BME NTI kísérleti magfizika, 2019 december 10.

A nagyenergiás magfizika kísérleti módszerei

Vértesi Róbert

Wigner Fizikai Kutatóközpont MTA kiváló kutatóhely vertesi.robert@wigner.mta.hu

ПС

Tematika

- Az erős kölcsönhatás és a kvark-gluon plazma
 - Kvarkbezárás és aszimptotikus szabadság
 - A QCD fázisdiagramja
- Kísérleti eszközök, módszerek, alapfogalmak
 - Gyorsítók, kísérletek: RHIC, LHC
 - Pszeudorapiditás, azimut-aszimmetria, maganyag-módosulás
- Jet-quenching: a nagy impulzusú részecskék elnyomása
 - Maganyag-módosulási tényező forró maganyagban (R_{AA})
 - Kétjet-aszimmetria
- A maganyag kollektív viselkedése
 - A tökéletes folyadék (v₂ kvarkszám-skálázása, viszkozitás)
- Nehéz kvarkok, kvarkónium
 - A kvarkóniumok kötésienergia-függő disszociációja
 - A plazma hőmérséklete

Vértesi Róbert - Nagyenergiás magfizika

Világunk építőkövei

- Kvarkok: az atommag elemi részecskéi
- Gluonok: A magot összetartó erős kölcsönhatás közvetítői
- Kvarkbezárás: nincs magányos kvark! Hadronokat alkotnak
- Kvantumszíndinamika: az erős kölcsönhatás elmélete

Vértesi Róbert - Nagyenergiás magfizika

Világunk építőkövei

- Kvarkok: az atommag elemi részecskéi
- Gluonok: A magot összetartó erős kölcsönhatás közvetítői
- Kvarkbezárás: nincs magányos kvark! Hadronokat alkotnak
- Kvantumszíndinamika: az erős kölcsönhatás elmélete

Hogyan tudhatunk meg többet róluk?

Vértesi Róbert - Nagyenergiás magfizika

Elektromágneses és erős kölcsönhatás

- Kvantum-elektrodinamika (QED):
 - Abeli U(1) mértékelmélet
 - Generátor ~ fotonkölcsönhatástömeges tér (e) $\mathcal{L} = \bar{\psi}(i\gamma^{\mu}D_{\mu} m)\psi \frac{1}{4}F_{\mu\nu}F^{\mu\nu}$ $D_{\mu} \equiv \partial_{\mu} + ieA_{\mu}$ mértéktér (foton)

Effektív potenciál V_{EM} (r)~ $-\alpha/r$

Elektromágneses és erős kölcsönhatás

- Kvantum-elektrodinamika (QED):
 - Abeli U(1) mértékelmélet
 - Generátor ~ foton_

kölcsönhatástömeges ter (e)
$$\mathcal{L} = \bar{\psi}(i\gamma^{\mu}D_{\mu} - m)\psi - \frac{1}{4}F_{\mu\nu}F^{\mu\nu}$$
 $D_{\mu} \equiv \partial_{\mu} + ieA_{\mu}$ $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$ mértéktér (foton)

Effektív potenciál V_{EM} (r)~ – α /r

Kvantumszíndinamika (QCD):

- Nem-abeli SU(3) mértékelmélet
- 8 független generátor ~ 8 gluon
- gluon: színtöltés, önkölcsönhatás

$$egin{split} \mathcal{L}_{ ext{QCD}} &= ar{\psi}_i \left(i (\gamma^\mu D_\mu)_{ij} - m \, \delta_{ij}
ight) \psi_j - rac{1}{4} G^a_{\mu
u} G^{\mu
u}_a \ G^a_{\mu
u} &= \partial_\mu \mathcal{A}^a_
u - \partial_
u \mathcal{A}^a_\mu + g f^{abc} \mathcal{A}^b_\mu \mathcal{A}^c_
u \,, \end{split}$$

Elektromágneses és erős kölcsönhatás

- Kvantum-elektrodinamika (QED):
 - Abeli U(1) mértékelmélet
 - Generátor ~ foton

kölcsönhatástömeges ter (e)
$$\mathcal{L} = \bar{\psi}(i\gamma^{\mu}D_{\mu} - m)\psi - \frac{1}{4}F_{\mu\nu}F^{\mu\nu}$$
 $D_{\mu} \equiv \partial_{\mu} + ieA_{\mu}$ $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$ mértéktér (foton)

