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I. INTRODUCTION

The space and time represent different structure in non-relativistic physics. While the space

coordinates of an event are constructed by the help of appropriately chosen “meter rods”, the time

is inferred by observing periodic motions. In addition, we need a counter, a memory, to count the

number of cycles. This is a rather complicated procedure and suggests that the time and the space

have actually different properties.

Such an expectation has been shattered by the advent of special relativity where the physical

events are supposed to be imagined as points of the space-time, a four dimensional manifold, and

labeled by one time and three space coordinates, xµ = (x0,x), µ = 0, 1, 2, 3, x0 = ct, see Fig. 1

for the world line of a particle. The Lorentz transformation, expressing a symmetry of all known
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FIG. 1: The world line representation of the motion of a point particle in relativity.

interactions, mixes space and time coordinates and suggests a very close similarity between space

and time. Furthermore the gravitational interaction emerges in general relativity as a feature of

the geometrical of the four dimensional space-time. One tends to conclude from here relativistic

physics unifies space and time.

However this is not the case, there are number of exceptions and irregularities, related to the

time:

1. The invariant length square of special relativity, s2 = c2t2 − x2, assigns different sign to the

temporal and the spatial separations.

2. Classical, macroscopic objects can be moved in either direction in space but their time has a

unique direction, rendering the physics of our body and of the world around us irreversible,

as indicated on Fig. 2.

3. Time is extracted from space: Any time measuring apparatus is based on periodic motion in

space. Irreversibility, the previous point, is essential here since the measurement of the time

by a periodic motion requires a counter with a memory and the preservation of information

assumes irreversibility. In other words, the time is directed by definition. Note that the

argument is valid only in macroscopic physics.

4. The time is an inherently classical concept, it remains a c-number in quantum mechanics in

contrast to the coordinates which are represented by operators.

5. The time labels the causal structure of events by distinguishing cause and effect and a causal

time arrow points from the cause to the effect in time.

Once the existence of an orientation of time is accepted one may extract two time kinf of time

arrows:
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FIG. 2: The direction of the displacement in space is not unique, as opposed to the time.

1. τd: The dynamics distinguishes the two different orientations of the time. The usual example

is irreversibility: The dynamics is stable and relaxing in the direction of the dynamical time

arrow and is self-accelerating and unstable in the opposite direction. The dynamical time

arrow is encoded by the time reversal invariance breaking terms of the equations of motion,

e.g. Newton’s friction force.

2. τc: The causal time arrow can be constructed by the following thought experiment. Let

us consider two copies of our system which are sufficiently well separated to exclude the

interactions between them. In addition we rearrange an external force, acting for t1 < t < t2

on one of them. If the systems produce different behavior exclusively for t < t1 or for t2 < t

then they possess a causal time arrow, τc = −1 or τc = 1, respectively. Hence the causal

time arrow is defined by the cause-result relation.

The causal time arrow, determined experimantelly by this procedure is implemented in our

calculations by imposing the initial (τc = 1) or the final conditions (τc = −1) hence τc points

away from the auxiliary conditions. One can easily construct models, defined by using both

initial and final conditions, which possess no causal time arrow.

Several questions arise at this point:

• How can one recognize the direction of a dynamical time arrow experimentally? The proce-

dure is quite simple: Make a video recording of the phenomenon in question, play it backward

and check whether what one sees is a possible phenomenon or not. The time arrow exists in

the latter case and points into the direction of the possible motion. For instance, the motion

of a billiard ball with negligible energy loss is reversible and the sliding on a surface with

friction is irreversible.

• Are there systems with no causal time arrow? This is a highly non-trivial issue since the
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microscopic systems are indeterministic and the individual events possess no causal time

arrow. All one knows is that the averages behave in a deterministic manner and display a

causal time arrow.

• Are the causal and the dynamical time arrow identical? The different time arrows are found

to be related in simple models, c.f. section IIID.

• The fundamental interactions are time reversal invariant and leave the time unoriented. (To

be precise one should mention that the weak interaction assigns a dynamical time arrow but

that turns out to be too weakly defined to become the source of the robust direction of time,

observed in macroscopic physics.) Where do the time arrows come from in a world, governed

by time reversal invariant physical laws?

The main motivation of this lecture is to seek the answer to the last question. We proceed by

seprating the following time arrows:

1. Electromagnetic time arrow: Imagine a person, entering in a dark room and switching on

the light. When the video recording seen played backward with very fine time resolution

then one notices that the room becomes dark before the person’s hand reaches the electric

switch. (retarded radiation field)

2. Mechanical or thermodynamical time arrow: Someone writes something on a sheet of paper

with a fountain pen. The writing is a stable carrier of information because the ink diffuses

into the paper. Seeing this backward in a movie one sees a bizarre, irrealistic phenomenon:

the pen sucks the ink from the paper. (irreversibility)

3. Quantum time arrow: The interference in Young’s double-slit experience arises from the

difference of the phase of the particle’s wave function when they traverse the two slits. When

we monitor which slit is the particle passes then the interference disappears, the phase at the

”other” slit is lost and can not be recovered. (loss of information at the quantum-classical

transition)

4. Cosmological time arrow: The Big Bang, recorded by an (unidentifiable?) external witness.

(cosmological initial conditions)

The time arrow problem is specially challenging and exciting because its understanding points

well beyond a single chapter of physics and presses us to develop a global vision.
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II. ELECTRODYNAMICS

The traditional Maxwell equations,

4πρ = ∇E,

4π

c
j = −1

c
∂tE +∇×B,

0 = ∇B,

0 =
1

c
∂tB +∇×E, (1)

are given in terms of the electric and the magnetic fields. The first two determine the electromag-

netic field induced by a given charge distribution encoded by the electric current, jµ = (cρ, j). The

second half of the system of equations expresses the absence of magnetic charges and Faraday’s

induction law. This is sufficient in classical physics but we need a different description of the elec-

tromagnetic interaction in Quantum Mechanics to keep track of the interference of particle waves.

The solution is the use of a vector potential, Aµ(x), to describe the electromagnetic field rather

than the vectors E(x) and B(x).

The argument consists of the following steps:

1. The transformation ψ(x) → eiχψ(x) of the wave function is symmetry of quantum mechanics because it leaves

the expectation values unchanged.

2. Such a global, space-time independent phase symmetry forces us to change the wave function in an identical

manner even for space-time points, events, which are separated by space-like intervals. These events are

acausal, there is no way to send information from one to the other about the needed phase change. Thus the

global symmetries are in contradiction with causality. The agreement with Special Relativity is recovered by

extending the phase symmetry to local gauge transformations, ψ(x) → eiχ(x)ψ(x).

3. One encounters a problem in gauge invariant quantum mechanics, namely the gauge transformation changes

the momentum of a particle. In fact, we have the transformation pψ = ~

i
∇ψ → eiχ( ~

i
∇ψ + ~∇χψ) =

eiχ(pψ+~∇χψ). Were only the first term present the expectation value of momentum would remain invariant

however the second term changes the expectation value.

4. To restore the invariance of the momentum, more precisely the homogeneous transformation law pψ → eiχpψ

without the disturbing inhomogeneous term, the partial derivative is replaced by the covariant derivative,

∂µψ(x) → Dµψ(x) = [∂µ− iAµ(x)]ψ(x), using the transformation rule Aµ(x) → Aµ(x)+∂µχ(x) for the gauge

field Aµ(x). The gauge field, Aµ(x) = (φ(x),−A(x)), introduced in such a manner is the electromagnetic

field.

The absence of magnetic charge suggests the definition

B = ∇×A (2)
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of the magnetic field which brings Faraday’s law into the form

0 = ∇×
(

E +
1

c
∂tA

)

, (3)

suggesting E + 1
c
∂tA = −∇φ or

E = −∇φ− 1

c
∂tA. (4)

Note that the magnetic and electric fields, defined by eqs. (2)-(4), remain unchanged during

the gauge transformation

φ(x) → φ(x) +
1

c
∂tχ(x), A(x) → A(x)−∇χ(x), (5)

found for the gauge field Aµ = (φ,A). Such a gauge invariance can be used to impose an additional

gauge condition on the gauge potentials. We shall use the Lorentz gauge,

1

c
∂tφ+∇A = 0 (6)

where the inhomogeneous Maxwell equations become

4πρ = −∇

(

∇φ+
1

c
∂tA

)

=

(

1

c2
∂2t −∆

)

φ = �φ,

4π

c
j =

1

c
∂t

(

∇φ+
1

c
∂tA

)

+∇×∇×A =

(

1

c2
∂2t −∆

)

A = �A. (7)

These wave equations can be summarized by the help of the current jµ = (cρ, j) as

�Aµ =
4π

c
jµ. (8)

A. Radiation field

We assume that the electric current arises from a charge e following the world line xµ(s). The

corresponding current is localized along the world line and satisfies the continuity equation, i.e.

has the structure jµ = (ρc, j) where ρ and j are the charge density and the non-relativistic current,

respectively. Hence it can be written in the form

jµ(x) = ec

∫

dsẋµ(s)δ(x − x(s)). (9)

To obtain a unique solution of eq. (8) we need some auxiliary conditions, to be imposed either at

the initial or at the final time. A second order equation requires two auxiliary conditions, usually

the value of the electromagnetic field and its time derivative, both taken either at the initial or at
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finite time. By placing the auxiliary conditions in the distant past or future, x0in
out

→ ∓∞, where

the electromagnetic field solves the homogeneous wave equation we can write the desired solution

of (8) as the sum of a homogeneous and the inhomogeneous solutions, A = Ah + Aih in such a

manner that Aih and its time derivative are vanishing at the initial or final time. The homogeneous

solution, appearing in the initial or final condition problem is called in our out field, Ain and Aout,

respectively.

There are two ways to find the inhomogeneous solution, one either uses the retarded or advanced

Green’s functions, derived in appendix B, or follows a simpler, more heuristic arguemnt. The latter

start with the observation that the electromagnetic field at the space-time point x must come from

such a point x′ which satisfies the relation x0 − x′0 = ±|x− x′|/c. The choice of the sign decides

whether the source of the radiation is before or after the observation, both alternative being allowed

by the time reversal invariant Maxwell equations. Since the velocity of the massive charge is smaller

than the speed of light there is at most one space location for each choice of the sign and x′ defined

in such a manner is called retarded or advanced source event for the sign + or -, respectively. Hence

the free choice of the sign here defines the causal time arrow. The induced field is easy to find

in a reference frame where the charge is at rest at x′, it consists of a Coulomb potential without

magnetic field,

Aµih =

(

e

c|x− x′| ,0
)

=

(

± e

c(x0 − x′0)
,0

)

. (10)

This vector potential can be rewritten in a manifestly covariant form as

Aµih(x) = ±e ẋµ(s′)

(x− x′)µẋµ(s′)
,

=
1

c

∫

d4y
δ(x0 − y0 ∓ |x− y|)jµ(y)

|x− y| ,

=
1

c

∫

d3y
jµ(x0 ∓ |x− y|,y)

|x− y| , (11)

where xµ(s) is the worldline of the charge, the invariant length s′ corresonding to the event x′ and

the Lorentz invariant denominator is evaluated in the rest frame of the charge. The solution, given

ion terms of the retarded and advanced Green’s functions, D
r
a(x),

Aµih(x) =
4π

c

∫

d4yD
r
a(x− y)jµ(y),

=
1

c

∫

d4y
δ(x0 − y0 ∓ |x− y|)jµ(y)

|x− y| , (12)

is identical. This result shows clearly the choice of the initial (final) conditions leads to the the

retarded (advanced) solutions and determines the causal time arrow.
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B. Origin of the time arrow

The time reversal invariant Maxwell equations have two different, a retarded and an advanced

solutions, neither of them preserving the time reversal symmetry, D
r
a(x0,x) 6= D

r
a(−x0,x) and

both possess well defined causal time arrow. The coice of the initial or final conditionis leads

to retarded and advanced solutions, respectively. Hence the problem of the electromagnetic time

arrow consists of the following two issues:

1. We need a rule to select the linear superposition of these solutions to reproduce the observed

radiation. Our daily experience shows convincingly that the retarded solution should be

used and an initial condition problem should be solved.

