Válogatott fejezetek a nagyenergiás fizikából - ELTE speci, 2023 november 14.

Probing the Quark-Gluon Plasma with Heavy Flavor

Róbert Vértesi

vertesi.robert@wigner.hu Wigner Research Centre for Physics Hadron physics research group <u>http://hadronphysics.wigner.hu</u> ALICE-Budapest group <u>http://alice.wigner.hu</u>

WIGNEr

Outline

Introduction

- The strong interaction and the quark-gluon plasma
- High-energy heavy-ion collisions

Open heavy-flavor production

- pp : pQCD benchmark and reference
- p-A : Cold nuclear matter effects
- A-A : Hot nuclear matter effects

Quarkonia (QQ bound state)

- The J/Ψ puzzle: dissociation and regeneration
- Y states and the "sequential melting"

Elecromagnetism vs. strong force

- Abelian U(1) gauge theory
- Generator ~ photon

Effective potential V_{EM} (r)~ $-\alpha/r$

Elecromagnetism vs. strong force

Quantum-electrodynamics (QED):

- Abelian U(1) gauge theory
- Generator ~ photon

$$\mathcal{L} = \bar{\psi}(i\gamma^{\mu}D_{\mu} - m)\psi - \frac{1}{4}F_{\mu\nu}F^{\mu\nu}$$
$$D_{\mu} \equiv \partial_{\mu} + ieA_{\mu}$$
$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$$
gauge field (photon)

Effective potential V_{EM} (r)~ – α/r

Quantum-chromodynamics (QCD):

- Non-abelian SU(3) gauge theory
- 8 independent generators ~ 8 gluons
- gluon: color charge, self-interaction

$$egin{split} \mathcal{L}_{ ext{QCD}} &= ar{\psi}_i \left(i (\gamma^\mu D_\mu)_{ij} - m \, \delta_{ij}
ight) \psi_j - rac{1}{4} G^a_{\mu
u} G^{\mu
u}_a \ G^a_{\mu
u} &= \partial_\mu \mathcal{A}^a_
u - \partial_
u \mathcal{A}^a_\mu + g f^{abc} \mathcal{A}^b_\mu \mathcal{A}^c_
u \,, \end{split}$$

Elecromagnetism vs. strong force

Quantum-electrodynamics (QED):

- Abelian U(1) gauge theory
- Generator ~ photon

$$\mathcal{L} = \bar{\psi}(i\gamma^{\mu}D_{\mu} - m)\psi - \frac{1}{4}F_{\mu\nu}F^{\mu\nu}$$

$$D_{\mu} \equiv \partial_{\mu} + ieA_{\mu}$$

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$$
gauge field (photon)

Effective potential V_{EM} (r)~ $-\alpha/r$

Quantum-chromodynamics (QCD):

- Non-abelian SU(3) gauge theory
- 8 independent generators ~ 8 gluons
- gluon: color charge, self-interaction

$$egin{split} \mathcal{L}_{ ext{QCD}} &= ar{\psi}_i \left(i (\gamma^\mu D_\mu)_{ij} - m \, \delta_{ij}
ight) \psi_j - rac{1}{4} G^a_{\mu
u} G^{\mu
u}_a \ G^a_{\mu
u} &= \partial_\mu \mathcal{A}^a_
u - \partial_
u \mathcal{A}^a_\mu + g f^{abc} \mathcal{A}^b_\mu \mathcal{A}^c_
u \,, \end{split}$$

The dual nature of the strong force

The dual nature of the strong force

The dual nature of the strong force

Fragmentation and jets

Quarks escaping from each other

- Linear potential, "string": $U \sim \sigma r (\sigma \sim 1 \text{ GeV/fm})$
- Accumulating energy \rightarrow creates new $q\bar{q}$ pair

[illustration from Fritzsch]

