump and the integral equation reduces a differential equation, the master equation.

Theorem: Denote pt(x, y) the transition probability of a homogeneous Markov process which can be written in the
limit t→ 0 as

pt(x, y) = [1− a(y)t]δ(x− y) + tW (x, y) +O
(
t2
)
, (342)

where W ≥ 0 and a(y) =
∫
dxW (x, y). The Chapman-Kolmogorov equation

pt+t′(x, y) =

∫

pt′(x, z)pt(z, y)dz

= [1− a(x)t′]pt(x, y) + t′
∫

W (x, z)pt(z, y) +O
(

t
′2
)

(343)

gives

∂tpt(x, y) =

∫

[W (x, z)pt(z, y)−W (z, x)pt(x, y)]dz (344)

for t′ → 0.

Remarks:

1. The master equation reads for the probability distribution p(x, t) =
∫
pt(x, y)p(y, 0)dy as

∂tp(x, t) =

∫

[W (x, z)p(z, t)−W (z, x)p(x, t)]dz. (345)

2. The Master equation for a Markov chain is

∂tpn(t) =
∑

m

[Wn,mpm(t)−Wm,npn(t)] =
∑

m 6=n

[Wn,mpm(t)−Wm,npn(t)] (346)

Exemple: The disintegration process is defined by the transition probability

p∆t(m,n) =







0 if m > n,

nγ∆t if m = n− 1,

O
(
∆2t

)
if m < n− 1,

(347)

yielding

Wm,n = γnδm,n−1 (m 6= n). (348)
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The Master equation,

ṗn(t) =
∑

m

[Wn,mpm(t)−Wm,npn(t)]

= γ(n+ 1)pn+1(t)− γnpn(t) (349)

yields the differential equation

∂t〈n(t)〉 =

∞∑

n=0

nṗn

= γ
∞∑

n=0

n(n+ 1)pn+1(t)− γ
∞∑

n=0

n2pn(t)

= γ

∞∑

n=0

(n− 1)npn(t)− γ

∞∑

n=0

n2pn(t)

= −γ
∞∑

n=0

npn(t)

= −γ〈n(t)〉 (350)

whose solution is

s〈n(t)〉 = n0e
−γt. (351)

E. Equilibrium

It is of central importance to establish the condition of stationary, ie. equilibrium of stochastic processes. Two
theorems are mentioned here without proof.

Theorem: All finite dimensional stochastic matrix generate equilibrium except some special cases (Perron-
Frobenius).
If psn is a stationary probability distribution then

∑

m

Wn,mp
s
m = (

∑

m

Wm,n)p
s
n, (352)

the gain and loss balance each other. A stronger conditions, the detailed balance is

Wn,mp
s
m =Wm,np

s
n. (353)

Theorem: The detailed balance is a sufficient condition that the distribution psn be stationary.
This theorem is the basis of the Monte-Carlo simulation method.

VIII. BROWNIAN MOTION

The simplest physical realization of a stochastic process is the Brownian motion, the dynamics of a dust particle in
the air.

A. Diffusion equation

The probabilistic dynamics of a classical particle is based on the probability density n(x, t) and the probability
current j(x, t), satisfying the continuity equation ∂tn = −∇j. Fick equation relates the current to the inhomogeneity
of the probability density and a drift, caused by the external force F ,

j = −D∇n+
1

f
nF , (354)
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where D and f denote the diffusion and the friction constants, respectively. Together with the continuity equation
we have the diffusion equation

∂tn = D∆n− 1

f
∇(nF ) = D∆n− 1

f
F∇n− 1

f
∇Fn. (355)

Remark: Observe that the diffusion equation can formally be obtained from the Schrödinger equation,

i~∂tψ =
1

2m

(
~

i
∇− e

c
A

︸ ︷︷ ︸

p̂

)2

ψ + Uψ

= − ~
2

2m
∆ψ +

ie~

2mc
(∇A+A∇)ψ +

e2

2mc2
A2ψ + Uψ

= − ~
2

2m
︸︷︷︸

D

∆ψ +
ie~

mc
A

︸ ︷︷ ︸

F/f

∇ψ +
[ e

2mc

(

i~∇A+
e

c
A2
)

+ U
]

︸ ︷︷ ︸

∇F /f

ψ (356)

by the Wick rotation, ie. the analytic continuation to complex time, t → −i~τ . This relation between Quantum
Mechanics and classical Statistical Physics, one can be obtained by a Wick rotation from the other, is not restricted
to this case and can be traced down to the choice of the density matrix of the canonical ensemble.

The unusual term with the first derivative can easily be eliminated by the gauge transformation

ψ(x, t) → ei
e
~c

θ(x)ψ(x, t)

A(x, t) → A(x, t) +∇θ (357)

for which p̂ψ → ei
e
~c p̂ψ. By writing A = ∇φ, ψ = e−i e

~c
φχ we find

i~∂tχ = −
~
2

2m
∆χ. (358)

In an analogous manner one looks for the solution of the diffusion equation in the form n = peκu. The relations

∇n = (∇p+ κp∇u)eκu

∆n =
[
∆p+ 2κ∇p∇u+ κp∆u+ κ2p(∇u)2

]
eκu (359)

give

∂tp = D∆p+ 2Dκ∇p∇u+Dκp∆u+Dκ2p(∇u)2 +
1

f
∇u∇p+

1

f
pκ(∇u)2 +

1

f
p∆u

= D∆p+

(

2Dκ+
1

f

)

︸ ︷︷ ︸

0

∇p∇u+

(

Dκ∆u+Dκ2(∇u)2 +
1

f
κ(∇u)2 +

1

f
∆u

)

︸ ︷︷ ︸

U

p. (360)

where the choice f−1 = −2Dκ was made.