2. We have to find the physical origin of the breaking of the time reversal invariance. On the

one hand, the final conditions for the electromagnetic field are obviously unknown but on

the other hand, the trivial initial conditions, Ain = ∂tAin = 0, assumed to be valid in the

distant past.

Therefore the electromagnetic time arrow problem can only be solved in cosmology, by understand-

ing the weakness of the cosmic microwave background radiation.

III. OPEN SYSTEMS

The physical system we observe is always in interaction with the rest of the Universe and the

usual equations of motion, held for closed systems, are only approximate. The impact of the

environment can be minimized for a short period of time but the isolation is weaken during a

sufficiently long time of observation. Hence it is of greate importance in physics to describe the

open, the so called effective dynamics. The main diference with the equation of motion of closed

dynamics is that the latter is assumed to be local in time. in fact, a perturbation of the system

generates a change in the environment whose dynamical degrees of freedom send back to the system

the reaction to this original perturbation for a long while. The non-local nature of the effective

equation of motion makes our intuition and mathematical tools, based on local equations, useless,

for instance the stability of the motion is usually lost and Noether’s theory becomes powerless. It

is shown in this section the interactions with the environment always generates a causal time arrow

for an open system.

The problem becomes more severe when the observed system is macroscopic:
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1. The isolation of a large systems from the environment is more difficult. This difficulty is is

driving force of the classical limit of large systems.

2. Avogadro’s number, 6× 1023 is quite large, the macroscopic systems possess an exceedingly

large number of degrees of freedom. The resulting difficulty is addressed from the point of

view of the time arrow in section IV.

A. Effective dynamics

The origin of a time arrow in a system, obeying reversible equations of motion must come from

“outside”, from its environment. Let us assume that the observed system and its environment

are described by the coordinates x and y, respectively, subject of a local, reversible and stable

equations of motion,

ẍ(t) = F (x(t), y(t)), ÿ(t) = G(x(t), y(t)), (13)

supplied by the auxiliary conditions,

x(ta) = xa, ẋ(ta) = va, y(ta) = ya, ẏ(ta) = ua. (14)

The environment coordinate is not observed hence it has to be eliminated from the equation of

motion of the observed system. This is achieved by solving the environment equation of motion

and inserting the solution, y[t, x, ya, ua, ta], back into the system equation of motion. The result is

a non-local equation of motion,

ẍ(t) = F (x(t), y[t, x, ya, ua, ta]), (15)

which defines an effective dynamics. The word “effective” is a synonym of “open” and indicates

the presence of an environment, taken into account by the involved, non-local terms of the equation

of motion, usually approximated by a local expressions, obtained within the framework of the

expansion in the time derivative.

A physical laws, expressed as a differential equation, are incomplete and acquire predictive

power only after providing the necessary auxiliary conditions which render their solution unique.

The symmetry with respect to time reversal, the absence of time arrow, refers to the equations

only and the auxiliary conditions break the formal time reversal symmetry of the solution in a

trivial manner. The distinguishing feature of effective equations of open dynamics is that presence

of the environment auxiliary conditions, ya, ua and ta in the equations of motion.
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Since the initial and the final auxiliary conditions differ the environment auxiliary conditions

always break the time reversal invariance of the equation of motion and a system time arrow is

generated. Suppose that we make a video recording of the dynamics of the system. Though we

see the environment in the recording our experience about the direction of the time of the effective

dynamics allows us to recognize that a scene, seen on the backward played video recording is

unusual in what the system and the environment have opposite direction of their time.

It will be shown that an open system develops an oriented time by borrowing the time arrow from

an environment. Such a transmutation of the time arrow is reminiscent of the electromagnetic time

arrow except that it is the environment rather than the systems own initial condition is concerned.

B. Harmonic toy model

A simple toy model to study the transfer of the time arrow consist of an observed harmonic

oscillator which is coupled to N unobserved oscillators in a linear manner. A typical example is an

atom where the small deformations of the electronic structure can be approximated by a harmonic

oscillator, coupled to the electromagnetic field. The Lagrangian is

L =
m

2
ẋ2 − mω2

0

2
x2 − jx+

∑

n

(

m

2
ẏ2n −

mω2
n

2
y2n − gnxyn

)

=
m

2
ẋ2 +

(

mω2
0

2
−
∑

n

g2n
2mω2

n

)

x2 − jx+
∑

n

[

m

2
ẏ2n −

mω2
n

2

(

yn +
gnx

mω2
n

)2
]

, (16)

where the external source, j(t), is introduced to diagnose the system and the inequality, mω2
0 >

∑

n
g2n
mω2

n
, is assumed to stabilize the dynamics. The initial conditions, xi = vi = 0 are imposed at

ti → −∞ for the observed system and either initial or final conditions are used for the environment,

yni = uni = 0 with ti = −∞ or ynf = unf = 0 with tf = ∞, respectively.

The environment equations of motion, mÿn = −mω2
nyn−gnx, written for the Fourier transform,

x(ω) =

∫

dteiωtx(t), (17)

in the frequency space as

mω2yn(ω) = mω2
nyn(ω) + gnx(ω), (18)

can easily be solved,

yn(ω) =
gnx(ω)

m(ω2 − ω2
n)

= D̃n(ω)gnx(ω). (19)
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The environment Green’s function,

D̃n(ω) =
1

m[(ω + iǫe)2 − ω2
n]

(20)

is used with ǫe > 0 and ǫe < 0, for initial and final conditions, respectively. The insertion of this

trajectory into the equation of motion of the system coordinate yields the effective equation of

motion,

j(ω) = {m[(ω + iǫs)
2 − ω2

0]− Σ̃(ω)}x(ω) = D̃−1effx(ω), (21)

where ǫs > 0 and the self energy,

Σ̃(ω) =
∑

n

g2nDn(ω) =
∑

n

g2n
m

1

(ω + iǫe)2 − ω2
n

, (22)

is used to define the effective Green’s function,

D̃eff (ω) =
1

m[(ω + iǫs)2 − ω2
0 ]− Σ̃(ω)

. (23)

The system trajectory, corresponding to a given external source satisfies the effective equation of

motion,

D̃−1effx(ω) = m

[

(ω + iǫs)
2 − ω2

0 −
∑

n

g2n
m

1

(ω + iǫe)2 − ω2
n

]

x(ω) = j(ω), (24)

which is non-local in time because it contains arbitrarely high powers of ω ∼ i∂t.

C. Spectral function

A realistic environment is large and the limit N → ∞ can conveniently be parameterized by

the help of the spectral function,

ρ(Ω) =
∑

n

g2n
2mωn

δ(ωn −Ω), (25)

which allows us to write

Σ̃(ω) =

∫

dΩ
2ρ(Ω)Ω

(ω + iǫe)2 −Ω2
. (26)

A simple, non-trivial phenomenological ansatz is Drude’s expression,

ρ(Ω) = Θ(Ω)
g2Ω

mΩD(Ω
2
D +Ω2)

, (27)
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yielding

Σ̃(ω) =
g2

mΩD

∫

dΩΘ(Ω)
Ω

Ω2
D +Ω2

2Ω

(ω + iǫe)2 − Ω2

= − g2

mΩD

∫

dΩ
Ω2

(Ω + iΩD)(Ω− iΩD)(Ω − ω − iǫe)(Ω + ω + iǫe)

= − g2

mΩD
2πi

[

Ω2
D

2iΩD(ω2 +Ω2
D)

+ sign(ǫe)
ω2

(ω2 +Ω2
D)2(ω + iǫe)

]

= − g2π

mΩD

ΩD + isign(ǫe)ω

ω2 +Ω2
D

= − πg2

mΩD(ΩD − isign(ǫe)ω)
(28)

and

D̃eff (ω) =
1

m[(ω + iǫs)2 − ω2
0] +

πg2

mΩD(ΩD−isign(ǫe)ω)

. (29)

The choice of the system auxiliary conditions, encoded by sign(ǫs), is irrelevant owing to the

finiteness of ImΣ̃,

D̃eff (ω) =
1

m(ω2 − ω2
0) +

πg2

mΩD(ΩD−isign(ǫe)ω)

. (30)

The effective equation of motion,

D̃r−1
eff x(ω) = m

[

ω2 − ω2
0 +

πg2

m2ΩD(ΩD − isign(ǫe)ω)

]

x(ω) = j(ω), (31)

reduces to

m[(ω + iǫs)
2 − ω2

eff + isign(ǫe)νω]x(ω) = j(ω), (32)

for slow motion, ω → 0, containing the effective parameters meff and ωeff , defined by the O
(

ω0
)

and the O
(

ω2
)

part of the equation of motion,

meffω
2
eff = mω2

0 −
πg2

m2Ω2
D

,

meff = m− πg2

m2Ω4
D

, (33)

and Newton’s friction constant, ν = πg2

m2Ω3
D

. The real time form,

ẍ(t) = −ω2
effx(t)− sign(ǫe)νẋ(t)− j(t), (34)

shows that infinitely many oscillator in the environment, distributed with a spectral function

ρ(Ω) = O (Ω), generate dissipative friction force which makes the effective dynamics stable in the

direction of the environment time arrow.
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Note an imporant difference between the self energy given for discrete spectrum (22) and in case

of the Drude model (28). While the flipping of sign(ǫe) influences the former in an infinitesimal

manner, similar to the change of sign(ǫs) the change of the environment time arrow generates a finite

change in the latter case for ω 6= 0. The dissipation, encoded by the dissipative forces, represents

an increased sensitivity of the effective dynamics on the environment time arrow. This suggests

a formal similarity between phase transitions, spontaneous symmetry breaking in particular, and

the generation of the system time arrow by a dissipative environment.

D. Causal time arrow

Let us start with the case of discrete spectrum. The ǫ-independent part of the poles of the

Green’s functions define the normal mode spectrum of our harmonic model.

• sign(ǫs) = sign(ǫe): The potential energy in the second line of eqs. (16) is a positive quadratic

form hence the normal mode spectrum is real. As a result, the zeros of D̃−1eff (ω) are in the

appropriate half plane of the complex frequency and the effective dynamics is causal, c.f.

Figs. 3 (a) and (b) where the system self-interaction is retarded and advanced, respectively.

• sign(ǫs) = −sign(ǫe): There are poles on both complex frequency half planes and the self-

interaction has no causal time arrow. In fact, the system influences the environment in the

direction, set by the environment auxiliary conditions however the feed back to the system

influences the system trajectory both before and after ts in Figs. 3 (c) and (d).

It is worthwhile keeping in mind that there is another way acausality may arise in a formal

calculation. Let us consider a causal but unstable dynamics which produces self accelerating,

runaway trajectories. In the calculation of the Green’s function by means of the residue theorem it

is tacitly assumed that the trajectory is bounded, in agreement with the original assumption about

the stability of the full dynamics, including the system and the environment. A pole, appearing on

the “wrong” half plane would give an unacceptable, exponentially increasing runaway trajectory.

To suppress it, we use the corresponding residuum for the “other“ sign of the time variable, resulting

in acausal Green’s functions.

An environment with continuous spectrum produces a more significant effect, it overwrites the

choice of the system initial conditions since ǫs drops out from the effective Green’s function (32).

The distinguishing feature of dissipative forces is that they pass the environment time arrow to the
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FIG. 3: The causal structure of the self interaction of the observed system, mediated by an environment with

discrete spectrum. A perturbation of the system coordinate, x, is made at time ts and the instantaneous

system-environment interaction (dashed horizontal line, pointing to right) makes the environment trajectory,

y(t), changed in time in the direction of the environment causal time arrow (vertical arrow at right) makes

the system trajectory, x(t), changed in time in the direction of the system causal time arrow (vertical arrow

at left). The auxiliary conditions are imposed at the initial or final time, denoted by short, fat horizontal

lines. (a): ǫs >, ǫe > 0, (b): ǫs, ǫe < 0, (c): ǫs < 0, ǫe > 0, (d): ǫs > 0, ǫe > 0.

x
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FIG. 4: The causal structure of the self interaction of a dissipative effective dynamics. The notation is the

same as in Fig. 3 except the system auxiliary conditions are left out, they are ”forgotten“ and become

obsolete during the time evolution. (a): ǫe > 0, (b): ǫe < 0.

system. As a result the effective system dynamics is causal and stable only in the direction of the

environment time arrow as shown on Figs. 4, c.f. eq. (??).