Effektív potenciál V_{EM} (r)~ $-\alpha/r$

Kvantumszíndinamika (QCD):

- Nem-abeli SU(3) mértékelmélet
- 8 független generátor ~ 8 gluon
- gluon: színtöltés, önkölcsönhatás

$$egin{split} \mathcal{L}_{ ext{QCD}} &= ar{\psi}_i \left(i (\gamma^\mu D_\mu)_{ij} - m \, \delta_{ij}
ight) \psi_j - rac{1}{4} G^a_{\mu
u} G^{\mu
u}_a \ G^a_{\mu
u} &= \partial_\mu \mathcal{A}^a_
u - \partial_
u \mathcal{A}^a_\mu + g f^{abc} \mathcal{A}^b_\mu \mathcal{A}^c_
u \,, \end{split}$$

Effektív potenciál $V_{QCD} \sim -\alpha/r + \sigma r$

Vértesi Róbert - Nagyenergiás magfizika

Az erős kölcsönhatás kettőssége

Vértesi Róbert - Nagyenergiás magfizika

Az erős kölcsönhatás kettőssége

Vértesi Róbert - Nagyenergiás magfizika

Az erős kölcsönhatás kettőssége

Vértesi Róbert - Nagyenergiás magfizika

Hadronizáció, jet

Egymástól távolodó kvarkok

- Lineáris potenciál, "húr": $U \sim \sigma r (\sigma \sim 1 \text{ GeV/fm})$
- Halmozódó energia \rightarrow újabb q \overline{q} pár keltése

[illustration from Fritzsch]

Vértesi Róbert - Nagyenergiás magfizika

Hadronizáció, jet

Egymástól távolodó kvarkok

- Lineáris potenciál, "húr": $U \sim \sigma r (\sigma \sim 1 \text{ GeV/fm})$
- Halmozódó energia → újabb qq pár keltése

Hadronizáció:

■ QCD parton ↔ hadronok kollimált nyalábja

[illustration from Fritzsch]

Vértesi Róbert - Nagyenergiás magfizika

Hadronizáció, jet

Egymástól távolodó kvarkok

- Lineáris potenciál, "húr": $U \sim \sigma r (\sigma \sim 1 \text{ GeV/fm})$
- Halmozódó energia → újabb qq pár keltése

Hadronizáció:

QCD parton ↔ hadronok kollimált nyalábja

Jet virtuality

 θ_2

 π

K

[illustration from Fritzsch]

Forró, sűrű maganyag: új fázis?

 Rács-QCD számítások: hadronos anyag csak bizonyos hőmérséklet, energiasűrűség alatt létezik

 $T_c \sim 170 \text{ MeV} \sim 1.5 \times 10^{12} \text{ K}$ $\epsilon_c \sim 1 \text{ GeV/fm}^3$

Forró, sűrű maganyag: új fázis?

 Rács-QCD számítások: hadronos anyag csak bizonyos hőmérséklet, energiasűrűség alatt létezik

 $T_c \sim 170 \text{ MeV} \sim 1.5 \times 10^{12} \text{ K}$ $\epsilon_c \sim 1 \text{ GeV/fm}^3$

- Fázisátmenet → Kvark-gluon plazma (QGP)
 - Létezik?
 - Mik a tulajdonságai?

Vértesi Róbert - Nagyenergiás magfizika

A kezdet: "nagy bumm"

HISTORY OF THE UNIVERSE

Nehézion-ütközések: "kis bumm"

Courtesy of Paul Sorensen and Chun Shen

Nehézion-ütközések: "kis bumm"

Courtesy of Paul Sorensen and Chun Shen

Vértesi Róbert - Nagyenergiás magfizika

A víz fázisdiagramja

Vértesi Róbert - Nagyenergiás magfizika

A QCD fázisdiagramja

Cél: a QCD fázisainak feltérképezése, megértése

Vértesi Róbert - Nagyenergiás magfizika

A QCD fázisdiagramja

Cél: a QCD fázisainak feltérképezése, megértése

- A kvark-gluon plazma megismerése
- Látjuk-e a fázisátalakulást? Milyen a jellege?
- Van-e kritikus pont?