The solution of the diffusion equation is particularly simple for free particles, F = 0, when ∂tp = D∆p. The
solution which corresponds to the initial condition p(x, t0) = p0(x) is written as

p(x, t) =

∫

d3y G(x, t,y; t0)
︸ ︷︷ ︸

propagator

p0(y) (361)

where the master equation gives

∂tG(x, t,y; t0) = D∆xG(x, t,y; t0). (362)

The initial condition G(x, t,y; t) = δ(x− y) leads to the solution

G(x, t,y; t0) =
1

[4πD(t− t0)]3/2
e
− (x−y)2

4D(t−t0) (363)

which satisfies the Chapman-Kolmogorov equation.

G(x, t,y; t0) =

∫

d3zG(x, t, z; t1)G(z, t1,y; t0) (364)

with t0 ≤ t1 ≤ t.
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B. Fokker-Planck equation

The master equation, an integro-differential equation, can systematically be truncated and a differential equation
can be recovered for certain Markov processes. This scheme goes under the name Kramers-Moyal (gradient) expansion.
The probability distribution p(x, t) of a Markov process satisfies the master equation

∂tp(x, t) =

∫

W (x, z)p(z, t)dz − p(x, t)

∫

W (z, x)dz

=

∫

w(z, x− z)p(x− z, t)dz − p(x, t)

∫

w(−z, x)dz, (365)

where w(x − y, y) =W (x, y). Let us assume that

1. the jump is sufficiently small, ie. W (x, z) ≈ 0 for large |x− z| and

2. the probability distribution p(x, t) and the conditional probability w(y, x) vary sufficiently slowly in x.

The Taylor expansion

p(z, t) ≈ p(x, t) + (z − x)p′(z, t) +
1

2
(z − x)2p′′(z, t) + · · · (366)

yields the form

∂tp(x, t) =

∫

dz

∞∑

n=0

(−1)n

n!
zn∂nx [w(z, x)p(x, t)] − p(x, t)

∫

dzw(−z, x) (367)

for the master equation. One introduces the moments of the jump,

Mn(x) =

∫

dzznw(z, x) (368)

and finds

∂tp(x, t) =
∞∑

n=1

(−1)n

n!
∂nx [Mn(x)p(x, t)]. (369)

Conditions 2. and 1. above assure the availability of the expansion in the jump in the arguments x− z of the master
equation and the finiteness of the moments Mn, respectively.
The following theorem covers an important class of Markov process, the Brownian motion.

Theorem: The Markov process X whose moments are

Mn(x) =

∫

dzzn
1

∆t
p(x+ z, t+∆t|x, t) =

{

O
(
(∆t)0

)
n = 1

O
(
(∆t)n/2−1

)
n ≥ 2

(370)

the master equation can be truncated at n = 2 and the probability distribution p(X(t) = t) = p(x, t) satisfies the
Fokker-Planck equation

∂tp(x, t) = − ∂x[M1(x)p(x, t)]
︸ ︷︷ ︸

transport, drift

+
1

2
∂2x[M2(x)p(x, t)]
︸ ︷︷ ︸

fluctuation, diffusion

. (371)

Exemples:

1. The transition probability of a d-dimensional homogeneous motion, the Brownian motion is given by

p(x, t+∆t|y, t) = 1

(4πD∆t)d/2
e−

(x−y)2

4D∆t , (372)
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where ∆t is a time scale longer than the microscopic collision time and and the relaxation time of the velocity,
τcoll, τv rel ≪ ∆t. The moments of the jump in time ∆t are

M2n =
1

∆t(4πD∆t)1/2

∫

dyy2ne−
y2

4D∆t

=
(4D∆t)n+

1
2

∆t(4πD∆t)1/2

∫

dz2ne−z2

=
(4D∆t)n+

1
2

∆t(4πD∆t)1/2
(−1)n∂nc

∫

dze−cz2

︸ ︷︷ ︸

(π/c)1/2

|c=1

=
1 · 3 · · · 2n− 1

2n
(4D)n∆tn−1 = O

( |∆x|2n
∆t

)

(373)

In particular,

|∆x|
∆t

= O
(

∆t−1/2
)

(374)

and the trajectory is nowhere differentiable, the velocity is diverging. This is naturally a mathematical problem
only because our simple description of the motion looses validity in the limit ∆t→ 0. The scaling law 〈(∆x)2〉 =
2D∆t is called diffusive.

2. One dimensional inhomogeneous motion: The probability density p and vector J satisfy the continuity equation,
∂tp = −∂xJ , therefore the Fokker-Planck equation can be integrated yielding

J =M1(x, t)p(x, t) −
1

2
∂x[M2(x, t)p(x, t)]. (375)

• The stationary solution for Jx = J = 0 satisfies the equation

0 =
M1(x)

M2(x)
M2(x)p(x)
︸ ︷︷ ︸

y(x)

−1

2
∂x[M2(x)p(x)] (376)

which can be integrated again,

∫ x

dx
M1(x)

M2(x)
=

1

2
ln y(x) + C. (377)

The solution is

p(x) =
N

M2(x)
e
2
∫ x dx

M1(x)

M2(x)

= Ne−Φ(x), Φ(x) = lnM2(x) − 2

∫ x

dx
M1(x)

M2(x)
. (378)

• The stationary state solution Jx = J 6= 0 is parametrized as

p(x) = Je−Φ(x)f(x) (379)

and the function f(x) satisfies the equation

1 =
M1(x)

M2(x)
e−Φ(x)M2(x)f(x) −

1

2
∂x[e

−Φ(x)M2(x)f(x)]

=
M1(x)

M2(x)
e−Φ(x)M2(x)f(x) −

1

2
M2(x)f(x)∂xe

−Φ(x) − 1

2
e−Φ(x)∂x(M2(x)f(x))