E. Broken time reversal invariance and irreversibility

The breakdown of the time reversal invariance does not imply irreversibility, i.e. dissipative

forces. In fact, dissipation, an unavoidable energy loss to the environment, appears only if one

looses sight of the degree of freedom which absorbs the energy. The conserved total energy of the
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model,

H =
m

2
ẋ2 +

mω2
0

2
x2 +

∑

n

(

m

2
ẏ2n +

mω2
n

2
y2n + gnxyn

)

, (35)

can be expressed in terms of the system coordinate,

H(t) =
m

2
ẋ2(t) +

mω2
0

2
x2(t) +

∑

n

g2n

[

m

2

(∫

dt′∂tD
r
n(t− t′)x(t′)

)2

+
mω2

n

2

(∫

dt′Dr
n(t− t′)x(t′)

)2

+ x(t)

∫

dt′Dr
n(t− t′)x(t′)

]

=
m

2
ẋ2(t) +

mω2
0

2
x2(t) +

∑

n

g2n

{

[x(t)

∫

dt′Dr
n(t− t′)x(t′)

+
m

2

∫

dt′dt′′x(t′)[∂tD
r
n(t− t′)∂tD

r
n(t− t′′) + ω2

nD
r
n(t− t′)Dr

n(t− t′′)]x(t′′)

}

=
m

2
ẋ2(t) +

mω2
0

2
x2(t) +

∑

n

g2n
m

[

−x(t)
∫ t

−∞
dt′

sinωn(t− t′)

ωn
x(t′)

+
1

2

∫ t

−∞
dt′dt′′x(t′)[cosωn(t− t′) cos ωn(t− t′′) + sinωn(t− t′) sinωn(t− t′′)]x(t′′)

]

.(36)

The relevant lesson of this rather complicated expression is that we recognise the conserved nature

of the effective dynamics only if each contribution to the sum can be reconstructed by observing

the system trajectory, x(t).

The time tobs of an observation of a periodic motion, x(t), and the precision δω of the prediction

of the frequency of the motion satisfy an uncertainty principle, tobs∆ω = a, where the value of a

depends on the way the frequency is inferred from the observation. In fact, the prediction of the

frequency from the measured values of x(t) is the result of some kind of fitting procedure which

becomes more precise if more period lengths are covered by the fit. In the absence of any other

relevant time scale in the problem ∆ω ∼ 1/tobs.

Let us asume that the spectrum is discrete and the normal frequencies are separated at least by

∆ω > 0. The all spectrum line of x(t) can be isolated and properly resolved by observing the system

in time tobs > 1/∆ω. Hence the conserved nature of the effective dynamics can be established by

a long enough observation. The is not the case anymore if the normal mode spectrum possesses a

condensation point since an arbitrarely long observation is still missing infinitely many environment

modes. If the condensation point is at vanishing frequency then the divergent heat capacity of a

soft environment in the thermodynamical limit generates dissipative forces.

We see that infinite systems may display features which are unimaginable in the finite case:

The use of dissipative forces provides an approximation which becomes excellent for large system.

We need extremely long observation to discover the conserved dynamics for a macroscopic body
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due to the largeness of Avogadro’s number. This is a formal similarity between the dissipation as

a spontaneously broken time reversal symmetry and the phase transitions, corresponding to the

spontaneous breakdown of symmetries, both symmetry breaking being a good approximation for

finite time observations. The non-dynamical, static diagnose of spontaneous symmetry breaking,

say the the singular dependence of the magnetization on the weak external magnetic field in the

case of ferromagnetism, can be paralleled with the dependence on sign(ǫe), discussed in section

IIIC.

IV. THERMODYNAMICS

To deal with point 1., mentioned at the beginning of section III, we select few important, collec-

tive degrees of freedom, the thermodynamical variables, which we control. Rather than following

a detailed, mechanical derivation of the equation of motion for these variables one follows another

argument, based on information. The starting point, namely that the thermodynamical variables

represent a partial information about the macroscopic system, is rather unusual from the point of

view of the dynamical laws. Furthermore we assume that such a partial information is sufficient

as long as we restrict our interest to very slow, quasi equilibrium processes where the system does

not leave the (quasi)equilibrium state. The direction of time of an infinitely slow process is the

provided by reproductibility: The observed dynamics of the thermodynamical variables can be

reproduced in different experiments. If the monitored variables contain enough information to

establish reproducible laws then the thermodynamical time arrow reflects the degradation of the

partial information about the initial state.

A. Controlled and uncontrolled channels

The feature 2. of Section III leads to information loss, forcing us to accept a probabilistic

treatment of the thermodynamical variables. Furthermore, it is advantageous to split the system-

environment interaction channels into controllable and uncontrollable subsets, the latter being

responsible of the statistical fluctuations. Statistical mechanics consists of the masterful combi-

nation of microscopic and phenomenological considerations about the thermodynamical variables,

made possible by the narrowing of the probability distributions around their peaks in the thermo-

dynamical limit. The result is thermodynamics, a set of deterministic equations for the location of

the peaks.
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Consider the average energy as an example. It can be written in the form of an expectation

value,

E = 〈H〉 =
∑

n

pnEn (37)

whose change in an infinitesimal time,

δE = δQ+ δW, (38)

is the sum of two terms. The first,

δW =
∑

n

pnδEn, (39)

is due to the shift of the energy levels. The system is under control and the change of its energy

spectrum indicates that some controllable work have been performed by the system. The second,

δQ =
∑

n

δpnEn, (40)

denotes the energy received by the uncontrollable channels from the unobserved environment and

is called heat. One recognizes in (38) the first law of thermodynamics.

The second law of thermodynamics has several equivalent versions. Kelvin stated that we can

not convert heat into work without loss, Clausius showed that we can not transfer heat from the

colder to the warmer environment without loss. Another reasoning implies his entropy, a state

function, the sum of the heat exchange weighted by the inverse absolute temperature along a

reversible path over equilibrium states,

Sth =

∫

δQ

T
, (41)

expressed in units kB = 1. It follows form his arguments that the entropy changes during the

evolution from state A to state B by respecting the inequality,

∫ B

A

δQ

T
≤ Sth(B)− Sth(A), (42)

if the temperature is well defined during the process, an immediate result being that the entropy

does not decrease in a thermally isolated system (in the average). The thermodynamical time

arrow appears at this point and one wonders how can this happen if the underlying microscopical

equations of motion are time reversal invariant.
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B. Entropy of a closed system

There have been two other proposals for entropy, beyond the thermodynamical entropy, (41),

Boltzmann’s expression,

SB = ln
Ω

Ω0
, (43)

where Ω and Ω0 denote the available phase space volume and the volume of a reference unit element,

respectively and Gibbs’ form,

SG = −
∫

d3Npd3Nqp(p, q) ln p(p, q), (44)

where p(p, q) stands for the probability density of the classical system in the phase space. A

specially troubling issue here, realized by Ehrenfest, is that these two entropies are conserved in a

closed system owing to Liouville’s theorem, c.f. appendix C. How can the entropy (43) and (44)

of an isolated system increase?

The answer comes with a slightly new point of view of the ensembles of statistical physics. The

original motivation of the statistical ensembles is ergodicity, the assumption that the measured,

long time averages are equivalent with the ensemble averages. However we have a single, isolated

physical system and we would like to find the origin of the entropy production without referring

to an average over a formal ensemble. For that end we define the micro and the macro states:

A micro state is a point in the phase space, it denotes a fully identified state of our system,

including all information. The macro state, defined by the set of thermodynamical variables, Φ,

represents our partial information about the system and is realized by Σ(Φ), the set of micro

states, compatible with Φ. The thermodynamical entropy corresponds to Boltzmann’s entropy of

macro state, Sth(Φ) = lnΩ(Σ(Φ))/Ω0. The thermodynamical potentials should possess enough

control over the micro state to lead to well defined thermodynamical laws, i.e. to generate closed

equations. If we retain more than the necessary variables then a set of equations of states introduces

a constraint among them. In the case of sufficient control over the micro states the dynamics of

the thermodynamical variables is well defined and reproducible. This latter means that different

experiments, using different micros states, discover the same time evolution of the macro states.

It will be shown that the reproductibility of the thermodynamical laws makes the entropies (43)

and (44), constructed for the macro states, non-decreasing in time.
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C. Entropy and information

We now revisit the introduction of the ensembles in statistical physics to find the origin of their

probability distribution. The probability appears in the usual treatment due to our inability to

control the microscopic interaction channels and is usually associated to physical fluctuations. We

adopt here another point of view, assuming that the probability is a formal device to express our

lack of information about a complicated macroscopic system and define the entropy as the upper

limit of the missing information. It is explained briefly in appendix D that one can arrive in this

manner at a constructive definition of the probability distribution and the entropies (43) and (44).

The Gibbs entropy is obviously equivalent with the entropy, found by maximizing the missing

information, (D23). Its equivalence with the Boltzmann entropy follows from the asymptotic

equipartition theorem of information theory. This theorem applies for distributions which peak

with width O(1/
√
N) in the thermodynamical limit and for constraints which converge in the same

limit. Let define the phase-space region, Σ(Φ, ǫ), by requiring that the system is within this volume

with probability 1− ǫ,

∫

Σ(Φ)
d3Npd3Nqp(p, q) = 1− ǫ (45)

and the probability is constant on its boundary, p(∂Σ) =const. The theorem states that the

phase-space volume,

ΩN (Σ(Φ), ǫ) =

∫

Σ(Φ)
d3Npd3Nq, (46)

approaches the Gibbs entropy in the thermodynamical limit,

lim
N→∞

ln ΩN (Σ(Φ),ǫ)
Ω0

N
= −

∫

d3Npd3Nqp(p, q) ln p(p, q), (47)

independently of the choice of 0 < ǫ < 1 and Ω0 > 0.

D. Second law and reproductibility

Let us first assume that our system is in equilibrium with its environment at the time t and

this equilibrium state can be characterized by the thermodynamical variables, Φ. After that

we isolate the system from its environment and bring it into another equilibrium state Φ′ at

time t′ in a reproducible manner, i.e. any other measurement, based on a different initial micro

state representative of the initial macro state, produces the same set of final thermodynamical
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)

Σ(Φ )’

FIG. 5: The second law of thermodynamics: phase space volume of a macro state can not decrease during

reproducible changes Φi → Φf of the thermodynamic variables.

variables. To phrase this in a mathematical statement we introduce the time evolution map,

Ut′,t : R
6N → R

6N for the micro states by the definition, Ut′,t(x(t), p(t)) = (x(t′), p(t′)), where the

trajectory (x(t), p(t)) is generated by the full set of microscopic equations of motion with couplings

to the environment ignored. Reproductibility is the inclusion

Utf ,ti(Σ(Φi)) ⊂ Σ(Φf ), (48)

where U(Σ) denotes the image of the phase space region Σ after the time evolution. According to

Liouville’s theorem

Ω(Σ(Φf )) = Ω(Utf ,ti(Σ(Φi))) (49)

and the inequality

Ω(Σ(Φi)) ≤ Ω(Σ(Φf )) (50)

follows. By taking its logarithm we arrive at the second law,

Sth(Φi) = ln
Ω(Σ(Φi))

Ω0
≤ ln

Ω(Σ(Φf ))

Ω0
= Sth(Φf ). (51)

The inequalities (48) and (51) become equality for reversible reproducible processes.

One might think that the second law of thermodynamics, applied to isolated systems, implies

a breakdown of the time inversion invariance. But this interpretation is incorrect on the following

counts:

1. The closed system retains its time reversal dynamics and the impression of irreversibility

comes rather from our inability to possess all information. What makes the entropy non-

decreasing is the loss of information about the non-thermodynamical variables. As soon

as we possess all information Φ identifies the system in a unique manner and Ω(Σ(Φ)) =

(2π~)3N = Ω0 becomes a constant of motion.
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2. The argument about the non-decreasing of the entropy works in reversed time, too. Once

the final state is specified and the time evolution is used to ”predict” the corresponding

initial state then the entropy is non-increasing in the time which flows backward. The time

evolution in phase space preserves the time reversal invariance, it is our partial information

about the system, used to designate the macro states, becomes obsolete only.