Kísérleti eszközök, módszerek, alapfogalmak

- Gyorsítók, kísérletek: RHIC, LHC
- Pszeudorapiditás, azimutaszimmetria, maganyag-módosulás

RHIC relativisztikus nehézion-ütköztető

- Két 3,6 km hosszú szinkrotron-gyűrű
- Rendkívül sokoldalú
 - Au, Cu, U, d, ³He, p
 - polarizált protonok
 (→ spinfizika)
 - Aszimmetrikus ütközések
- Széles energiatartomány
 - p+p: √s = 62 - 500 GeV
 - Au+Au: $\sqrt{s_{NN}} = 5.5 - 200 \text{ GeV}$

(fix target: 2.7 GeV)

 Kísérletek: STAR, PHENIX (PHOBOS, BRAHMS)

LHC: a Nagy Hadronütköztető

- LHC: 27 km hosszú gyorsítógyűrű
- Legnagyobb energia
 - p+p: √s=13 TeV
 - Pb+Pb: $\sqrt{s_{NN}}$ =5.02 TeV
- Kísérletek:
 ALICE, CMS,
 ATLAS, LHCb

22 tagország együttműködése

Vértesi Róbert - Nagyenergiás magfizika

Az ALICE kísérlet (példa)

- Kifejezetten nehézion-ütközések feldolgozására épült detektorrendszer
- Részecskék megbízható azonosítása széles impulzus-tartományban

Vértesi Róbert - Nagyenergiás magfizika

Az ALICE kísérlet (példa)

Részecskék megbízható azonosítása széles impulzus-tartományban

Vértesi Róbert - Nagyenergiás magfizika

Rekonstruált nehézion-esemény

- Másodpercenként akár 600 millió ütközés
- Akár többezer részecske jeleinek azonosítása, értelmezése, feldolgozása
- 2-4 GB adat másodpercenként

Mérési módszerek

"Kemény" folyamatok

- kevés nagy impulzú részecske
- korai keletkezés, jól ismert folyamatokban
- nagy áthatolóképesség
- Plazma átvilágítása, Közegbeli módosulás vizsgálata

Mérési módszerek

"Kemény" folyamatok

- kevés nagy impulzú részecske
- korai keletkezés, jól ismert folyamatokban
- nagy áthatolóképesség
- Plazma átvilágítása, Közegbeli módosulás vizsgálata

"Lágy" folyamatok

- Sok, kis impulzusú részecske
- késői állapotokból
- Termikus viselkedés
- Kollektív dinamika ("folyás")

Fogalmak

■ Nukleononkénti ütközési energia (tkp.): √s_{NN}

Fogalmak

■ Nukleononkénti ütközési energia (tkp.): √s_{NN}

 $c(b) \cong \frac{\pi b^2}{\sigma_{\text{inel}}} < \sigma_{\text{inel}} : \text{teljes rugalmatlan szórási hatáskm.} \\ b < b_{\text{max}} : ütközési paraméter}$

Kinematikai változók

nyalábra merőleges (x,y) sík - "fizika":

- Transzverzális impulzus: $p_T = \sqrt{(p_x^2 + p_y^2)}$
- Azimutszög, φ

nyalábirányú (z) boost:

- Rapiditás: $y = 0.5 \log \frac{E + p_z}{E p_z}$
- Pszeudorapiditás (ha m=0, η=y):

$$\eta = 0.5 \log rac{p+p_z}{p-p_z} = -\ln anh rac{ heta}{2}$$

Jet-quenching: a nagy impulzusú részecskék elnyomódása

- Maganyag-módosulási tényező a forró maganyagban (R_{AA})
- Kétjet-aszimmetria

Nukleáris módosulási tényező

- A+A hozam összevetése a p+p ütközésekével
- R_{AA} = 1 : a maganyagnak nincs hatása
- R_{AA} < 1 : elnyomódás (impulzusvesztés a maganyagban)

N_{coll}: centralitásfüggő, Glauber (geometriai) modellből

"Öngenerált" kemény próbák

Kvark és gluon

- Erősen kölcsönható ("színes") plazmával a jetek kölcsönhatnak, energiát vesztenek sugárzás illetve ütközés útján
- Kellően nagy úthossz esetén teljesen elnyelődnek
- Gyulassy-Lévai-Vitev modell:

 $\Delta E \sim \frac{L^2 \mu^2}{\lambda_q} \log(E/\mu) \stackrel{\label{eq:expansion} {\sf E: "jet" energiája}}{\underset{\lambda_{\rm g}}{\sf \sim 1 \ {\rm fm: \acute{a}tlagos gluon szabad úthossz}}$ ı∼0.5 GeV : színárnyékolási skála

- "jet quenching" (jet-elnyomás) jelensége
- Várakozás: R_{AA} < 1

"Öngenerált" kemény próbák

Kvark és gluon

- Erősen kölcsönható ("színes") plazmával a jetek kölcsönhatnak, energiát vesztenek sugárzás illetve ütközés útján
- Kellően nagy úthossz esetén teljesen elnyelődnek
- Gyulassy-Lévai-Vitev modell:

 $\Delta E \sim \frac{L^2 \mu^2}{\lambda_q} \log(E/\mu) \qquad \qquad \begin{array}{l} \text{E: "jet" energiája} \\ \text{L: "jet" teljes úthossza a plazmában} \\ \lambda_{\text{g}} \sim 1 \text{ fm : átlagos gluon szabad úthossz} \end{array}$ ~0.5 GeV : színárnyékolási skála

- "jet quenching" (jet-elnyomás) jelensége
- Várakozás: R_{AA} < 1

Elektron és foton

- Az elektromágneses kölcsönhatás számára a plazma lényegében átlátszó
- Áthatoló próbák
- Várakozás: *R*_{AA} ~ 1

"Öngenerált" kemény próbák

Kvark és gluon

- Erősen kölcsönható ("színes") plazmával a jetek kölcsönhatnak, energiát vesztenek sugárzás illetve ütközés útján
- Kellően nagy úthossz esetén teljesen elnyelődnek
- Gyulassy-Lévai-Vitev modell:

 $\Delta E \sim \frac{L^2 \mu^2}{\lambda_q} \log(E/\mu) \stackrel{\label{eq:expansion} {\sf E: "jet" energiája}}{\underset{\lambda_{\rm g}}{\sf \sim 1 \ {\rm fm: \acute{a}tlagos gluon szabad úthossz}}$ ~0.5 GeV : színárnyékolási skála

- "jet quenching" (jet-elnyomás) jelensége
- Várakozás: R_{AA} < 1

Elektron és foton

- Az elektromágneses kölcsönhatás számára a plazma lényegében átlátszó
- Áthatoló próbák
- Várakozás: *R*_{AA} ~ 1

Mit mutatnak a kísérletek?

RHIC 2002 : Jet-elnyomás

 Könnyű hadronok kb. azonos mértékben nyomódnak el (200 GeV-es centrális ütközésekben R_{AA}h~0.2)

RHIC 2002 : Jet-elnyomás

- Könnyű hadronok kb. azonos mértékben nyomódnak el (200 GeV-es centrális ütközésekben R_{AA}h~0.2)
- Ellenpróba: Foton-elnyomódás nem tapasztalható ($R_{AA}^{\gamma} \sim 1$)

RHIC 2002 : Jet-elnyomás

- Könnyű hadronok kb. azonos mértékben nyomódnak el (200 GeV-es centrális ütközésekben R_{AA}h~0.2)
- Ellenpróba: Foton-elnyomódás nem tapasztalható ($R_{AA}^{\gamma} \sim 1$)

Az erősen kölcsönható QGP első meggyőző bizonyítéka

Vértesi Róbert - Nagyenergiás magfizika

Kétjet-aszimmetria (LHC)

Vértesi Róbert - Nagyenergiás magfizika

Kétjet-aszimmetria (LHC)

Kétjet-aszimmetria

$$A_J = \frac{E_{T1} - E_{T2}}{E_{T1} + E_{T2}}, \qquad \Delta \phi > \frac{\pi}{2}$$

eseményenkénti információt ad

- p+p ütközések: kis aszimmetria
- Centrális Pb+Pb: erős aszimmetria

PRL 105 (2010) 252303

A maganyag kollektív viselkedése: a tökéletes folyadék

- A v₂ kvarkszám-skálázása
- viszkozitás

Vértesi Róbert - Nagyenergiás magfizika

Azimutális anizotrópia

- Az ütközési régióban térben anizotróp QGP
 - Nyomáskülönbség: $R_x < R_v \Longrightarrow P_x > P_v$