= −1

2
e−Φ(x)∂x(M2(x)f(x)) (380)
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which can easily be integrated,

f(x) = f(x0)
M2(x0)

M2(x)
−

2
∫ x

x0
dx′eΦ(x′)

M2(x)
(381)

where C is an integration constant. Therefore, the solution is

p(x) = J
e−Φ(x)

M2(x)

(

f(x0)M2(x0)− 2

∫ x

x0

dxeΦ(x)

)

= e−Φ(x)

(

p(x0)e
Φ(x0)

M2(x0)

M2(x)
−

2J
∫ x

x0
dx′eΦ(x′)

M2(x)

)

. (382)

3. The master equation for a one-dimensional random walk,

ṗ(an, t) = α[p(a(n+ 1), t)− p(an, t)] + β[p(a(n− 1), t)− p(an, t)] (383)

becomes a differential equation,

ṗ(x, t) =

(
B

2a2
− A

2a

)(

a∂xp(x, t) +
1

2
a2∂2xp(x, t) + · · ·

)

+

(
B

2a2
+
A

2a

)(

−a∂xp(x, t) +
1

2
a2∂2xp(x, t)− · · ·

)

= −A∂xp(x, t) +
1

2
B∂2xp(x, t) +O

(
a2
)
, (384)

in the continuum limit, a→ 0, where

β − α =
A

a
, β + α =

B

a2
. (385)

4. Let us consider the one-dimensional motion of a particle under the influence of a homogeneous gravitational
force −gm and the friction force −γmẋ, when we have

M1 =
〈∆X〉
∆t

= − g
γ
,

M2 = 2D. (386)

The Fokker-Planck equation,

∂tp(x, t) =
g

γ
∂xp(x, t) +D∂2xp(x, t), (387)

can be integrated by taking into account the continuity equation,

J(x, t) = − g
γ
p(x, t)−D∂xp(x, t). (388)

The stationary solution for with the boundary condition J(0, t) = 0 is

ps(x) = const.e−
g

γD x. (389)

The comparison with the barometric formula,

ps(x) = const.e−
gm
T x (390)

yields the Einstein relation D = T/mγ and

〈(∆X)2〉
∆t

=
2T

mγ
. (391)
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5. We now assume an inhomogeneous external force F (x) and the friction force, −γmẋ, acting on the particle.
If the external force varies slowly within the correlation length of the velocity then we have a Fokker-Planck
equation for the probability distribution of the coordinate,

∂tp(x, t) = −∂x
[
F (x)

mγ
p(x, t)

]

+D∂2xp(x, t) (392)

(Kramer). If F (x) varies faster then we need a bi-dimensional Fokker-Planck equation for the probability
distribution p(x, v, t),

Dconvp(x, v, t) = ∂tp(x, v, t) + v
︸︷︷︸

”ẋ”

∂xp(x, v, t) +
F (x)

m
︸ ︷︷ ︸

”v̇”

∂vp(x, v, t)

= γ

(

∂v[vp(v, t)] +
T

m
∂2vp(v, t)

)

, (393)

where

〈∆X〉 = V∆t

〈∆V 〉 =

(
F (X)

m
− γV

)

∆t

〈(∆X)2〉 = V 2(∆t)2 → 0

〈∆V∆X〉 = V

(
F (X)

m
− γV

)

(∆t)2 → 0

〈(∆V )2〉 = γ
T

m
∆t (394)

6. The Rayleigh particle is subject of a dynamics which is followed by the observational time step ∆t with τcoll ≪
∆t≪ τv rel. The latter inequality suggests that the velocity is overdamped, 〈V̇ 〉 = −γ〈V 〉, and we have

M1(V ) =
〈∆V 〉
∆t

= −γV

M2(V ) = a2 +O
(
V 2
)
≈ a2 > 0 (395)

yielding

∂tp(v, t) = γ∂v[vp(v, t)] +
M2

2
∂2vp(v, t). (396)

Remarks:

(a) The stationary solution with J = 0 is

Φ(v) = ln a2 +
γv2

M2

p(v) = N ′e−
γv2

a2 = N ′e−
mv2

2T (397)

and M2 = 2γT/m.

(b) The solution of the equation

∂tp(v, t) = γ

(

∂v[vp(v, t)] +
T

m
∂2vp(v, t)

)

(398)

which corresponds to the initial condition p(v, 0) = δ(v − v0),

p(v, t) =
1

√
2πT
m (1− e−2γt)

e
− m

2T
(v−v0e−γt)2

1−e−2γt , (399)

is an Ornstein-Uhlenbeck process.
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IX. LINEAR RESPONSE

The large, truly non-equilibrium systems are beyond our analytic capabilities. But the weak non-equilibrium, a
small subsystem embedded in a reservoir, can be handled in perturbation expansion in the interaction between the
system and the reservoir.

A. Response function

Let us suppose that the environment, the external perturbations can be taken into account by the extension
H = H0 + V of the Hamiltonian where

V =
∑

j

gjhj(t), (400)

{gj(q, p)} being a set of dynamical quantity. We start with the classical description and write the equation of motion
for a dynamical quantities, f(q, p),

ḟ = {f,H} (401)

in terms of the Poisson bracket,

{f(q, p), g(q, p)} =
∑

i

(
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)

(402)

and the Hamiltonian H . The formal integral of the equation of motion

f(t) = f(t0) +
∑

j

∫ t

t0

dt′{f,H0 + gj}hj(t′), (403)

can easily be linearized in the perturbation. We write f(t) = f0(t) + δf(t) +O
(
h2
)
and find

δf(t) =
∑

j

∫ t

t0

dt′{f0, g0j}hj(t′), (404)

where the 0 subscript indicates that the quantity is considered in the absence of external perturbations. The Poisson
bracket in the integrand, called the response function or susceptibility, describes the linear response of f(t) to the
perturbation h(t′). It can in principle be calculated but it is enough to state now that it is simply a function χ̃f,gi(t, t

′)
appearing in the linear response formula

δf(t) =
∑

j

∫ ∞

−∞

χ̃f,gj (t, t
′)hj(t

′). (405)

In case of a random environment one finds

〈δf(t)〉 =
∑

j

∫ ∞

−∞

χ̃f,gj (t, t
′)hj(t

′). (406)

with χ̃f,gj (t, t
′) = 〈{f0, g0j}〉.