3. The construction of (equilibrium) thermodynamics, the dynamics of the thermodynamical

variables, is reminiscent of the goal of an effective theory, discussed in section III, except that

we are dealing equilibrium states and we ask whether certain transitions are taking place or

not rather than the detailed time evolution of the observed system. The role of the observed

system is played by the thermodynamical variables and the environment is replaced by the

manifold of micro states within a given macro state, the missing information. The lack of the

detailed equations of motion prevents us to control the status of the time reversal invariance.

The microscopic origin of the thermodynamical time arrow, the strict inequality in the second

law of thermodynamics, can be found by restoring the coupling to the environment and a more

careful treatment of the open dynamics, as in section IIIB. It turns out that Liouville’s theorem

is violated by the dissipative forces in such a manner that the phase space is strictly decreasing in

time. Such a focusing in the phase space makes the inclusion strict in eq. (48), i.e. Utf ,ti(Σ(Φi))

is strictly smaller than Σ(Φf ). This can be understood by recalling that dissipative forces usually

render the initial conditions irrelevant, the system approaches a relaxed state except some extreme

initial conditions. Hence Utf ,ti(Σ(Φi)) shrinks compared to Σ(Φf ), defined at the same time as any

other macro state, at ti.

It is finally instructive to comment the need of entropy beyond the energy. The energy is not

directly measurable and its importance stems from its conservation. When we intend to perform

certain task by an engine then we want to send it onto a certain trajectory in the phase space. The

energy is a useful quantity because it characterizes the available phase space. When we say that

we give some energy to the system then we give a certain ”push” in such a manner that it ends

up on the desired phase space trajectory. The complications start in the thermodynamical or the

statistical description when we do not wish to follow the complete dynamics in a detailed manner

but we still want to keep some control over the phase space. The exchanged energy is split into

two parts, corresponding to the controlled and the uncontrolled components, c.f. eq. (38) and the

entropy characterizes the latter.
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The thermodynamical equation, (41), can be obtained by the help of Shannon’s entropy,

δS = δ(−
∑

n

pn ln pn)

= −
∑

n

(δpn) ln pn

=
1

T

∑

n

Enδpn

=
δQ

T
(52)

where the relation
∑

n δpm = 1 was used in the second equation, the canonical probability distri-

bution (D20) is used in the second third equation and finally, the last line follows from Eq. (40).

This equation, written in the form,

δQ

T
= d ln Ω =

dΩ

Ω
, (53)

shows that the relative change of the accessible phase is to be compared with the amount of the

uncontrolled energy exchange, the exchange factor being an intensive variable, the temperature, a

measure of the efficiency of the phase-space injection by an external intervention. A given amount

of energy yields more gain in relative phase space at lower temperature when the energy comes in

an ordered manner. Energy, injected in a disordered fashion is less efficient to enlarge the phase

space due to the cancellations among the uncontrolled microscopic processes.

One can finally see a more physical definition of information: The information, missed in the en-

vironment and reflected in the entropy of the system, is the uncontrolled energy exchange, weighted

by the inverse temperature. A system-environment interaction, representing a given uncontrolled

energy exchange, can be traced more and more precisely (can be described by answering more and

more questions about the environment) when the environment is more ordered, stronger correlated

with the system. Since the environment is infinite the information diverges in the zero temperature

limit.

V. QUANTUM MECHANICS

The electrodynamical, the mechanical and the thermodynamical time arrows show the impor-

tance of the environment in establishing a direction for the time. The environment plays a central

role in another part of physics, in quantum mechanics, where it generates the quantum mechanical

time arrow. A microscopic system can in principle be isolated and in that case the well known
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rules of quantum mechanics apply. A system of a large number of particles develops dense exci-

tation spectrum which makes the weak interactions with the environment important. In fact, a

small energy exchange with the environment may lead to an excitation, a jump of the system from

a stationary state of the system Hamiltonian to another, orthogonal state. The resulting strong

coupling to the environment, arising in such a manner, is the driving force of the classical limit,

the emergence of the classical world.

Any phenomenon, let it be microscopic or macroscopic, consists of microscopic, elementary

events. A macroscopic phenomena starts with a microscopic one which growth until it reaches the

macroscopic scales. There is an interesting state in this amplification process, when the size of the

phenomenon reaches the quantum-classical transition scale, typically in the order of magnitude of

the Bohr radius. The piercing of the quantum-classical border, when the indeterministic quantum

fluctuations give rise deterministic events, is accompanied by a short living irreversible phase. The

quantum mechanics time arrow appears at this moment. This process is followed as a sequence of

three consecutive steps in a measurement process.

The full, closed system consists of a microscopic degree of freedom, to be measured, the mea-

suring apparatus of an observable A of this degree of freedom and the environment. The states of

these subsystems belong to the linear spaces, Hs, HA, and He, listed in the same order. The Hamil-

tonian, H = H0 +Hi, is written as the sum of the subsystem Hamiltonians, H0 = Hs +HA +He

and the interaction terms, Hi = HsA+HAe, where the indices indicate the interacting subsystems,

and the time evolution is generated by the unitary operator Um = e−
i
~
Htm where tm is the time

needed to perform the measurement. We shall use the orthonormal bases |φk〉 ∈ Hs, |χℓ〉 ∈ HA,

and |ηm〉 ∈ Hs.

The role of the apparatus is to make the state of the microscopic system “visible”, i.e. to

establish a correlation between the microscopic system and the apparatus. The Hamiltonian HA

governs a macroscopic, collective degree of freedom of the measuring apparatus which displays the

result of the measurement and the remaining large number of microscopic degrees of freedom of

the apparatus belongs to He. Hence the linear space Hs⊗HA describes a system of two degrees of

freedom, a microscopic and a macroscopic one. In the case of measuring the current of a microscopic

wire in a nanophysical experiment the microscopic system is the electric charge, moving in the wire,

the apparatus consists of the needle of a current meter and the environment contains the remaining

degrees of freedom of the current meter and the air molecules in the room.
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A. Pre-measurement

We assume that the measurement process is sufficiently fast to treat the first step of the in-

teraction between the microscopic system and the apparatus by ignoring the environment. The

corresponding Hamiltonian, is Hm = Hs + HA + HsA, drives the initial state, just before the

measurement, |φki〉 ⊗ |χℓi〉, into

e−
i
~
Hmtm |φki〉 ⊗ |χℓi〉 =

∑

kℓ

ckℓkiℓi |φk〉 ⊗ |χℓ〉, (54)

after the measurement. The initial and the final states are fundamentally different, they are fac-

torisable and entangled, respectively. The entanglement is generated by the system-apparatus

interaction, the right hand side being a factorisable state if HsA = 0. The important lesson of

this remark is that a factorisable state becomes entangled by the interactions between the subsys-

tems. This entanglement, the first appearance of the microscopic system-measurement apparatus

correlation, is called pre-measurement.

The linearity of the time evolution operator, Um, assures that an arbitrary initial state, |ψi〉 =
∑

kiℓi
ψkiℓi |φki〉 ⊗ |χℓi〉, turns into the state

e−
i
~
Hmtm |ψi〉 =

∑

kkiℓℓi

ψkiℓickℓkiℓi |φk〉 ⊗ |χℓ〉. (55)

This argument must be erroneous since it predicts the linear superposition of different states of

the macroscopic display of the apparatus and leads to paradoxes as the Schrödinger’s cat. The

mistake we have committed is to treat a macroscopic collective degree of freedom as a microscopic

one and we correct it by taking into account the environment.

B. Decoherence

Let us consider for the sake of simplicity a pure initial state of the apparatus and the environ-

ment, |χki〉 ⊗ |ηℓi〉, after the measurement,

e−
i
~
(HA+He+HAe |χℓi〉 ⊗ |ηmi

〉 =
∑

ℓm

dℓmℓimi
|χℓ〉 ⊗ |ηm〉. (56)

To simplify the subsequent expressions we write this state in the Schmidt representation,

e−
i
~
(HA+He+HAe |χℓi〉 ⊗ |ηmi

〉 =
∑

n

dn|χn〉 ⊗ |ηn〉, (57)
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containing the pairwise orthonormal states, 〈χn|χn′〉 = 〈ηn|ηn′〉 = δn,n′ which do not necessarily

represent a complete basis. The relevant part of this state from the point of view of the observable,

A, is the mixed state, defined by the reduced density matrix,

ρA =
∑

nn′

dnd
∗
n′〈ηn′ |ηn〉|χn〉〈χn′ |, (58)

c.f. appendix E, yielding the expectation value,

TrA[AρA] =
∑

nn′

dnd
∗
n′〈ηn′ |ηn〉〈χn′ |A|χn〉. (59)

The comparison of this expression with the expectation value, taken in the pure state, |χ〉 =
∑

n dn|χn〉,

〈χ|A|χ〉 =
∑

nn′

dnd
∗
n′〈χn′ |A|χn〉, (60)

indicates that the interference terms between the components n 6= n′ is suppressed in the mixed

state by the relative environment state overlap, 〈ηn′ |ηn〉.
To better understand eq. (60) consider the example of the measurement of the current, men-

tioned above, where the apparatus consists of the needle of the ammeter, |χ〉 = |θ〉, θ being the

angle of the needle. Let us take two different needle states, |θj〉, j = 1, 2 with small ∆θ = |θ1− θ2|,
ignore the interaction between the air molecules and consider the air molecule components of

the corresponding relative states, |ηj〉. The momentum of an air molecule changes by O (∆θ) in

scattering off the needle hence its overlap factor is 1− c∆θ +O
(

∆θ2
)

. The total overlap factor,

〈θ1|θ2〉 ≈ (1− c∆θ)N ≈ e−cN∆θ, (61)

N ∼ NAv = 6 · 1023 denoting the number of air molecules, decreases very fast with increasing δθ.

The strong suppression of the overlap with increasingly different needle states, 〈θ′|θ〉 ∼ δ(θ− θ′), is
called decoherence and is a necessary condition to avoid the linear superposition of macroscopically

differing objects. The decoherence breaks up a coherent pure state into the set of pure states with

no interference contributions among them,

|ψ〉〈ψ| →
∑

n

pn|ψn〉〈ψn|, (62)

since the reduced density matrix, being Hermitian, is diagonalizable, and the quantum mechanical

expectation value, 〈ψn|A|ψn〉, appears in (59) with the classical probability weight, pn. It is

important to keep in mind that the decoherence, 〈ηn′ |ηn〉 < 1, results in non-unitary time evolution

of the system which turns an initial pure system state into a mixed one.



27

Both decoherence and dissipation stem from the obsolete nature of the initial conditions, a loss

of information, stored in the initial environment state. Both build up gradually and represent the

transmutation of the environment time arrow to the observed system.

C. Choice

Rather than continuing to represent entangled states by the help of the Schmidt decomposition

we return to our original basis, chosen in such a manner that A|χℓ〉 = aℓ|χℓ〉, and consider the

reduced apparatus density matrix, corresponding to the state |Ψ〉 =∑kℓmΨkℓm|φk〉 ⊗ |χℓ〉 ⊗ |ηm〉
after the pre-measure and decoherence,

ρA =
∑

kℓℓ′m

ΨkℓmΨ
∗
kℓ′m|χℓ〉〈χℓ′ |. (63)

The environment induced decoherence, the summation over m, strongly suppresses the interference

contributions between macroscopically different apparatus states. It is known that each measure-

ment produces an element of the spectrum of the observable and what is left is to describe is this

choice.

Instead of a detailed description we follow Neumann’s idea and use the information that the

eigenvalue aℓ was found by the measure to postulate that the density matrix of the apparatus after

the complete measuring process is

ρℓ =
PℓρPℓ

Trs[PℓρPℓ]
= Pℓ, (64)

where Pℓ = |χℓ〉〈χℓ| is the projection operator to the ℓ-th eigenvector of A. It has been established

experimentally that the choice violates special relativity thereby showing the non-local nature of

quantum processes which we can not place within our usual deterministic world view. The choice

is sometime called the collapse of the wave function because a non-trivial density matrix, (63),

collapses onto a simple one, (64). It is clear that such a collapse leads to information loss and

irreversibility hence it represents a statistical quantum time arrow.