Fragmentation and jets

Quarks escaping from each other

- Linear potential, "string": $U \sim \sigma r (\sigma \sim 1 \text{ GeV/fm})$
- Accumulating energy \rightarrow creates new $q\bar{q}$ pair

Fragmentation:

■ QCD parton ↔ collimated spray of hadrons

[illustration from Fritzsch]

Fragmentation and jets

Quarks escaping from each other

- Linear potential, "string": $U \sim \sigma r (\sigma \sim 1 \text{ GeV/fm})$
- Accumulating energy \rightarrow creates new $q\bar{q}$ pair

Fragmentation:

■ QCD parton ↔ collimated spray of hadrons

[illustration from Fritzsch]

Phase transition

Hot, dense nuclear matter: new phase?

Hot, dense nuclear matter: new phase?

- Phase transition → Quark-gluon plasma (QGP)
 - Does it exist?
 - What are its properties?

It all started with a big bang...

HISTORY OF THE UNIVERSE

"Little bangs" in high-energy collisions

Courtesy of Paul Sorensen and Chun Shen

The phase diagram of QCD

Goal: establish the QCD phase diagram

The phase diagram of QCD

- Goal: establish the QCD phase diagram
 - Understand the quark-gluon plasma
 - Do we see the phase transition? Which order is it?
 - Is there a critical point?

Experimental tools and basic concepts

- Accelerators and experiments: RHIC, LHC
- The hard and the soft regimes

RHIC relativistic heavy-ion collider

- Two synchrotron rings 3,6 km long
- Extremely versatile
 - Au, Cu, U, d, ³He, p
 - polarized protons
 (→ spin physics)
 - Asymmetric setups
- Broad energy range
 - p+p: √s = 62 - 500 GeV
 - Au+Au: √s_{NN} = 5.5 - 200 GeV

(fix target: 2.7 GeV)

 Experiments: STAR, sPHENIX, (PHOBOS, BRAHMS)

LHC: The Large Hadron Collider

• LHC: 27 km long ring

- Acceleration with electromagnetic field (close to the speed of light)
- Magnetic field keeps particl on curved track
- Highest energies
 - pp: √s=13.6 TeV
 - Pb-Pb: √s_{NN}=5.02 TeV
 - p-Pb, Xe-Xe

22 member countries collaborate

Róbert Vértesi - QGP with Heavy Flavor

ALICE (example detector system)

A dedicated heavy-ion experiment at the LHC, excellent PID

Róbert Vértesi - QGP with Heavy Flavor

ALICE (example detector system)

A dedicated heavy-ion experiment at the LHC, excellent PID

Reconstructed heavy-ion collision

- Up to 600 million events per second
- Signals of up to thousands of particles to be identified, processed
- 2-4 GB data every second

Basic concepts

• Collision energy per nucleon (c.m.s.): $\sqrt{s_{NN}}$

Kinematic variables

perpendicular to the (x,y) plane - "physics":

- Transverse momentum: $p_T = \sqrt{(p_x^2 + p_y^2)}$
- Azimutal angle: φ

Boosted in beam direction (z):

- Rapidity: $y = 0.5 \log \frac{E + p_z}{E p_z}$
- Pseudo-rapidity (η=y if m=0):

$$\eta = 0.5 \log \frac{p + p_z}{p - p_z} = -\ln \tan \frac{\theta}{2}$$

Colliding systems

- **pp:** the QCD vacuum
 - Reference for heavy-ion collisions
 - Perturbative QCD benchmark

26

Colliding systems

- **pp:** the QCD vacuum
 - Reference for heavy-ion collisions
 - Perturbative QCD benchmark

- A-A: "Hot" (+cold) nuclear matter effects ("hot": sQGP, but hadronic matter also present)
 - Energy loss in the hot nuclear matter
 - Collective behavior