The quantum mechanical description is based on the Schrödinger equation

i~∂t|ψ(t)〉 = H |ψ(t)〉 (407)

whose solution can be written as

|ψ(t)〉 = U(t, t0)|ψ(t0)〉 (408)

by introducing the time evolution operator U(t, t0) which is e−
i
~
(t−t0)H for a time independent Hamiltonian H . In

order to treat the environment as a perturbation we go over the interaction representation and ”take out” the time
dependence generated by the unperturbed Hamiltonian by performing a time dependent basis transformation,

|ψ(t)〉 → |ψ(t)〉i = e
i
~
(t−t0)H0 |ψ(t)〉. (409)



73

The expectation values should be the same in the new representation than in the original one, therefore the operators
acquire a time dependence,

Ai(t) = e
i
~
(t−t0)H0Ae−

i
~
(t−t0)H0 (410)

which amounts to the equation of motion

i~∂tAi = [Ai, H0]. (411)

The state vector satisfies the Schrödinger equation

i~∂t|ψ(t)〉i = i~∂t[e
i
~
(t−t0)H0 |ψ(t)〉]

= −H0e
i
~
(t−t0)H0 |ψ(t)〉+ e

i
~
(t−t0)H0(H0 + V )|ψ(t)〉

= e
i
~
(t−t0)H0V e−

i
~
(t−t0)H0e

i
~
(t−t0)H0

︸ ︷︷ ︸

11

|ψ(t)〉

= Vi|ψ(t)〉i (412)

involving the interaction Hamiltonian

Vi(t) =
∑

j

gji(t)hj(t) (413)

only. The equation of motion for the density matrix (cf. Appendix B) in the interaction representation is

i~∂tρi = i~∂t
∑

n

|n〉pn〈n|

= Vi
∑

n

|n〉pn〈n| −
∑

n

|n〉pn〈n|Vi

= [Vi, ρi] (414)

which can be solved iteratively,

ρi(t) = ρ(t0)−
i

~

∫ t

t0

dt′[Vi(t
′), ρ(t0)] +O

(
V 2
)
. (415)

The average of an observable A is

〈A(t)〉 = Tr[Ai(t)ρi(t)]

= Tr[Ai(t)ρ(t0)]−
i

~

∫ t

t0

dt′Tr[Ai(t)[Vi(t
′), ρ(t0)]]

= 〈A(t)〉0 −
i

~

∫ t

t0

dt′(Tr[Ai(t)Vi(t
′)ρ(t0)]− Tr[Ai(t)ρ(t0)Vi(t

′)])

= 〈A(t)〉0 −
i

~

∫ t

t0

dt′(Tr[ρ(t0)Ai(t)Vi(t
′)]− Tr[ρ(t0)Vi(t

′)Ai(t)])

= 〈A(t)〉0 +
i

~

∫ t

t0

dt′Tr[ρ(t0)[Vi(t
′), Ai(t)]]. (416)

up to non-linear terms O
(
V 2
)
. Note that this result can be recovered from the classical expressions by the formal

replacement of the Poisson bracket by 1/i~ times the commutator and considering the expectation values. The linear
response is thus

δ〈A(t)〉 = − i

~

∫ t

t0

dt′Tr[ρ(t0)[Ai(t), Vi(t
′)]]

=
∑

j

∫ ∞

t0

dt′χ̃A,gj (t, t
′)hj(t

′) (417)

where the linear response function

χA,B(t, t
′) = GR

A,B(t
′, t) (418)

is defined in terms of the retarded Green function

i~GR
A,B(t, t

′) = Θ(t− t′)Tr[ρ(t0)[A(t), B(t′)]]. (419)
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B. Kubo formula for the electric conductivity

Let us apply this formalism for the electric conductivity σ defined as the proportion of a weak external electric field
and the current induced by it,

jk = σk,ℓEℓ. (420)

The minimal coupling prescription, p → p− eA produces the electric current operator ĵc with the matrix elements

〈φ|ĵc(x)|ψ〉 =
e~

2mi

[

φ∗(x)

(

∇− ie

~
A(x)

)

ψ(x)−
((

∇− ie

~
A(x)

)

φ(x)

)∗

ψ(x)

]

= 〈φ|ĵ(x)|ψ〉 − e2

m
A(x)φ∗(x)ψ(x) (421)

where

〈φ|ĵ(x)|ψ〉 = e~

2mi
(φ∗(x)∇ψ(x)−∇φ∗(x)ψ(x)). (422)

The Hamiltonian

H =
1

2m
(p− eA)2

=
p2

2m
− e

2m
(pA+Ap) +

e

2m
A2, (423)

yields the perturbation

V = −
∫

d3xj(x)A(x) +

∫

d3x
e

2m
A2. (424)

In fact,

〈φ|V |ψ〉 = −
∫

d3x
e~

2mi
(φ∗(x)∇ψ(x)−∇φ∗(x)ψ(x))A(x) +

∫

d3x
e

2m
A2. (425)

In the leading order we can neglect the term O
(
A2
)
and arrive at the Kubo formula,

〈〈jk(t,x)〉〉 = −e
2n

m
Ak(t,x)−

∫

dt′d3yGR
jk,jℓ((t,x), (t

′,y))Aℓ(t
′,y) (426)

where n = n(t,x) is the homogeneous, unperturbed density. The Fourier transformation gives

jk(ω,k) =

∫

dtd3xeiωt−ixkjk(t,x)