The choice is the best kept secret of quantum mechanics and leads to sharp, so far unresolved

contradictions between the ways we describe the microscopic and the macroscopic worlds. Let us

mention, closing this topics, a possible resolution, namely the dominance of quantum physics. The

measurement process can be viewed as a magnification of a microscopic event to a macroscopic

one. We are used to imagine the latter as being governed by deterministic laws and predicting

exact results for measurements, up to unavoidable and understandable error bars. The semiclassi-

cal solution of quantum field theories, combined with the renormalization group technique suggest
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that the presence of a macroscopic number of degrees of freedom in the measuring process, NAv,

activates a variant of the Central Limit Theorem of probability theory and renders the relative

second moment of an observable O
(

1/
√
NAv

)

. In other words, the extremely large value of the

Avogadro number makes the quantum averages practically deterministic, following seemingly clas-

sical equations. According to this view the classical physics consists of the deterministic laws for

the peak of such sharp probability distributions, reminiscent of thermodynamics. The special fea-

ture of the choice is that small changes of the the probability distribution, driven by the nonlinear

effects of the apparatus, are magnified by the large number of degrees of freedom, cooperating in

the measurement process which appears instantaneous because the very same large number gen-

erates unusually short time scales [1]. This is naturally a possible scenario only and the details

remain to be worked out in details.

VI. COSMOLOGY

Cosmology is the widest framework to address the origin of the time arrow however we are

satisfied here by mentioning few remarks owing to the complexity of the problem.

A. Initial conditions

It is not known whether gravity, the dynamical theory of the space-time, is subject of quantiza-

tion. But the difference between the scenarios of quantum and classical gravity influences the very

early Universe, up to few times the Planck’s time, 6 · 10−44sec only: The space-time of our Uni-

verse appeared through a quantum fluctuation or a singularity according to quantum and classical

gravity, respectively. The continuation seems to be similar in both scenario, namely the Universe

seems to be a cooling quantum gas of elementary particles in an expanding, classical space-time.

The contributions of gravity to the time arrow problem are the following:

• It describes the appearance of time as a cosmic book-keeping device.

• It justifies the use of the initial conditions.

• It generates horizons, surfaces which separate space-time regions with different causal struc-

ture and are semi-permeable for classical signals. The mechanism which prevents signals

to traverse a horizon in certain direction follows from an elegant, smooth deformation of

the causal structure, rather then from some singular energy barrier. The net result is a
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time arrow, generated by the horizon, implying well defined initial conditions problems and

distinctive thermodynamical and quantum mechanical effects.

B. Global time arrow

We have discussed several time arrows, electrodynamical, mechanical, thermodynamical and

the quantum mechanical (decoherence and choice generated) which can be established in different

regions of the space-time. Such a multiplicity of arrows raises the question of their consistency,

the possibility of having a single, global time arrow within the causally connected regions of the

space-time.

The initial condition problem, set by the early universe, generates a unique, global time arrow for

phenomena, appearing on the cosmic scale. The electromagnetic time arrow is such a manifestations

of the cosmic background radiation, extending to to our daily life. Another time arrow, generated

by the initial conditions, is observed in mechanical systems. The thermodynamical time arrow

follows from the ordered, low entropy initial state, thereby reducing the time arrow problem to the

understanding of such an ordered feature of the initial state. The quantum mechanical time arrow

points away in time from the environment auxiliary conditions and follows from the initial state,

too.

Appendix A: Contour integrals

The brief recall of few theorems leading to the Fourier integral representation of translation

invariant Green’s functions is given below.

1. Cauchy-Riemann condition

The differentiability of a complex function, f(z), the existence of the limit

f ′(z) = lim
h→0

f(z + h)− f(z)

h
. (A1)

This seemingly simple definition implies much more than in real analysis because it assures that

f ′(z) is independent of the phase of h. In other words, we find the same derivative as |h| → 0,

independently of the phase of h. The uniqueness of f ′(z) when h = η and h = iη, η → 0 being

real,

lim
η→0

f(z + η)− f(z)

η
= lim

η→0

f(z + iη)− f(z)

iη
, (A2)



30

assumes the form

∂f1
∂z1

+ i
∂f2
∂z1

=
∂f2
∂z2

− i
∂f1
∂z2

(A3)

when the parametrization f = f1 + if2 and z = z1 + iz2 is used. The real and imaginary part of

this equation,

∂f1
∂z1

=
∂f2
∂z2

,
∂f2
∂z1

= −∂f1
∂z2

. (A4)

yield the Cauchy-Riemann condition. A complex differentiable function is called holomorphic

to distinguish complex differentiability from the simpler concept of the differentiability of real

functions.

2. Cauchy’s theorem

Let U be a simply connected open set of the complex plane (The openness is needed to move

around in the vicinity of any point without leaving the region. A simply connected set is connected

and any closed continuous loop, γ, can continuously be deformed to a point without leaving the

domain. This property assures that there are no holes within U .) and f(z) holomorphic on U .

Cauchy’s theorem states that the integral of f(z) over γ in U is vanishing,
∮

γ

dzf(z) = 0. (A5)

The complex line integral for a curve γ : [0, 1] → C is defined by
∫

γ

dzf(z) =

∫ 1

0

ds
dγ(s)

ds
f(γ(s)). (A6)

The proof starts by rewriting the loop integral,
∮

γ

dzf(z) =

∮

(dz1 + idz2)(f1 + if2)

=

∮

γ

(dz1f1 − dz2f2) + i

∮

(dz1f2 + dz2f1). (A7)

To evaluate the last line we apply Green’s theorem,
∮

γ

dxu =

∫

D

ds∇× u, (A8)

where the closed loop, γ, on the left hand side, is on the boundary of a simply connected region

D, and is oriented in anticlockwise direction. The region, D, is chosen to be the x3 = 0 plane,

x = (z1, z2, 0) and the vector field, u(x) = (u1, u2, 0), yields ∇× u = (0, 0, ∂u2
∂z1

− ∂u1
∂z2

) and

∮

γ

(dz1u1 + dz2u2) =

∫

D

dz1dz2

(

∂u2
∂z1

− ∂u1
∂z2

)

. (A9)
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FIG. 6: (a) The approximation of the integration contour γ by a piecewice linear function. (b) The enlarged

view of an internal square.

To prove (A9) we approximate the closed loop γ by a rectangle made up by horizontal and vertical steps of size

a as shown in Fig. 6 (a), the limit a → 0 will be performed at the end. The left hand side is a times the sum of

u1 (u2) long the horizontal (vertical) steps along the approximate boundary. The right hand side is the sum of the

surface integral, calulated for each square within the approximate boundary. The integral for a given square,

∫ z
+

1

z
−

1

dz1

∫ z
+

2

z
−

2

dz2

(

∂u2

∂z1
−
∂u1

∂z2

)

=

∫ z
+

2

z
−

2

dz2[u2(z
+
1 , z2)− u2(z

−

1 , z2)]−

∫ z
+

1

z
−

1

dz1[u1(z1, z
+
2 )− u1(z1, z

−

2 )], (A10)

written in the form

∫ z
+
1

z
−

1

dz1

∫ z
+
2

z
−

2

dz2

(

∂u2

∂z1
−
∂u1

∂z2

)

= a[u1(z
−

1 , z
−

2 ) + u2(z
+
1 , z

−

2 )− u1(z
−

1 , z
+
2 )− u2(z

−

1 , z
−

2 )] +O
(

a2
)

, (A11)

shows that the right hand side can be approximated by summing this elementary sum over the internal squares.

Since each internal line is shared by two internal squares where the contibution of thisline emerges with opposite

signe such a sum is reduces to the sum of the lines along the perimeter. This argument assumes that there are no

holes within the regions encircled by γ since their perimeter contribution would remain uncancelled.

The application of (A9) to the real (imaginary) part with u1 = f1, u2 = −f2 (u1 = f2, u2 = f1)

of (A7) yields

∮

γ

dzf(z) = −
∫

D

dz1dz2

(

∂f2
∂z1

+
∂f1
∂z2

)

+ i

∫

D

dz1dz2

(

∂f1
∂z1

− ∂f2
∂z2

)

= 0 (A12)

and the vanishing follows from the Cauchy-Riemann equations.

The main use of Cauchy’s theorem is that a complex integral,

Iγ =

∫

γ

dzf(z), (A13)

remains unchanged when the contour of integration, γ, is deformed without crossing singularities.

To prove this statement first note that we have Iγ−1 = −Iγ where γ−1 denotes the contour γ,

followed in the oppposite direction, i.e. γ−1(s) = γ(1 − s) where 0 ≤ s ≤ 1 is a parameter of

the curve γ : [0, 1] → C. Let us now suppose that the curve γ′ can be obtained by deforming

γ without traversing singularities and keeping the end points unchanged. The curve, obtained



32

by following γ and γ′−1 is closed and encircles a simply connected holomoprhic domain hence

Iγ + Iγ′−1 = Iγ − Iγ′ = 0.

Cauchy’s theorem can be used to show that if a function is holomorphic within an open and simply connected

domain D then it is infinitely many time differentiable and analytic, i.e. can be represented by an absolutely and

uniformly convergent power series

f(z) = lim
N→∞

N
∑

n=0

fn(z − z0)
n (A14)

within the convergence radius of the series, z, z0 ∈ D, |z − z0| < r (this latter is important because it allows us

to exchange the order of the limit and the integration and differentiation of f(z)). The argument is based on the

relation

f(z) =
1

2πi

∮

γ

du
f(u)

u− z
, (A15)

where z ∈ D and γ is a circle of infinitesimal radius, centered at z. Cauchy’s theorem allows us to increase the

circle to a finite radius as long as γ stays within D. It is easy to check that the integrand converges absolutely and

uniformly for z within γ hence we can calculate the subsequent derivatives, dnf(z)/dzn by derivating the integrand.

3. Residuum theorem

The residue of a function f(z) at z0 is Resf(z0) = limz→z0(z − z0)f(z) if the limit exist. The

residue is vanishing for holomorphic function but can be non-vanishing at some singularity. Let

us assume that f(z) is holomorphic on a a simply connected domain, D, except at a finite set of

discrete points, {z1, . . . , zN}. The residue theorem states that the loop integral over a loop within

D, calculated in anticlockwise direction is the sum of the residues of the function times 2πi,

∮

γ

dzf(z) = 2πi

N
∑

n=1

νγ(zn)Resf(zn), (A16)

where νγ(z) denotes the winding number,

ν(z) =
1

2πi

∮

γ

dz′
1

z′ − z
, (A17)

the number of times γ travels counterclockwise around z. To understand this definition better let

us consider a closed loop, γ, around z, z′− z = r(α)eiφ(α), parameterized by the angle 0 ≤ α ≤ 2π,

ν(z) =
1

2πi

∫ 2π

0
dα

( dr
dα

+ ir dφ
dα

)eiφ

reiφ

=
1

2πi

∫ 2π

0
dα
d ln r

dα
+

1

2π

∫ 2π

0
dα
dφ

dα
. (A18)

The fundamental difference between the variables r and φ is that the former is an arbitrary non-

negativ number, r(0) = r(2π), and latter is defined in the interval [−π, π] and is periodic, φ(2π) =
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FIG. 7: The deformation of a closed integration contour by excluding the singularities.

r(0) + 2πν. The winding number, ν, defined in such a manner is a topological quantity, i.e. it

remains invariant under the continuous deformation of the loop, γ. Since νγ(z) = 0 outside of γ

the summation in the residue theorem is over the singularities encircled by the loop only.

The proof of eq. (A16) consists of applying Cauchy’s theorem for the contour γ′, constructed by

excluding the singular points from the domain of integration as shown on Fig. 7: The integrals over

the slightly displaced parallel lines cancel and the integral around each pole gives the corresponding

residuum contribution.