45

Azimutális anizotrópia

- Az ütközési régióban térben anizotróp QGP
 - Nyomáskülönbség: $R_x < R_y ==> P_x > P_y$
- Az időfejlődés során a térbeli anizotrópia impulzusbeli anizotrópiává alakul
 - Paraméterezés: Fourier-sor

$$E\frac{d^{3}N}{d^{3}p} = \frac{1}{\pi}d^{2}\frac{N}{dp_{T}^{2}dy}\left[1 + 2v_{1}\cos(\varphi - \Psi_{R}) + 2v_{2}(2[\varphi - \Psi_{R}]) + ...\right]$$

Elliptikus folyás:

 $v_2 = \left\langle \cos(2[\phi - \Psi_R]) \right\rangle$

46

Azimutális anizotrópia

- Az ütközési régióban térben anizotróp QGP
 - Nyomáskülönbség: $R_x < R_y ==> P_x > P_y$
- Az időfejlődés során a térbeli anizotrópia impulzusbeli anizotrópiává alakul
 - Paraméterezés: Fourier-sor

$$E\frac{d^{3}N}{d^{3}p} = \frac{1}{\pi}d^{2}\frac{N}{dp_{T}^{2}dy}\left[1+2v_{1}\cos(\varphi-\Psi_{R})+2v_{2}(2[\varphi-\Psi_{R}])+...\right]$$

Elliptikus folyás:

 $v_2 = \left\langle \cos(2[\phi - \Psi_R]) \right\rangle$

- Kollektivitás észlelése:
 - harmonikus együtthatók meghatározása (v₁..v₆)

jelentős $v_2 \leftrightarrow$ erős csatolás a részecskék között

 $\lambda \ll \bar{R}$

λ : részecske szabad úthossza
 R : a forrás jellemző mérete

Hogyan folyik a maganyag?

Rendkívül erős kollektivitás!
 → Erősen csatolt forró közeg

Aszimptotikus szabadság???

Vértesi Róbert - Nagyenergiás magfizika

Hogyan folyik a maganyag?

Vértesi Róbert - Nagyenergiás magfizika

Hogyan folyik a maganyag?

Vértesi Róbert - Nagyenergiás magfizika

Hogyan folyik a maganyag?

s/h

Mennyire tökéletes a kvarkfolyadék?

Feltételezett kvantummechanikai limit

$$\frac{\eta}{s} \ge \frac{\hbar}{4\pi} \frac{1}{k_B}$$

RHIC 200 GeV Au+Au: Rendkívül közel a limithez

- $4\pi\eta/s \sim 1 1.5$ (modelfüggő)
- Valaha volt legkisebb viszkozítású folyadék

Mennyire tökéletes a kvarkfolyadék?

Feltételezett kvantummechanikai limit

$$\frac{\eta}{s} \ge \frac{\hbar}{4\pi} \frac{1}{k_B}$$

RHIC 200 GeV Au+Au: Rendkívül közel a limithez

- $4\pi\eta/s \sim 1 1.5$ (modelfüggő)
- Valaha volt legkisebb viszkozítású folyadék

LHC 2.76 TeV Pb+Pb: A skálázás nem tökéletes

 $4\pi\eta/s \sim 2$ (modelfüggő)

1.0

Nehéz kvarkok fizikája, kvarkónium

- A kvarkónium kötésienergia-függő disszociációja
- A kvark-gluon plazma hőmérséklete

Mire jók a nehéz kvarkok?

- Az összes hagyományos anyagot a két könnyű kvark alkotja
- Nehéz kvarkok csak instabil részecskékben fordulnak elő
 - nehezebb kelteni
 - hamar elbomlik

Mire jók a nehéz kvarkok?

- Az összes hagyományos anyagot a két könnyű kvark alkotja
- Nehéz kvarkok csak instabil részecskékben fordulnak elő
 - nehezebb kelteni
 - hamar elbomlik

- Charm, bottom: "pont jó" tömeg
- Kezdeti, kemény folyamatokban keletkeznek
 - A reakció során mindvégig megmaradnak
 - Momentumtól függetlenül
- Közben kölcsönhatnak a plazmával
 - Kinematika, transzport, hőmérséklet

Mire jók a nehéz kvarkok?