= −e
2n

m

∫

dtd3x
dω′d3k′

(2π)4
ei(ω−ω′)t−ix(k−k′)Ak(ω

′,k′)

−
∫

dtd3xdt′d3y
dω′d3k′dω′′d3k′′

(2π)8
eiωt−ixk−iω′(t−t′)+ik′(x−y)−iω′′t′+ik′′y

×GR
jk,jℓ

(ω′,k′)Aℓ(ω
′′,k′′)

= −
[
e2n

m
δk,ℓ +GR

jk,jℓ(ω,k)

]

Aℓ(ω,k) (427)

identifying the AD conductivity

σk,ℓ(ω,k) = −e
2n

mω
δk,ℓ −

1

ω
GR

jk,jℓ(ω,k) (428)

because E = −∂tA.
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C. Causality and analytic structure

Causality stands for our daily experience that the integration in the above linear response formula should be carried
out between the initial and the observation time only, the effects propagate in a retarded and not an advanced manner.
This can formally be achieved by inserting a Heavyside function as a multiplicative factor in the response function

χ̃fg(t, t
′) = χ̃fg(t− t′) = 2iΘ(t− t′)χ̃

(2)
fg (t, t

′). (429)

Note that the reduced response function χ(2) is purely imaginary.
We turn now to the study of the consequences of causality in the analytical structure of the response function. For

this end we go over frequency space by introducing the Fourier transforms

f(t) =

∫
dω

2π
e−iωtf(ω), f(ω) =

∫

dteiωtf(t). (430)

We assume now that the original Hamiltonian is time independent. Then the unperturbed equations of motion are
invariant under time reversal, t → −t, then the right hand side of the first order equations of motions changes sign
under time reversal,

χ̃(2)
xy (t+ τ, τ) = χ̃(2)

xy (t) = χ̃(2)∗
yx (−t) (431)

which translates into the property

χ(2)
xy (ω) =

∫ ∞

−∞

dteiωtχ̃(2)
xy (t) =

∫ ∞

−∞

dteiωtχ̃(2)∗
xy (−t) = χ(2)∗

yx (ω) (432)

of the reduced response function in the frequency space. Our goal is to gain some light on the analytical structure of
the Fourier-Laplace transform of the complete response function

χ(ω) =

∫ ∞

−∞

dteiωtχ̃(t) = 2i

∫ ∞

0

dteiωtχ̃(2)(t) (433)

which relates the perturbation and the response as

〈δf(ω)〉 =
∑

j

χfgj (ω)hj(ω). (434)

We shall find that it is analytic on the upper half of the complex ω frequency plane as a result of causality.
The starting point is the well known relation that the multiplication becomes convolution under a Fourier trans-

formation,

f̃(t)g̃(t) =

∫
dω′

2π

dω′′

2π
e−i(ω′+ω′′)tf(ω′)g(ω′′)

∫

dtf̃(t)g̃(t)eiωt =

∫
dω′

2π

dω′′

2π
dte−i(ω′+ω′′−ω)tf(ω′)g(ω′′)

=

∫
dω′

2π
g(ω − ω′)f(ω′). (435)

We use the Fourier representation

Θ(t) = i

∫
dω

2π

e−iωt

ω + iǫ
(436)

of the Heavyside function and have

χ(ω) = −
∫
dω′

π

χ(2)(ω′)

ω − ω′ + iǫ
=

∫
dω′

π

χ(2)(ω′)

ω′ − ω − iǫ
. (437)

The important lesson of this representation is that the response function is analytic on the upper half plane, ℑω > 0.
The main ingredient of the argument is the relation

1

ω ± iǫ
= P

1

ω
∓ iπδ(ω) (438)
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for distributions which yields

χ(ω) = χ(1)(ω) + iχ(2)(ω), (439)

with the obvious relation between the real and imaginary part of the Fourier transformed response function

χ(1)(ω) = P

∫
dω′

π

χ(2)(ω)

ω′ − ω
, (440)

the Kramers-Krönig relation. It can be inverted by considering an integration over the infinite half-circle on the upper
half plane

χ(ω + iǫ) =

∮
dz

2πi

χ(z)

z − ω − iǫ
(441)

where the numerator of the integrand is analytic. One can show that χ(z) = o(|z−1|) and the integral along the
half-circle is vanishing, yielding

χ(ω + iǫ) =

∫ ∞+iǫ

−∞+iǫ

dz

2πi
χ(z)

(

P
1

z − ω
+ iπδ(z − ω)

)

(442)

and

χ(ω + iǫ) =

∫ ∞+iǫ

−∞+iǫ

dz

πi
P
χ(z)

z − ω
(443)

or

χ(2)(ω) = −
∫ ∞+iǫ

−∞+iǫ

dz

π
P
χ(1)(z)

z − ω
. (444)

D. Harmonic oscillator

The simplest and most important application of the formalism introduced above is in the case of a single, damped
harmonic oscillator with equation of motion

ẍ+ ω2
0x+ γẋ =

fe−iωt

m
(445)

where the right hand side represents a periodic external force. The last term on the left hand side contains the
parameter γ = α/m given in terms of the friction coefficient α and breaks the time-reversal invariance, T : t → −t.
The solution of the linear equation of motion is written as the sum of the homogeneous and inhomogeneous solutions,

x(t) = xhom(t) + xinhom(t) = xne
−iωnt + x0e

−iωt. (446)

Let us start with the homogeneous solution for which

−ω2
n + ω2

0 − iγωn = 0 (447)

and

ωn = − iγ
2

±
√

ω2
0 −

γ2

4
= ±ω̃ − iγ

2
. (448)

It is more realistic to consider an overdamped oscillator with γ > 2ω0 when there are two relaxation time scales,

τ−1
f =

γ

2



1 +

√

1− 4ω2
0

γ2



 , τ−1
s =

γ

2



1−
√

1− 4ω2
0

γ2



 . (449)
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FIG. 30: The response function of a harmonic oscillator.