Appendix B: Green’s functions

The Green’s functions provide a clear and compact solution of linear differential equations. Let

us start with an inhomogeneous real linear differential equation, L(∂t)x = j, for x(t). The Green’s

function of this equation is defined by

L(∂t)G(t, t
′) = δ(t − t′). (B1)

The generalized function, the Dirac-delta, is defined by the equation

f(t) =

∫

dt′δ(t − t′)f(t′), (B2)

holding for infinitely many differentiable test functions f(t) with compact support. The multipli-

cation of eq. (B1) by j(t′) and the integration over t′ yields L(∂t)x = j for

x(t) =

∫

dt′G(t, t′)j(t′). (B3)

This is only a formal solution because it is ill-defined on the the null space of the operator L,

consisting of the eigenfunctions with vanishing eigenvalue, L(∂t)φ(t) = 0. In fact, the Dirac-delta

can be interpeted as the unit operator, f = 11f , in the space of test functions according to (B2)

hence G = L−1 and the inverse is not defined in the null space.

The ill-defined null-space dynamics leads to the following difficulties in the physical applications where the

differential equation is our linear equation of motion:
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• The null-space consists of the solution of the equation of motion without external source, it contains the

physically most important trajectories.

• The action,

S[x] =

∫

dt

[

1

2
x(t)L(∂t)x(t)− x(t)j(t)

]

, (B4)

reproduces our differential equation as an Euler-Lagrange equation. L can be written as the sum of symmetric

and antisymmetric parts, L = Ls +La, L
s
a = (L±Ltr)/2, and the antisymmetric part does not contribute to

the action. The remaining symmetric part, G−1s(t − t′) = G−1s(t′ − t), yields symmetric Green’s function,

Gs(t− t′) = Gs(t′ − t), violating causality. In fact, an external force, j(t) = j0δ(t− t0), produces effects both

for t < t0 and t > t0 according to the solution (B3).

• We can write the solution of the equation of motion in the form of a spectral integral,

x(t) =

∫

dλxλφλ(t), (B5)

where Lφλ = λφ and L is assumed to be a Hermitian operator whose eigenvectors yield a basis. The source

admits a similar linear decomposition, yielding the equation of motion, λxλ = jλ, which in turn shows that

the restoring force, jλ/λ, acting on the null space mode with λ = 0 is singular and a regular solution can be

found for the particular kind of external force, j0 = 0. A source with j0 6= 0 which produces resonance leads

to ill-defined solution.

The problem can be avoided by using the auxiliary, i.e. initial and/or final conditions and

Green’s function to fix x(t) within and beyond the null space, respectively. For this end we

use the usual decomposition, x(t) = xh(t) + xih(t), where xh(t) (xih(t)) denotes a solution of the

homogeneous (inhomogeneous) equation. Hence we need a Green’s functions which produces xih(t)

with vanishing auxiliary conditions. The usual way to make these Green’s functions well defined

one removes the null space of the equation of motion by the modification L → Lǫ = L + iǫ and

the limit ǫ → 0 is performed at the end of the calculation. This step introduces an O (ǫ) error

in the equation of motion, an acceptable violation since ǫ is removed at the end. However such

a regularization of Green’s function leaves a finite trace behind, the breakdown of the invariance

under time reversal and the emergence of retarded and advanced solutions.

1. Harmonic oscillator

We start with the simplest case, a harmonic oscillator, defined by the equation of motion,

mẍ(t) = −mω2
0x(t)− j(t), (B6)

where the external force, j, is introduced to diagnose the system.

The Fourier transformation, an essential tool in solving linear differential equations, can be facilitated by using

the Fourier representation of the Dirac-delta,

δ(x) =

∫

∞

−∞

dk

2π
eikx =

∫

∞

−∞

dk

2π
e−ikx. (B7)
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In fact, the insertion of the identity, expressed by this form of the Dirac-delta,

f(t) = 11f(t) =
∫

dω

2π
dt′e−iω(t−t′)f(t′) =

∫

dω

2π
e−iωtf̃(ω), f̃(ω) =

∫

dteiωtf(t)

f̃(ω) = 11f̃(ω) =
∫

dω

2π
dt′e−iω(t−t′)f(t′) =

∫

dω

2π
eiωtf(t), f(t) =

∫

dω

2π
e−iωtf̃(ω) (B8)

shows the equivalence of (B2) and Fourier’s theorem.

The solution (B3) can be written for

x(ω) =

∫

dte−iωtx(t), (B9)

as

x(ω) = D̃(ω)j(ω) (B10)

where D̃(ω) = 1
m(ω2−ω2

0)
denotes the Green’s function. Such a result is not uniquely defined because

the denominator is vanishing within the null space of the equation of motion, ω = ±Ω. The null

space dynamics is fixed by the auxiliary conditions, given either as initial or final conditions,

x(−∞) = ẋ(−∞) = 0 or x(∞) = ẋ(∞) = 0, respectively. Non-trivial auxiliary conditions can be

satisfied by adding appropriate terms to the external force, j(t). The initial condition problem is

solved by the help of the retarded Green’s function, Dr(t) ∼ Θ(t), containing a null space modes

which cancel the initial coordinate and velocity.

The calculation of the Green’s function of a harmonic oscillator is a nice application of the

residue theorem. The poles of D̃(ω), ω± = ±ω0, can be shifted infinitesimally off from the real axis

in different directions, ω± → ω± = ±ω0 + σiǫ, where σ = ±1 and ǫ = 0+, yielding four different

Green’s functions,

Dσσ′(t) = lim
Ω→∞

∫ Ω

−Ω

dω

2π

e−iωt

m[(ω − ω0 − iσǫ)(ω + ω0 − iσ′ǫ)
. (B11)

We may close the integration contour over either the upper or the lower half circle as shown in

Fig. 8. We want the integral over the real axes only therefore the semicircle contribution should

vanish as Ω → ∞. It is easy to see that this is the case for upper or the lower semicircle for t < 0

and t > 0, respectively. This rule determines the contour and yields

D++(t) = iΘ(−t)e
−iω0t − eiω0t

2mω0
eǫt = Θ(−t)sinω0t

mω0
eǫt = Da(t)

D+−(t) = i
Θ(t)eiω0t +Θ(−t)e−iω0t

2mω0
e−ǫ|t| = i

eiω0|t|

2mω0
e−ǫ|t| = D∗F (t)

D−+(t) = −iΘ(t)e−iω0t +Θ(−t)eiω0t

2mω0
e−ǫt = −ie

−iω0|t|

2mω0
e−ǫ|t| = DF (t)

D−−(t) = −iΘ(t)
e−iω0t − eiω0t

2mω0
e−ǫt = −Θ(t)

sinω0t

mω0
e−ǫt = Dr(t), (B12)
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FIG. 9: The poles of the four kinds of Green’s function of eqs. (B12).

defining the advanced (Da), the Feynman (DF ) and the retarded (Da) Green’s functions. The

retarded and advanced Green’s functions are used to construct the solution of initial and final

state problems and the DF gives the solution of the mixed auxiliary condition, with vanishing

initial and final coordinates and is used only in quantum mechanics.

2. Electromagnetic field

The formal Green’s function of the wave equation (8),

D(x− x′) =

∫

d4q

(2π)4
e−iq(x−x

′)D̃(q), (B13)

is given by

D̃(q) =











− 1
q2

q2 6= 0,

? q2 = 0,

(B14)
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q2 = q02 − q2. The retarded Green-function, Dr(x, y) ≈ Θ(x0 − y0), is found by shifting the poles

of D̃(q) below the real frequency axis,

Dr(x) = −
∫

d3k

(2π)3
eikx

∫

dk0
2π

e−ick0t

(k0 + iǫ− |k|)(k0 + iǫ+ |k|)

= iΘ(t)

∫

d3k

(2π)3
eikx

(

e−ickt

2k
− eickt

2k

)

=
iΘ(t)

(2π)3

∫

dkk2dφd(cos θ)eikr cos θ
e−ickt − eickt

2k

=
iΘ(t)

(2π)2

∫

dkk2
eikr − e−ikr

ikr

e−ickt − eickt

2k

=
Θ(t)

2(2π)2r

∫ ∞

0
dk(eikr − e−ikr)(e−ickt − eickt)

=
Θ(t)

8πr

∫ ∞

−∞

dk

2π
(eik(r−ct) + eik(−r+ct) − e−ik(r+ct) − eik(r+ct))

=
Θ(t)

4πr
[δ(−r + ct)− δ(r + ct)]

=
δ(ct − r)

4πr
. (B15)

The advanced Green’s function is given by

Da(x) = −
∫

d3k

(2π)3
eikx

∫

dk0
2π

e−ick0t

(k0 − iǫ− |k|)(k0 − iǫ+ |k|)

= iΘ(−t)
∫

d3k

(2π)3
eikx

(

eickt

2k
− e−ickt

2k

)

= Θ(−t)δ(r + ct)− δ(−r + ct)

4πr

=
δ(ct+ r)

4πr
. (B16)

Finally the relativistically invariant form of both Green’s functions is

D
r
a(x) = Θ(±t)δ(ct∓ r)

4πr

= Θ(±t)δ(ct+ r) + δ(ct − r)

4πr

= Θ(±t)δ(c
2t2 − r2)

2π

= Θ(±x0)δ(x
2)

2π
. (B17)

Since Da(x, y) = Drtr(x, y) = Dr(y, x) the symmetric and antisymmetric parts of the Green’s

functions

D
n

f =
1

2
(Dr ±Da) (B18)
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give the solutions of the inhomogeneous and homogeneous equation, respectively. The inhomoge-

neous Green-functions are connected by the relation

D
r
a(x, y) = 2Dn(x, y)Θ(±(x0 − y0)) (B19)

where the near field Green’s function is

Dn(x) =
δ(x2)

4π
(B20)

according to Eq. (B17). The Fourier representation of the homogeneous far Green’s function can

be obtained by considering the difference of the second lines in Eqs. (B15) and (B16),

Df (x) =
1

4π
δ(x2)ǫ(x0)

= − i

2

∫

d3k

(2π)3
eikx

(

eickt

2k
− e−ickt

2k

)

=
i

2

∫

d4k

(2π)3
e−ikx

δ(k0 − |k|)− δ(k0 + |k|)
2|k|

=
i

2

∫

d4k

(2π)3
eikxδ(k2)ǫ(k0) (B21)

where ǫ(x) = sign(x). A useful relation satisfied by this Green-function is

∂x0D
f (x)x0=0 =

1

2

∫

d3k

(2π)3
eikxk0

δ(k0 − |k|)− δ(k0 + |k|)
2|k|

=
1

2

∫

d3k

(2π)3
eikx

1

2
[δ(k0 − |k|) + δ(k0 + |k|)]

=
1

2
δ(x) (B22)

The difference between the retarded and the advanced Green’s function, the sign of the imag-

inary part of the denominator of the frequency integral, leads to different sign of the null space

contributions, δ(q2), to the Fourier integral. This observation indicates that the regularization

of the divergent integrand, the treatment of the null space modes and the implementation of the

auxiliary conditions, indeed correspond to the same problem.

Appendix C: Liouville’s theorem

Let us consider a classical system, described by the canonical variables, (q,p), and the Hamil-

tonian, H(p, q). The Hamilton equations,

q̇ =
∂H(p, q)

∂p
, ṗ = −∂H(p, q)

∂q
, (C1)
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generate the flow, (q(ti),p(ti)) → (q(t),p(t)), in the phase space.

Liouville’s theorem states that this flow preserves the volume in the phase space. The proof

starts with a lemma about volume dependence, generated by the solution of the equation of motion,

ẋ = f(x). We introduce

Γ(R) =

∫

R

dx, (C2)

the volume of the region R and show that

dΓ(R(t))

dt
=

∫

R(t)
dx∇f(x(t)). (C3)

The volume at time t is given by

Γ(R(t)) =

∫

R(ti)
dxdet

∂x(t)

∂x(ti)
(C4)

and the approximate solution, x(t+ δt) ≈ x(t) + δtf(x(t)), yields

∂x(t+ δt)

∂x(t)
≈ 11 + δt

∂f(x(t))

∂x(t)
(C5)

The O (δt) part of this matrix is the sum of the O (δt) diagonal elements on the right hand side,

giving

det
∂x(t+ δt)

∂x(t)
≈ 1 + δt∇f(x(t)). (C6)

The volume after infinitesimal time evolution,

Γ(R(t+ δt)) =

∫

R(t)
dx[1 + δt∇f(x(t))] (C7)

gives the derivative (C3).