- Az összes hagyományos anyagot a két könnyű kvark alkotja
- Nehéz kvarkok csak instabil részecskékben fordulnak elő
 - nehezebb kelteni
 - hamar elbomlik

- Charm, bottom: "pont jó" tömeg
- Kezdeti, kemény folyamatokban keletkeznek
 - A reakció során mindvégig megmaradnak
 - Momentumtól függetlenül
 - Közben kölcsönhatnak a plazmával
 - Kinematika, transzport, hőmérséklet

Ideális eszköz a QGP megértésére (csak legyen elég sok!)

Kvarkónium a QGP-ban

- Kvarkónium: kötött nehézkvark-pár
 - Charmonium ($c\bar{c}$): J/ Ψ , Ψ ', χ_c
 - Bottomonium (bb): $\Upsilon(1S)$, $\Upsilon(2S)$, $\Upsilon(3S)$, χ_B

$$V = -\frac{\alpha_s(r)}{r}$$

Kvarkónium a QGP-ban

- Kvarkónium: kötött nehézkvark-pár
 - Charmonium ($c\bar{c}$): J/ Ψ , Ψ ', χ_c
 - Bottomonium (bb): $\Upsilon(1S)$, $\Upsilon(2S)$, $\Upsilon(3S)$, χ_B
- Hőmérsékletfüggő potenciál

Kvarkónium a QGP-ban

- Kvarkónium: kötött nehézkvark-pár
 - Charmonium ($c\bar{c}$): J/ Ψ , Ψ ', χ_c
 - Bottomonium (bb): $\Upsilon(1S)$, $\Upsilon(2S)$, $\Upsilon(3S)$, χ_B
- Hőmérsékletfüggő potenciál
- Debye-árnyékolás → disszociáció a plazmában T. Matsui, H. Satz, Phys.Lett. B178, 416 (1986)

A kvarkónium-hőmérő

 Szekvenciális disszociáció: Az egyes kvarkónium-állapotok "olvadási" hőmérséklete a kötési energiától függ

→ A kvarkonium a plazma hőmérőjeként használható Á. Mócsy, P. Petreczky, Phys. Rev. D77, 014501 (2008)

A kvarkónium-hőmérő

 Szekvenciális disszociáció: Az egyes kvarkónium-állapotok "olvadási" hőmérséklete a kötési energiától függ

→ A kvarkonium a plazma hőmérőjeként használható Á. Mócsy, P. Petreczky, Phys. Rev. D77, 014501 (2008)

62

A kvarkónium-hőmérő

 Szekvenciális disszociáció: Az egyes kvarkónium-állapotok "olvadási" hőmérséklete a kötési energiától függ

→ A kvarkonium a plazma hőmérőjeként használható Á. Mócsy, P. Petreczky, Phys. Rev. D77, 014501 (2008)

A hőmérsékletmérés komplikációi

- Kvark-antikvark pár kötésének erőssége
- Kezdeti állapottól való függés
- Hideg maganyag hatása
- Plazma időfejlődése
- Rekombináció (qq párok a QGP-ben)
 A charmoniumnál jelentős effektus!
- Láncbomlások $\Upsilon(2S) \rightarrow \Upsilon(1S)$ stb.

A hőmérsékletmérés komplikációi

- Kvark-antikvark pár kötésének erőssége
- Kezdeti állapottól való függés
- Hideg maganyag hatása
- Plazma időfejlődése
- Rekombináció (qq párok a QGP-ben)
 A charmoniumnál jelentős effektus!
- Láncbomlások $\Upsilon(2S) \rightarrow \Upsilon(1S)$ stb.
- Számos modell, valamelyest eltérő jóslatok Strickland-Bazow, NPA 879 (2012), 25 Emerick-Zhao-Rapp, Eur.Phys.J A48 (2012) 72 Liu-Chen, PLB 697 (2011) 32

Vértesi Róbert - Nagyenergiás magfizika

Üpszilon mezonok mérése (LHC)

- $\Upsilon \to \mu^+ \mu^-$ bomlás megfigyelése
 - Energetikus müonpár keresése

Invariáns tömeg rekonstrukciója

$$m^2 = E^2 - \mathbf{p}^2 = (E_1 + E_2)^2 - (\mathbf{p_1} + \mathbf{p_2})^2$$

Vértesi Róbert - Nagyenergiás magfizika

Üpszilon mezonok mérése (LHC)