Colliding systems

- **pp:** the QCD vacuum
 - Reference for heavy-ion collisions
 - Perturbative QCD benchmark
- **p(d)-A**: "cold" nuclear matter effects ("cold": mostly or exclusively hadronic)
 - Modification of nPDF, eg. shadowing
 - Effect of the initial state
 - Energy loss in the cold nuclear matter (CNM)
- A-A: "Hot" (+cold) nuclear matter effects ("hot": sQGP, but hadronic matter also present)
 - Energy loss in the hot nuclear matter
 - Collective behavior

A+A

Probes

"Hard" processes

- few, high-momentum particles
- early production in well-known pQCD processes
- high permeability
- Tomography of the sQGP, modification in the medium

Probes

"Hard" processes

- few, high-momentum particles
- early production in well-known pQCD processes
- high permeability
- Tomography of the sQGP, modification in the medium

"Soft" processes

- Many, low-momentum particles
- From the later stages
- Thermal behavior
- Collective dynamics ("flow")

Nuclear modification

- Comparing yield in A+A to p-p collisions
- $R_{AA} = 1$: no nuclear effect
- $R_{AA} < 1$: momentum loss in the medium

Nuclear modification

- Comparing yield in A+A to p-p collisions
- $R_{AA} = 1$: no nuclear effect
- $R_{AA} < 1$: momentum loss in the medium

BNL RHIC RAA resultsNPA 757 (2005)Gyulassy-Lévai-Vitev modelNPB 571 (2000)

 Approximately identical suppression of all light hadrons (*R*_{AA}^h~0.2)

Nuclear modification

- Comparing yield in A+A to p-p collisions
- R_{AA} = 1 : no nuclear effect
- $R_{AA} < 1$: momentum loss in the medium

BNL RHIC RAA resultsNPA 757 (2005)Gyulassy-Lévai-Vitev modelNPB 571 (2000)

- Approximately identical suppression of all light hadrons (R_{AA}^h~0.2)
- No quenching of photon production $(R_{AA}^{\gamma} \sim 1)$
 - The medium is transparent for the EM radiation

Nuclear modification

- Comparing yield in A+A to p-p collisions
- R_{AA} = 1 : no nuclear effect
- $R_{AA} < 1$: momentum loss in the medium

BNL RHIC RAA resultsNPA 757 (2005)Gyulassy-Lévai-Vitev modelNPB 571 (2000)

- Approximately identical suppression of all light hadrons (R_{AA}^h~0.2)
- No quenching of photon production $(R_{AA}^{\gamma} \sim 1)$
 - The medium is transparent for the EM radiation

First convincing evidence of the strongly interacting QGP

Azimuthal anisotropy

Momentum-distribution is cyclic ("elliptic flow")

$$\frac{dN}{d\phi} \approx 2v_2 \cos(\phi - \Phi_1)$$

35

Azimuthal anisotropy

Momentum-distribution is cyclic ("elliptic flow")

$$\frac{dN}{d\phi} \approx 2v_2 \cos(\phi - \Phi_1)$$

- Very strong collectivity!
 Strongly coupled QGP
 - Good description by hydrodinamical models
 - Very low viscosity
 => "Perfect" fluid

Asimptotic freedom?

36

Azimuthal anisotropy

Momentum-distribution is cyclic ("elliptic flow")

$$\frac{dN}{d\phi} \approx 2v_2 \cos(\phi - \Phi_1)$$

- Very strong collectivity!
 Strongly coupled QGP
 - Good description by hydrodinamical models
 - Very low viscosity
 => "Perfect" fluid

Asimptotic freedom?

- Scaling with the number of Constituent quarks
 Degrees of freedom: quarks
 - Note: Scaling not perfect on LHC energies

Open heavy flavor

- Motivation
- Detection
- System size, energy, rapidity dependence

Heavy-flavour (HF) probes

Heavy quarks are produced early

$$\tau_{\rm c,b} \sim 1/2 \ m_{\rm c,b} \sim 0.1 \ {\rm fm} << \tau_{\rm QGP} \sim 5\text{--}10 \ {\rm fm}$$

Rapp, Hees, ISBN:978-981-4293-28-0

Heavy quarks are (almost) conserved

 $m \gg \Lambda_{\text{QCD}} (m_{\text{c}} \sim 1.5 \text{ GeV}, m_{\text{b}} \sim 5 \text{ GeV})$

- No flavour changing
- Negligible thermal production
- → Very little production or destruction in the sQGP Collins, Soper, Sterman, NPB 263 (1986) 37.