Liouville’s theorem, Γ̇(R) = 0, now follows by applying this lemma in the phase space to the flow

of Hamilton’s equations because the second derivative of the Hamiltonian is a symmetric matrix.

Appendix D: Probability and Information in Physics

The use and the interpretation of the probability in physics is not as simple as one would have

imagined. Furthermore the relevance of of information in physics has been recognized gradually

only. These two concepts are surveyed briefly below.



40

1. Traditional and Bayesian probabilities

The probability theory, a chapter of mathematics, starts with a set of elementary events, E,

and construct its subsets as combined events. The total event space, L, form a σ-algebra, namely

it is closed under forming the complement, A ∈ L ⇒ Ac ∈ L where A ∪ Ac = E, and the union

of countable many subsets, Ai ∈ L ⇒ ∪iAi ∈ L. The probability is a measure, an assignment of

a number, to each events, and satisfies three axioms: (i) The probabilities are real, non-negative,

finite numbers. (ii) At least one event is assumed to be realized, that receives the probability

value 1. (iii) The the probability is additive for mutually exclusive events. (iv) An event or its

complement is always realized, p(A) + p(Ac) = 1. This set of conditions lead to Kolmogorov’s

theory of probability.

Note that this definition is about the use of probability without providing a constructive defini-

tion and leaves possible different interpretations of the actual probability values. The mathematical

statics is based on the definition of the probability, given by the law of large numbers, This law

states that the empirical rate of the realization of an event approaches the probability in the limit

of infinitely many independent trials. This definition is consistent with the subsequent use of the

probability however remains circular because it is stated in probabilistic manner by showing that

the probability of a fixed deviation between the empirical rate and the probability tends to zero.

Such a view of the probability leads to the construction of random variables, which assume values

with an empirical rate, given by the law of large numbers. The Bayesian view is that the probability

is a measure of our partial knowledge. This is supported by Bayes’ theorem,

p(A|B) =
p(B|A)p(A)

p(B)
, (D1)

a trivial result of the definition

p(A|B) =
p(B ∩A)
p(B)

, (D2)

of the conditional probability of A, assuming B. The Bayesian interpretation of eq. (D1) is that

our state of knowledge, encoded by the probability distribution p(A), changes to p(A|B) is we are

sure of B. No random variables are needed for this interpretation.

The only discipline in Natural Sciences which claims a constructive definition of the probability

is Quantum Mechanics, in particular Born’s rule. There are three reasons to interpret that prob-

ability in the Bayesian manner. The first two consist of pointing out an undesired features of the

probability, defined by the law of large numbers in the classical and the quantum domains.
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(i) Let us suppose that the probability of an event is defined by the repeated observation of

the event in a series of independent trials. Is this probability an objectively existing property as

say the mass or the coordinate of a particle in classical physics? According to the classical laws of

physics the latter properties are known with a certain error bars after the measurement. However

the determination of the probability by the law of large numbers requires infinitely many trials and

the measurement, carried out in a finite time lapse, leaves an inestimable error.

(ii) An important condition of the law of large number, namely the independence of the trials,

can not be guaranteed in the quantum case. In fact, the production of a set of independent,

equivalently prepared systems is highly irrealistic due to the unavoidable entanglement, emerging

between the preparing device and the observed systems. Such an entanglement correlates the

observed systems, too. If there are doubts about the ensemble interpretation of the probability,

given by Born’s rule, then one is left with the assumption that the probability corresponds to a single

observation. However then intriguing, open question remains about the physical interpretation of

the probability of a single, non-repeatable event.

(iii) The third argument is to point out the absence of random variables in quantum domain.

Consider for instance the spin operators of a particle of spin S = 3/2, satisfying the relation

15

4
~
211 = S2

x + S2
y + S2

z (D3)

for the spin operators, S, with spectrum ±~/2,±3~/2. One can not choose eigenvalues for all

the three spin operators which satisfies eq. (D3). This complication, a well known result of

Heisenberg’s uncertainty principle for the operators [Sa, Sb] = ~
∑

c ǫabcSc, indicates that the proper

interpretation of the uncertainty principle is the impossibility of having full, exhausting knowledge

in the quantum world.

2. Classical and quantum probabilities

We have arrived at an important difference of the quantum and the classical probabilities: Both

are related to missing information however that information exists in the deterministic classical

world ”out there” and is nonexistent in the quantum case. The probability arises in classical physics

due to some limitation of the observer and in Quantum Mechanics due to the specific structure or

reality which always remains inaccessible, ill defined for macroscopic measuring devices.

An interesting, related formal difference of the classical and quantum probabilities is the space

of events. On the one hand, this space is a σ-algebra for the classical probabilities, satisfying
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Kolmogorov’s axioms, whose structure reflects the properties of set theories which in turn is based

on the existence of stable properties, a characteristic of macroscopic, classical physics. On the

other hand, the properties of a microscopic system are defined by linear subspaces in Quantum

Mechanics. There is a difference of the axioms, satisfied by subsets and by linear subspaces, namely

the distributivity is missing in the latter case. In other words, the quantum probabilities correspond

to a non-distributive event set.

Such a double layered structure of the probability emerges in the density matrix where the

quantum fluctuations arise from the pure states and the classical uncertainty is encoded by the

probability of finding the system in a given pure state.

3. Probability as the extension of logic

In the absence of any uncertainty we use our knowledge to generate new statements and the

laws of this process, called deductive inference, is the subject of mathematical formal logic. The

founders of probability theory, James Bernoulli. Thomas Bayes and Pierre Simon Laplace looked

upon probability as the generalization of this scheme in case of some uncertainty. However the

latter could not prove that such a use of probability needs the assumptions, given at the beginning

of section D 1 and Bayes’ law. Such a missing link was found by David Cox and presented in

physical context by Edwin Jaynes in the XX.-th century. In the meantime the mathematical

model, realizing the probabilities, arising from the axioms of section D1, was created by the help

of random variables and formalized by Kolmogorv’s theory.

In view of the remarks of the previous section about the preference of the Bayesian view of the

probability in physical sciences we employ that that interpretation to the inference problem. The

deductive inference, called Boolean logic, can be regarded as a result of the simplest, p ∈ {0, 1}
probability assignment. The 0 and 1 valued probability distributions contain no uncertainty. In

the daily life we maneuver with partial information and make statements with uncertainties. The

laws of this process, called plausible inference, is provided by the Bayesian probability theory. The

set of events is now replaced by the set of statements (∪ → ∨: ”or”, ∩ → ∧: ”and” and Ac → Ā:

”negation of A”) which is a σ-algebra for the classical probability.

The usual application of the Bayesian probability theory consists of the following two related

problems: 1. Inference: How to assign the probability values of statements when we have a

certain knowledge? 2. Update: How to change the probabilities if our knowledge enhanced? The

first problem, phrased in physical terms, is the identification of the state of our system upon
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of our knowledge. It relies on σ-algebra based statements in classical Statistical physics. There

are indications that the most satisfactory interpretation of the formalism of Quantum Mechanics

is to consider it as a systematic and optimized treatment of probabilities, arising from a non-

distributive statement structure. A more detailed discussion of the classical case, the Maximal

Entropy Principle, is presented in section D 5.

We turn now the simpler problem 2, a simple model of the learning process. For that end

we assume that we posses the knowledge I at the initial state which has enabled us to form the

probability distribution, p(Hi|I), for a set of exclusive and exhaustive hypotheses, Hi,
∑

i p(Hi|I) =
1. We acquire new knowledge in the form of some data, D, and find the updated probability by

the help of Bayes’ theorem,

p(Hi|D ∧ I) = p(D|Hi ∧ I)p(Hi|I)
p(D|I) , (D4)

where p(Hi|I) denotes the prior probability, used before the new data, p(D|Hi ∧ I) is called the

likelihood function of the hypothesis Hi and the result, p(Hi|D ∧ I) is the posterior probability.

As a simple application of this result we consider the hypothesis testing, the determination of the

best fitting hypothesis to the new data. The ratio of the probability of two hypotheses,

p(H1|D ∧ I)
p(H2|D ∧ I) =

p(D|H1 ∧ I)
p(D|H2 ∧ I)

· p(H1|I)
p(H2|I)

, (D5)

contains the ratio of the likelihoods and the priors. There are two simple extremities: If the initial

information does no single out any hypothesis then the second factor is unity and the best fitting

hypothesis belongs the maximum likelihood. If the data seems unrelated to the hypotheses then

the first factor is unity and the sought hypothesis is determined by the initial knowledge.

4. Information

To turn the foregoing qualitative discussion into a quantitative algorithm of determining the

probability assignment of a given knowledge one needs a quantitative measure of information, repre-

sented by some knowledge. The first, mathematically well defined use of information is due Claude

Shannon, an electric engineer, who sought a characterization of the usefulness of data compression

and presented his proposition in his paper, entitled ”A Mathematical Theory of Communication”,

in 1948. John Neumann has pointed out immediately that Shannon’s measure of information is

equivalent with the entropy, used in physics. The Maxwell demon paradigm, revisited by Leo

Szilárd in 1929, actually has given indications that the information plays an important role in
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statistical physics and an information based foundation of equilibrium statistical physics has been

worked out by Edwin Jaynes in 1957.

First of all one has to clarify the meaning of the word, “information”. How to find a role

for a concept of human communication in natural science which is supposed to be objective, i.e.

independent of the observer? The answer comes from a more careful view of the role, the humans

play in this issue. They receive certain information, use their intelligence and react accordingly.

We can assign machines to function in a similar manner. An important lesson, to be remembered

in the critical discussion of Maxwell’s demon, is that both the human being and the machine obey

the physical laws. After having eliminated the role, played by the intelligence, we can turn to the

meaning of the information. Information denotes data acquisition, transfer, storage and finally use

by mathematically well defined algorithms. Loosely speaking information stands for data and the

rules of their use.

Since the probability appears due to he missing information it is natural to seek a quantitative

measure of the latter, I, in terms of the probability distribution of the elementary events. We

present this construction in the case of classical probability by considering a series of independent

trials whose outcome, j ∈ [1, . . . , n], follows the probability distribution p = (p1, . . . , pn). We use

discrete random variables here for the sake of simplicity. To be more specific, let us consider the

case of a ball which can be placed in one of n equivalent urns. Once the ball is hidden in one of

the urns, in each if them with the same probability pj = 1/n, our missing information, In, can be

obtained by requiring the following properties:

1. In′ > In for n′ > n

2. I1 = 0

3. Composition law: Let us place in each of the n urns m smaller urns. The place of a ball

is specified by the doublet (j, k), j = 1, . . . , n, k = 1, . . . ,m and we miss information about

both j and k,

Inm = In + Im. (D6)

The simple solution,

I = lnΩ, (D7)

is unique up to a multiplicative constant among the continuous functions where the “phase space”,

Ω = n, denotes the number of accessible states.
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In the case of a non-constant probability distributions we follow a heuristic argument to gen-

eralize the composition law, mentioned as point 3 above. We start again by placing a ball with

equal probability into one of N urns. However we regroup the urns into n groups, ℓj denoting

the number of urns in the j-th group,
∑

j ℓj = N . The ball is then found in the group j with

probability pj = ℓj/N . We now seek the missing information I[p] about the position of the ball

with respect to the groups only. The total information missing is It = lnN and we have to remove

from it the information Ig which is missing due to the different possible positions within the groups.

The average of the information, to be removed is

〈Ig〉 =
n
∑

j=1

pj ln ℓj (D8)

according to Eq. (D7), leading to

I[p] = It − 〈Ig〉 = −
ℓ
∑

j=1

pj ln pj. (D9)

Another, perhaps more illuminating argument is to consider the series of N symbols, j1, . . . , jN ,

chosen from a fixed set of n object, say jk ∈ {1, . . . , n}, in such a manner that P (jk = j) = pj.

What is the missing information about a series, subject of a given probability distribution? Since

the probability distribution of the series, satisfying the constraint that jk occurs pjN -times, is

uniform we can use (D7),

I[p] = lnΩ[p], (D10)

where the number of the allowed series,

Ω[p] =
N !