- $\Upsilon \rightarrow \mu^+ \mu^-$ bomlás megfigyelése
 - Energetikus müonpár keresése

Invariáns tömeg rekonstrukciója

$$m^2 = E^2 - \mathbf{p}^2 = (E_1 + E_2)^2 - (\mathbf{p_1} + \mathbf{p_2})^2$$

- Hozam kiszámítása (p+p és Pb+Pb)
 - Háttér meghatározása, leválasztása
 - Csúcsterület meghatározása
 - Normálás az ütközések számával

Vértesi Róbert - Nagyenergiás magfizika

R_{AA} és hőmérséklet (LHC)

Kisebb kötési energia
 → erősebb mag-módosulás

Centrális ütközések
 → erősebb mag-módosulás

R_{AA} és hőmérséklet (LHC)

Kisebb kötési energia
 → erősebb mag-módosulás

- Centrális ütközések
 → erősebb mag-módosulás
- A QGP kezdeti hőmérséklete különböző modellszámítások szerint:
 - RHIC √s_{NN}=200 GeV Au+Au: T_{ini}~300 440 MeV
 - LHC √s_{NN}=2.76 TeV Pb+Pb: T_{ini}~500 610 MeV
 - LHC √s_{NN}=5.02 TeV Pb+Pb: *T_{ini}*~600 700 MeV

NPA 879 (2012), 25 Eur.Phys.J A48 (2012) 72 PLB 697 (2011) 32 Universe 2 (2016) no.3, 16

Összefoglalás és kitekintés

A kvark-gluon plazma - összefoglalás

Jet-elnyomás:

- Hadron $R_{AA}^{h} \sim 0.2$ a RHIC $\sqrt{s_{NN}}=200 \text{ GeV}/c^2$ -es centrális nehézion-ütközéseiben
- Foton $R_{AA}^{\gamma} \sim 1$
- \rightarrow sűrű színes közeg jön létre

A kvark-gluon plazma - összefoglalás

Jet-elnyomás:

- Hadron $R_{AA}^{h} \sim 0.2$ a RHIC $\sqrt{s_{NN}}=200 \text{ GeV}/c^2$ -es centrális nehézion-ütközéseiben
- Foton $R_{AA}^{\gamma} \sim 1$

\rightarrow sűrű színes közeg jön létre

Erős kollektivitás:

- Hadronok erős elliptikus folyást mutatnak v₂
- Kvarkszám-skálázás (RHIC energián pontos!)
- Rendkívül alacsony viszkozitás

→ kvarkok közel tökéletes folyadéka

A kvark-gluon plazma - összefoglalás

Jet-elnyomás:

- Hadron $R_{AA}^{h} \sim 0.2$ a RHIC $\sqrt{s_{NN}}=200 \text{ GeV}/c^2$ -es centrális nehézion-ütközéseiben
- Foton $R_{AA}^{\gamma} \sim 1$

\rightarrow sűrű színes közeg jön létre

Erős kollektivitás:

- Hadronok erős elliptikus folyást mutatnak v₂
- Kvarkszám-skálázás (RHIC energián pontos!)
- Rendkívül alacsony viszkozitás

→ kvarkok közel tökéletes folyadéka

Kvarkónium-állapotok szekvenciális elnyomása

- Kötési energia szerint rendezett elnyomódás
- $T_{\text{ini}} \sim 500 \text{ MeV} >> T_{\text{c}} \text{ az LHC } \sqrt{s_{\text{NN}}}=2.76 \text{ TeV-es}$ centrális Pb+Pb ütközéseiben

\rightarrow a kvarkanyag valóban forró ==> sQGP

Kitekintés

- A RHIC-korszak (2000-)
 - A kvark-gluon plazma létének bebizonyítása
 - Alapvető tulajdonságainak megértése
 - Precíziós könnyűkvark-mérések
- معند معند المحد المحد

 - Magasabb ütközési gyakoriság
 - Precíziós charm-mérések
 - Alapvető beauty-mérések
- A LHC Run-3 korszaka (2020-)
 - Detektor- és gyorsítófejlesztések
 - Kb. 100-szoros ütközésszám
 - Részletgazdag beauty-mérések