The mode with τf becomes quickly negligible for strongly overdamped oscillator, γ ≫ 2ω and the equation of motion
can be simplified to a first order one,

ẍ+ ω2
0x+ γẋ→ ω2

0x+ γẋ =
f

m
. (450)

For t ≫ τs the homogeneous solution can be ignored therefore we now consider the inhomogeneous solution and
introduce the response function

χ(ω) =
x0
f

=
1

m

1

−ω2 + ω2
0 − iγω

= − 1

m

1

(ω − ω̃ + iγ
2 )(ω + ω̃ + iγ

2 )
(451)

for the coordinate which obviously satisfies the Kramers-Krönig relation due to the analycity on the upper half plane.
The response function becomes

χ(ω) → − 1

m
P

1

ω2
0 − ω2

+ sign(ω)
iπ

m
δ(ω2

0 − ω2) (452)

in the limit γ → 0. The Kramers-Krönig relation shows that the imaginary part of the response function can be
interpreted as a distribution of the strength of the normal modes in the frequency. In fact, the integrand on the right
hand side of the Kramers-Krönig relation with its linear frequency dependence in the denominator is just the response
function of an overdamped oscillator. For weak damping, more precisely for time much longer than the relaxation
time the inhomogeneous solution consists mainly damped modes with frequencies close to the resonance.
The real and imaginary parts of the response function are

χ(1)(ω) =
1

m

ω2
0 − ω2

(ω2
0 − ω2)2 + γ2ω2

(453)

and

χ(2)(ω) =
1

m

γω

(ω2
0 − ω2)2 + γ2ω2

. (454)

The amplitude and the phase shift defined by the form x(t) = f |χ|e−iωt+iφ are

|χ| =
1

m

1
√

(ω2 − ω2
0)

2 + γ2ω2
,

tanφ =
γω

ω2
0 − ω2

. (455)
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FIG. 31: Amplitude and the phase of the response function of a harmonic oscillator.

There is another important interpretation of the imaginary part of the response function. the dissipation due to a
periodic motion,

dW

dt
= 〈fẋ〉 = 1

T

∫ T

0

dtf(t)ẋ(t)

=
f2ω|χ(ω)|

T

∫ T

0

dt cosωt sin(ωt− φ)

=
1

2
f2ω|χ(ω)| sinφ

=
1

2
f2ωχ(2)(ω), (456)

is proportional to the imaginary part. This is the origin of the fluctuation-dissipation theorems, the imaginary part
determines both the spectral distribution of the fluctuations and dissipation.

E. Langevin equation

The master or diffusion equation method provides us a description of stochastic dynamics for long time scales. One
may need a more detailed level of description which represents a bridge between the deterministic dynamics observed
for time scales much shorter than the time span between microscopic collision or interaction processes and the longer
time scales. The motion is called ballistic in the former time range, as opposed to the diffusive dynamics for long time.
Stochastic differential equations provide us such a description. Let us consider a one-dimensional particle subject of
a friction and a stochastic external forces which lead to the Langevin equation

mv̇(t) + αv(t) = ξ(t). (457)

where the distribution of the white-noise force is

p(ξ1, t1, . . . , ξn, tn) =
1

(2πσ)n/2
e−

1
2σ

∑

j ξ2j , (458)

giving

〈ξ(t)〉 = 0,

〈ξ(t)ξ(t′)〉 = σδ(t− t′),

〈ξ(ω)ξ(ω′)〉 =

∫

dtdt′eiωt+iω′t′σδ(t − t′) = 2πσδ(ω + ω′). (459)

The simplest is to consider the homogeneous solution only which is important for t ≪ 1/γ = m/alpha, when the Fourier transformed
velocity is

v(ω) =
ξ(ω)

−iωm + α
(460)
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The correlation function Cvv(t) = 〈v(t + τ)v(τ〉 turns out to be

Cvv(ω) =

∫

dteiωtC(t)

=

∫

dt
dω′dω′′

(2π)2
ei(ω−ω′)t〈v(ω′)v(ω′′)〉

=

∫
dω′′

2π
〈v(ω)v(ω′′ )〉

=

∫
dω′′

2π

〈ξ(ω)ξ(ω′′)〉

(−iωm + α)(−iω′′m+ α′′)

=
σ

m2(ω2 + γ2)
(461)

in the frequency space. The inverse Fourier transformation gives

Cvv(t) =
σ

m2

∫
dω

2π

e−iωt

(ω + iγ)(ω − iγ)

= i
σ

m2

e−iγ|t|

2iγ

=
σ

2m2γ
e−iγ|t| (462)

Let us assume now that the thermalization between our particle and its environment takes place at shorter time scale than the relaxation
time γ−1 and we can use the equipartition theorem,

T = m〈v2〉 = m

∫
dω

2π
Cvv(ω) =

σ

2α
, (463)

giving

Cvv(t) =
T

m
e−iγ|t|. (464)

We seek the complete solution of the Langevin equation first for the velocity. The initial condition v(0) = v0 gives

v(t) = v0e
−γt +

1

m

∫ t

0

dt′e−γ(t−t′)ξ(t′)

〈v(t)〉 = v0e
−γt. (465)

The correlation function for the velocity is

〈v(t)v(t′)〉 = 〈
[

v0e
−γt +

1

m

∫ t

0

dt1e
−γ(t−t1)ξ(t1)

][

v0e
−γt′ +

1

m

∫ t′

0

dt2e
−γ(t′−t2)ξ(t2)