∏

j(Npj)!
. (D11)

Stirling’s formula, lnn! ≈ n lnn− n, allows us to write

I[p] = N lnN −N −N
∑

j

pj lnNpj +N
∑

j

pj

= −N
∑

j

pj ln pj (D12)

for large N → ∞. The missing information per symbol,

S[p] =
I[p]

N
= −

∑

j

pj ln pj = −〈ln p〉, (D13)

is the expectation value of ln p up to a sign and is well defined for non-numeric random variables,

too.
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What is the minimal number of yes/no questions, NQ, needed to identify the actual series if

the distribution function is known? The optimally posed questions obviously split the possibilities

into two equal parts, therefore

2NQ = Ω[p] = e−N
∑

j pj ln pj (D14)

and

Nq ln 2 =
missing information

symbol
, (D15)

the missing information of a symbol is proportional to the minimal number of questions needed to

find its value.

5. Maximal entropy principle

Suppose that have some partial information about a random variable, expressed in terms of some

expectation values. How to assign a probability distribution to this variable which is consistent

with the constraint and contains as little additional information as possible? Suppose that a

random event occurs N -times, (x(t1), . . . , x(tN )), x(tj) ∈ {x1, . . . , xn} and we know the average of

the functions fk(x), k = 1, . . . ,m,

1

N

∑

j

f(x(tj)) = F . (D16)

According to the maximal entropy principle (MAXENT) the optimal probability distribution

p(x|F ) maximizes the missing information, I[p], subject of the constraints

∑

j

pjf(xj) = F . (D17)

The constraints are treated by means of Lagrange multipliers, by maximizing

SF = −
∑

j

pj ln pj + (1− λ0)(
∑

j

pj − 1) + λ(F −
∑

j

pjf(xj)) (D18)

in the probability distribution {p1, . . . , pn} and the parameters λ0, λ. The extremal conditions for

pj,

0 = − ln pj − 1− λ0 + 1− λf(xj), (D19)

fixes the probability distribution,

pj = e−λ0−λf(xj), (D20)
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FIG. 10: Maxwell’s demon after W. F. Angrist and L. G. Hepler, Order and Chaos (Basic Books, New York,

1967)

and the maximization in λ0 yields the partition function,

∂

∂λ0
: 1 = e−λ0Z(λ), Z(λ) =

∑

j

e−λf(xj) = eλ0 . (D21)

The maximization over λ gives the sum rules to express expectation values as the logarithmic

derivatives of the partition function,

∂

∂λ
: F = e−λ0

∑

j

f(xj)e
−λf(xj) =

1

Z(λ)

∑

j

f(xj)e
−λf(xj ) = −∂ lnZ(λ)

∂λ
. (D22)

The value of the maximal entropy is

Smax = −
∑

j

pj ln pj

=
∑

j

e−λ0−λf(xj)[λ0 + λf(xj)]

= λ0 + λF . (D23)

6. Maxwell’s demon

A relation between the thermodynamical entropy and information has bee suspected ever since

James Clerk Maxwell proposed his demon as a counter example of thermodynamics in 1871. Imag-

ine two containers, holding a gas at different temperature. The demon, Maxwell’s small (internal

physical laws ignored) and intelligent (capable of information treatment) creature is supposed to

stand in the colder gas, beside a small windows (no mass and internal dynamics), separating two

containers. Whenever a faster than the average gas molecule approaches the demon opens the

window for a very short time and lets the particle to move into the warmer container. The second

law of thermodynamics is violated in this manner.
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Leo Szilárd has shown in 1929 that the second law can be saved by associating an appropriate

entropy change to information gathering and processing, thereby linking entropy and information.

The simplified argument in nutshell is the following: Let us take a single atom, equipped with an

internal degree of freedom which can take two values, y = 1, 2 and place it into a system of two

containers with open window. After thermalization the probability to find the atom in container

j is pj =
Vj

V1+V2
, j = 1, 2, Vj denoting the volume of the container. Now we let Maxwell’s demon

measure the value of y and work with the algorithm of placing the atom in container j = y in

equilibrium with the environment, along an isotherm. The decrease of (Boltzmann’s) entropy if

the atom is found in container j is ∆Sj = ln
Vj

V1+V2
= ln pj. Hence the average entropy change is

∑

j pj ln pj < 0. The second law is rescued if there is an entropy production, sj, associated to the

measurement which finds the atom in container j and the inequality

∑

j

pj(sj + ln pj) ≥ 0 (D24)

is respected. An elementary argument[2] shows that this inequality follows if

∑

j

e−Sj ≤ 1. (D25)

In particular, a demon, working in a reversible manner and producing the entropy ∆S = ln 2

remains in agreement with thermodynamics. The inequality (D24) amounts to the statement that

the average entropy production of the measurement should exceed Shannon’s information about

the position of the atom in the containers, thereby balancing the thermodynamical entropy with

information. A reversible demon, working with the uniform distribution, p1 = p2 = 1
2 , should

produce the entropy which is equivalent with the gain of information.

The first reconciliation of Maxwell’s demon and the second law of thermodynamics was achieved

by Leon Brillouin in 1951 by noting that the demon is surrounded by the black body radiation

of photons and need a higher temperature torch to perform the measurement. The information

gathering process with such an object produces enough entropy to save the second law. A more

general solution of the problem, posed by the demon, came from Rolf Landauer in 1961 by noting

that the demon’s memory has to be reset after each intervention and such an irreversible step alone

produces enough entropy to restore the second law.

Appendix E: Density matrix

Gelason’s theorem states that the mosg general probability assignement in a Hilbert space with

at leats three dimensions is defined by the help of an operator ρ, called density matrix which acts
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in the space of states. The probability to find the system in a normalised state |ψ〉 is

pψ = 〈ψ|ρ|ψ〉 = Tr[ρ|ψ〉〈ψ|]. (E1)

As a result, the the expectation value of an observable A =
∑

n |n〉an〈n| is given by

Ā =
∑

n

anp|n〉 =
∑

n

anTr[ρ|n〉〈n|] = Tr[ρA]. (E2)

The density matrix possesses the following properties:

1. ρ† = ρ: Any operator can be written as the sum of a Hermitian and an anti-Hermitian piece,

ρ = ρh + ρah, with ρh = 1
2(ρ+ ρ†) and ρah = 1

2(ρ− ρ†). The probability TrPψρ = 〈ψ|ρ|ψ〉 is
real |ψ〉 hence 〈ψ|ρ|ψ〉 = 〈ψ|ρ†|ψ〉. This equation holds for an arbitrary vector |ψ〉 therefore
ρah = 0.

2. The density matrix is a positive operator because its expectation value in any state is non-

negative, 〈ψ|ρ|ψ〉 = TrPψρ ≥ 0.

3. Trρ = 1: The probability of the whole space of events, Tr11ρ is unity.

4. The density matrix, being a Hermitian operator, is diagonalizable and can be written as

ρ =
∑

n

|ψn〉PIN〈ψn|, (E3)

{|ψn〉} being an orthonormal base. The eigenvalues are real, 0 ≤ pn, and the diagonalization

preserves the trace,
∑

n pn = 1. The spectrum, {pn}, can be interpreted as the probability

of finding the system in one of the states, |ψn〉 since

TrAρ =
∑

n

pn〈ψn|A|ψn〉. (E4)

5. The inequality

Trp2 =
∑

n

p2n ≤
∑

n

pn = Trρ (E5)

becomes an equality only for pure states, ρ = |ψ〉〈ψ|. The states with strict inequality are

called mixed. The decomposition of the density matrix as a sum over pure state projectors is

not unique, there are different systems of non-orthogonal states which yield the same density

matrix.

Examples:
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1. Spin states: The most general density matrix of a two-state system is

ρ =
1

2
(11 + pσ) (E6)

where the Pauli-matrices are

σ =









0 1

1 0



 ,





0 −i
i 0



 ,





1 0

0 −1







 . (E7)

This corresponds to the mixture of two states with probabilities 1
2 (1± |p|) and

〈σ〉 = trρσ = p. (E8)

Since trρ2 = 1+p2

2 , |p| ≤ 1, the equality belonging to pure states.

2. Canonical ensemble: The probability of finding a classical system, attached to a heat bath

of temperature T and having the energy E is

p(E) =
1

Z
e
− E

kBT , Z =
∑

E

e
− E

kBT . (E9)

The quantum ensemble assign the same probability to the stationary states, leading to the

density matrix,

ρ =
1

Z
e
− H

kBT , Z = Tre
− H

kBT . (E10)

Appendix F: Time reversal

The time reversal implies the exchange of the initial and final conditions and the execution of

the time reversal transformation on each physical quantity, A(t), as A(t) → TA(t) = τAA(−t), τA
being the internal time parity. Note that ∂t flips the sign of the parity, τ∂tA = −τA, assuming that

the latter is well defined. Since two time reversals, performed successively, leave the time arrow

unchanged τ2A = 1 in classical physics. The time reversal should not mix imaginary components to

a real quantity therefore τA is real and τA = ±1.

The last two equations are not always valid in quantum mechanics where we need a more

detailed construction of the time reversal transformation, revealing a further distinguishing feature

of the time as opposed to the space. We start by noting that the physical states realize a ray-

representation in the Hilbert space: The normalized vectors |ψ〉 and eiα|ψ〉, α ∈ R give the same
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averages thus represent the same state. Therefore the transformation |ψ〉 → U |ψ〉 is physically

equivalent with |ψ〉 → eiαU |ψ〉 and the preservation of the scalar product, 〈ψ|φ〉 = 〈Uψ|Uφ〉, a
precondition on any transformation to be elevated to the rank of a symmetry, can be relaxed to

the preservation of the magnitude of the scalar product |〈ψ|φ〉| = |〈Uψ|Uφ〉|.
Such a weakening of the unitarity widens the possibilities of representing symmetries in quantum

mechanics. Wigner’s theorem asserts that the invertible transformations of the linear space of the

pure states onto themselves which preserve the transition probabilities, i.e. the absolute magnitude

square of the scalar product, are either unitary or anti-unitary. An operator S is called linear or

anti-linear if

S(a|φ〉+ b|ψ〉) = aS|φ〉+ bS|ψ〉, (F1)

or

S(a|φ〉 + b|ψ〉) = a∗S|φ〉+ b∗S|ψ〉, (F2)

respectively. The linear operator U is unitary if it is linear and

|ψ〉 → U |ψ〉 = |ψ̃〉, 〈ψ|φ〉 = 〈ψ̃|φ̃〉. (F3)

An anti-unitary operator A is an anti-linear operator and it satisfies

|ψ〉 → A|ψ〉 = |ψ̃〉, 〈ψ|φ〉 = 〈ψ̃|φ̃〉∗. (F4)

The anti-linear operators have few rather unattractive features, for instance they act only to

the right in the bra-ket formalism,

〈ψ|K→a|φ〉 = a∗〈ψ|K|φ〉 6= 〈ψ|←Ka|φ〉 = a〈ψ|K|φ〉, (F5)

therefore one applies them in the wave function formalism.

The time reversal, T |ψ(t)〉 = |ψ(t)T 〉, is anti-linear in quantum mechanics to preserve the

canonical commutation relation. The action of the time reversal on the wave function of a state

with positive internal time parity is defined as Tψ(x) = ψ∗(x) in the coordinate representation.

The application of this rule to ψp(x) = 〈x|p〉 = e
i
~
xp yields the transformation

Tψp(x) = Te
i
~
xp = e−

i
~
xp = ψ−p(x), (F6)

which in turn gives

T ψ̃(p) = T

∫

d3xe−
i
~
xpψ(x) =

∫

d3xe
i
~
xpψ∗(x) = ψ∗(−p). (F7)
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[1] The justification of this point requires the proper, simultaneous treatment of the three steps of the

measuring process, considered sequentially here.

[2] The minimization of (D24) in pj yields s1 − s2 + ln p1 − ln p2 = 0. Let us introduce λ = sj + ln pj and

write pj = eλ−sj . The inequality λeλ
∑

j e
−sj ≥ 0 which follows from (D24) requires λ ≥ 0. The sum

rule
∑

j pj = 1 implies
∑

j e
−sj = e−λ. This equation and the previous two inequalities yield (D25).