Kitekintés

- A RHIC-korszak (2000-)
 - A kvark-gluon plazma létének bebizonyítása
 - Alapvető tulajdonságainak megértése
 - Precíziós könnyűkvark-mérések
- A RHIC-II/korai LHC korszak (2010-)

 - Magasabb ütközési gyakoriság
 - Precíziós charm-mérések
 - Alapvető beauty-mérések
- A LHC Run-3 korszaka (2020-)
 - Detektor- és gyorsítófejlesztések
 - Kb. 100-szoros ütközésszám
 - Részletgazdag beauty-mérések

A nehéz kvarkok korszaka

75

Az ALICE-Budapest csoport

- Physics/Analysis: Barnaföldi GG, Lévai P, Varga-Kőfaragó M, Vértesi R, Bencédi Gy, Varga Z, Frajna E, Szigeti B, Sudár Á, Misák A, Gyulai L
 - Charged hadrons, heavy-flavor, correlations, small systems
 - proton-CT development

BME NTI magfizika, 2017 május 10-11.

Köszönöm a figyelmet!

Vértesi Róbert

vertesi.robert@wigner.mta.hu

MTA Wigner Fizikai Kutatóközpont Részecske- és Magfizikai Intézete

Wigner

ALICE-Budapest csoport http://alice.wigner.mta.hu

77

Elemi részecskék

Standard Model of Elementary Particles

A nehéz kvarkok észlelése

- Kvarkbezárás: c és b közvetett kimutatás lehetséges csak
- Hadronizáció során mezonokká (D, B) alakul
- Kimutatás:

bomlástermékek azonosítása

a bomlás helyének visszakövetése (másodlagos vertex rekonstrukciója)

Nehéz kvarkok élettartama: $c\tau(D) \sim 100-300 \ \mu m$ $c\tau(B) \sim 400-500 \ \mu m$ Másodlagos vertex felbontása: <100 \ \mu m

Vértesi Róbert - Nagyenergiás magfizika

Másodlagos vertex keresése - ITS

- Félvezető technológia
- Másodlagos vertex észlelése

Nehéz kvarkok élettartama: $cT(D) \sim 100-300 \ \mu m$ $cT(B) \sim 400-500 \ \mu m$ Másodlagos vertex felbontása: <100 μm

Vértesi Róbert - Nagyenergiás magfizika

Nehézkvark-jetek

- Nehézkvark-jetek alacsony impulzusokig: p_T = 10 GeV/c
- A HFE jetek nem módosulnak szignifikánsan mid-rapiditásnál
 - Függetlenül a jet-átmérőtől
- A másodlagos vertexekkel azonosított beauty jetek hatáskeresztmetszetét leírja a POWHEG HVQ x A (pp)

Kollektív viselkedés: charm

• Új kis p_T -s adatok: erős megszorítás a modellekre

- Feladat: D és D_s R_{AA} és v₂ szimultán leírása
- Charm és könnyű kvarkok koaleszcenciája árnyékolással és ütközési/sugárzási energiaveszteséggel

- Requested Pb-Pb luminosity: 13 nb-1 (50-100x Run2 Pb-Pb)
- Improved tracking efficiency and resolution at low pT
- Detector upgrades: ITS, TPC, MFT, FIT
- Faster, continouos readout

Relativisztikus hidrodinamika

 $\partial_{\nu}T^{\mu\nu} = 0$

- Energia-impulzus tenzor:
 - Entalpia:
 - E,p megmaradása:

$$T_{\mu\nu} = w u_{\mu} u_{\nu} - p g_{\mu\nu}$$
$$w = \varepsilon + p$$

$$wu^{\nu}\partial_{\nu}u^{\mu} = (g^{\mu\rho} - u^{\mu}u^{\rho})\partial_{\rho}p.$$

Relativisztikus...

-->

- Euler-egyenlet:
- Energiamegmaradás:
- Töltésmegmaradás:

$$\begin{split} w\partial_{\mu}u^{\mu} &= -u^{\mu}\partial_{\mu}\varepsilon \\ \sum \mu_{i}\partial_{\mu}\left(n_{i}u^{\mu}\right) &= 0 \\ \partial_{\mu}\left(\sigma u^{\mu}\right) &= 0. \end{split}$$