]

〉

= v20e
−γ(t+t′) +

1

m2

∫ t

0

dt1e
−γ(t−t1)

∫ t′

0

dt2e
−γ(t′−t2) 〈ξ(t1)ξ(t2)〉

︸ ︷︷ ︸

σδ(t1−t2)

= e−γ(t+t′)

[

v20 +
σ

m2

∫ t

0

dt1

∫ t′

0

dt2e
γ(t1+t2)δ(t1 − t2)

]

= e−γ(t+t′)

[

v20 +
σ

m2

∫ min(t,t′)

0

dt1e
2γt1

]

= v20e
−γ(t+t′) +

σ

2γm2
e−γ(t+t′)+2γmin(t,t′)

= v20e
−γ(t+t′) +

σ

2γm2
e−γ|t−t′|. (466)

Assuming that the thermal equilibrium reached at time shorter than γ−1 we have

T = m〈v2〉 = σ

2γm
=

σ

2α
(467)

which produces the normalization

〈ξ(t)ξ(t′)〉 = 2Tαδ(t− t′) = 2Tmγδ(t− t′) (468)
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of the noise-noise correlation function and leads to

〈v(t)v(t′)〉 = v20e
−γ(t+t′) +

T

m
e−γ|t−t′|. (469)

The coordinate can be found by an integration,

x(t) = x0 +

∫ t

0

dt′v(t′)

〈x(t)〉 = x0 + v0

∫ t

0

dt′e−γt′

= x0 +
v0
γ
(1− e−γt) (470)

and second moment of the average drift is given by

〈(x(t) − x(t′)2〉 = 〈
(∫ t

t′
dt1v(t1)

)2

〉

=

∫ t

t′
dt1dt2

[

v20e
−γ(t1+t2) +

T

m
e−γ|t1−t2|

]

=
v20
γ2

(e−γt − e−γt′)2 +
2T

m

∫ t

t′
dt1

∫ t

t1

dt2e
−γ(t2−t1)

=
v20
γ2

(e−γt − e−γt′)2 − 2T

mγ

∫ t

t′
dt1(e

−γ(t−t1) − 1)

=
v20
γ2

(e−γt − e−γt′)2 +
2T

mγ
|t− t′|+ 2T

mγ2
(1− e−γ|t−t′|) (471)

for t′ < t. The initial condition x(0) = x0 gives

〈(x(t) − x0)
2〉 ≈

{

v20t
2 t≪ γ−1, ballistic

v2
0

γ2 + 2T
mγ2 (1 + tγ − e−γt) ≈ v2

0

γ2 + 2T
mγ t t≫ γ−1, diffusive

(472)

where we can clearly separate the ballistic and diffusive regimes.

F. Fluctuation-dissipation theorem

The relation between the strength of fluctuations and dissipation can easily be seen by considering the long time
motion, described by the inhomogeneous solution

x(ω) =
ξ(ω)

m(−ω2 + ω2
0 − iγω)

. (473)

It generates the correlation function

Cxx(ω) =

∫

dteiωt〈x(t + τ)x(τ)〉

=

∫

dt
dω′dω′′

(2π)2
ei(ω−ω′)t−iτ(ω′+ω′′)〈x(ω′)x(ω′′)〉

=

∫
dω′′

2π2
e−iτ(ω+ω′′) 〈ξ(ω)ξ(ω′′)〉

m2(−ω2 + ω2
0 − iγω)(−ω′′2 + ω2

0 − iγω′′)

=

∫
dω′′

2π
e−iτ(ω′+ω′′) 2πσδ(ω + ω′′)

m2(−ω2 + ω2
0 − iγω)(−ω′′2 + ω2

0 − iγω′′)

=
σ

m2[(ω2 − ω2
0)

2 + γ2ω2]
=

2γT

m

1

(ω2 − ω2
0)

2 + γ2ω2
, (474)
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therefore we have a relation between the connected correlation function and the dissipative, imaginary part of the
response function,

χ(2)(ω) =
1

m

γω

(ω2
0 − ω2)2 + γ2ω2

=
ω

2T
C(c)

xx (ω), (475)

where

Cab(t, t
′) = C

(c)
ab (t, t

′) + 〈a(t)〉〈b(t′)〉. (476)
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x

FIG. 32: The Legendre transformation f(x) → g(s) = xf − f(x), cf. Eq. (A1).

Appendix A: Legendre transformation

The Legendre transformation f(x) → g(s) is useful when we would like to express a function in terms of its derivative
s = f ′(x) instead of its original variable x. In order to make this transformation well defined we make the map x→ s
is invertible by assuming that f ′(x) is monotonous function of x, f ′′(x) 6= 0. We assume the existence and smoothness
of the second derivative and we restrict ourself here to the case of convex functions, f ′′(x) > 0.
The Legendre transform g(s) is defined by the equation

f(x) + g(s) = xs (A1)

where

s = f ′(x). (A2)

When we perform the transformation on g(s) we recover Eq. (A1) due to its symmetrical form for the replacement
x↔ s, f ↔ g but instead of Eq. (A2) we find

g′(s) =
d

ds
[x(s)s− f(x(s))]

= x′(s)s+ x(s)− f ′(x(s))x′(s).

= x (A3)

Thus the Legendre transformation is identical with its inverse.
The derivation of Eq. (A1) with respect to x or s yields Eqs. (A2) and (A3). The next derivatives give

f ′′(x) = s′(x), g′′(s) = x′(s). (A4)

Since x′(s)s′(x) = 1 we have an inverse relation between the second derivatives,

f ′′(x)g′′(s) = 1. (A5)

As a result the Legendre transform is convex, as well.
A convex function can have a single minimum only. The identical form of the Legendre transform and its inverse

yields the similar equations

f(xextr) + g(0) = f(0) + g(sextr) = 0. (A6)

Appendix B: Density matrix

1. Definition, properties

Let us suppose that all we know about our quantum system is that it can be found with probability pn in the not
necessarily orthogonal quantum states |ψn〉, where 〈ψn|ψn〉 = 1 and

∑

n pn = 1. When an observable A is measured
then the expectation value of the result is

〈〈A〉〉 =
∑

n

pn〈ψn|A|ψn〉 = TrAρ (B1)
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where we introduced the density matrix

ρ =
∑

n

|ψn〉pn〈ψn| (B2)

with the following properties:

1. ρ is hermitian, ρ† = ρ.

2. The trace of ρ is unity, Trρ = 1.

3. ρ is positive,

〈Ψ|ρ|Ψ〉 =
∑

n

〈Ψ|ψn〉pn〈ψn|Ψ〉 =
∑

n

pn|〈ψn|Ψ〉|2 ≥ 0. (B3)

4. The density matrix, being a hermitian operator is diagonalizable and can be written as

ρ =
∑

n

|φn〉ρn〈φn|, (B4)

{|φn〉} being an orthonormal base. The eigenvalues are real, 0 ≤ ρn, and the diagonalization preserves the trace,
∑

n ρn = 1. The eigenvalue ρn can be interpreted as the probability of finding the system in one of the states,
|φn〉 of an orthonormal base.

5. The inequality

Trρ2 =
∑

n

ρ2n ≤
∑

n

ρn = Trρ (B5)

becomes an equality for pure states only, ρ = |ψ〉〈ψ|. The states with strict inequality are called mixed. The
decomposition of the density matrix a mixed state is not unique, there are different systems of non-orthogonal
states which equally yield the same density matrix.

Exemple: The most general density matrix of a two-state system is

ρ =
1

2
(11 + pσ) (B6)

where the Pauli-matrices are

σ =

((
0 1
1 0

)

,

(
0 −i
i 0

)

,

(
1 0
0 −1

))

. (B7)

This corresponds to the mixture of two states with probabilities 1
2 (1± |p|) and

〈σ〉 = trρσ = p. (B8)

2. Origin

Two, apparently different circumstances, loss of informations and entanglement which require the extension of the
basic principles of Quantum Mechanics and to generalize the representation of the state of a system from a vector
within a linear space to a certain operator acting on the same space.
Loss of information: One encounters probability in deterministic classical physics as soon as some information

is lost. This probability characterizes our limited control of the system. Heisenberg uncertainty relation implies an
internal, genuine loss of information about reality what can not be recovered. The resulting probabilistic interpretation
is based on such an unavoidable, absolute loss of information. Quantum thermal averages contain both probabilities.
The expectation value 〈φn|A|φn〉 is based on on the probabilistic laws of Quantum Mechanics. The uncertainty,
indicated by these probabilities is intrinsic of quantum physics according to the uncertainty principle and can not
be reduced. But the probability ρn reflects our ignorance and originates from macroscopic physics. Note that the
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separation of the quantum and classical probabilities is possible for orthogonal quantum states only, otherwise they
are mixed due to the non-uniqueness of the density matrix.
The difference between the two probabilities can clearly be seen in the expectation value

TrAρ =
∑

n

ρn〈φn|A|φn〉 (B9)

as the the lack of interference terms, 〈φn|A|φn〉 with m 6= n to the classical probability. The decoherence, the
destruction of the coherence among macroscopically different states, is not only the driving force in reaching the
macroscopic physics from the microscopic one but it presumably serves as the origin of the universal laws of Statistical
Physics. It generates classical probabilities for macroscopically different quantum states.
Entanglement: Let us suppose that our system consists of two sub-systems with bases |φm〉 and |χn〉. Any pure

state of the complete system can then be written as

|ψ〉 =
∑

m,n

cm,n|φm〉 ⊗ |χn〉. (B10)

A state, |ψ〉 = |φ〉| ⊗ |χ〉, consisting of a single contribution is called factorisable and state which is the sum of more
than one factorisable states is called entangled. The properties of a sub-system remain well defined when the whole
system is considered as long as this latter is in a factorisable state. In fact, let us consider an observable A(1) of the
first sub-system, corresponding to the operator A = A(1) ⊗ 11(2) where 11(2) is the identity operator for the second
sub-system. Its expectation values in the factorisable state |ψ〉 = |φ〉| ⊗ |χ〉,

〈ψ|A|ψ〉 = 〈φ|A(1)|φ〉, (B11)

is indeed determined by the unique state |φ〉 of the sub-system.
The expectation value in the entangled state (B10),

〈A〉 =
∑

m,n,m′

cm,nc
∗
m′,n〈φm′ |A(1)|φm〉, (B12)

is made up by the matrix elements of A(1) among the different sub-system states |φm〉, no unique property, charac-
terized by an eigenvalue of A(1) can be recognized. One can show in this case that there is no pure state |φ〉 of the
subsystem which could reproduce the all expectation value, ie. for all possible choice of the observable A(1).
We are forced to generalize the representation of the states of the sub-system with an entangled pure state from

state vectors to density matrices. The density matrix corresponding to a sub-system is called reduced density matrix
and can be obtained in the following manner. The density matrix of the full system in the pure state (B10) is

ρ =
∑

m,n,m′,n′

cm,nc
∗
m′,n′ |φm〉 ⊗ |χn〉〈φm′ | ⊗ 〈χn′ | (B13)

and it is easy to see that the average of our observable of a sub-system can be written as

〈A〉 = Tr[ρA] = Tr1[ρ
(1)A(1)] (B14)

where the trace is taken in the linear space of states of the sub-system 1 and the reduced density matrix is defined by

ρ(1) =
∑

m,n,m′

cm,nc
∗
m′,n|φm〉〈φm′ |. (B15)