Heavy-flavour (HF) probes

Heavy quarks are produced early

$$\tau_{\rm c,b} \sim \frac{1}{2} m_{\rm c,b} \sim 0.1 \text{ fm} << \tau_{\rm QGP} \sim 5\text{--}10 \text{ fm}$$

Rapp, Hees, ISBN:978-981-4293-28-0

Heavy quarks are (almost) conserved

 $m >> \Lambda_{\text{QCD}} (m_{\text{c}} \sim 1.5 \text{ GeV}, m_{\text{b}} \sim 5 \text{ GeV})$

- No flavour changing
- Negligible thermal production
- → Very little production or destruction in the sQGP Collins, Soper, Sterman, NPB 263 (1986) 37.
- Transport through the whole system
 - Heavy quark kinematics in the sQGP
 - Access to transport properties of the system
 - ...exits the medium also at low momenta
 - Hadronization (fragmentation, coalescence)
 - Heavy vs. light? Charm vs. bottom?

Heavy-flavour (HF) probes

Heavy quarks are produced early

$$\tau_{\rm c,b} \sim \frac{1}{2} m_{\rm c,b} \sim 0.1 \text{ fm} << \tau_{\rm QGP} \sim 5\text{--}10 \text{ fm}$$

Rapp, Hees, ISBN:978-981-4293-28-0

Heavy quarks are (almost) conserved

 $m \gg \Lambda_{\text{QCD}} (m_{\text{c}} \sim 1.5 \text{ GeV}, m_{\text{b}} \sim 5 \text{ GeV})$

- No flavour changing
- Negligible thermal production
- → Very little production or destruction in the sQGP Collins, Soper, Sterman, NPB 263 (1986) 37.
- Transport through the whole system
 - Heavy quark kinematics in the sQGP
 - Access to transport properties of the system
 - ...exits the medium also at low momenta
 - Hadronization (fragmentation, coalescence)
 - Heavy vs. light? Charm vs. bottom?

Penetrating probes down to low momenta!

Experimental access to HF

- Quark confinement: only indirect detection of c and b
- Heavy quarks hadronize into HF mesons (D, B)
- Identification:
 - reconstruction from decay products

Experimental access to HF

- Quark confinement: only indirect detection of c and b
- Heavy quarks hadronize into HF mesons (D, B)
- Identification:

reconstruction from decay products

Experimental access to HF

- Quark confinement: only indirect detection of c and b
- Heavy quarks hadronize into HF mesons (D, B)
- Identification:

reconstruction from decay products

Experimental access to HF

- Quark confinement: only indirect detection of c and b
- Heavy quarks hadronize into HF mesons (D, B)
- Identification:

reconstruction from decay products

finding the location of the weak decay (reconstructing the secondary vertex)

Jet axis

Finding the secondary vertex - ITS

Semiconducting technology

Lifetime of heavy flavor: $c\tau(D) \sim 100-300 \ \mu m$ $c\tau(B) \sim 400-500 \ \mu m$ Secondary vertex resolution: <100 \ \mu m

Finding the secondary vertex - ITS

Semiconducting technology

Lifetime of heavy flavor: $c\tau(D) \sim 100-300 \ \mu m$ $c\tau(B) \sim 400-500 \ \mu m$ Secondary vertex resolution: <100 \ \mu m

Distance of Closest Approach (e)

 $d_0 \times \text{sgn}(\text{charge} \times \text{field}) \text{ (cm)}$

Finding the secondary vertex - ITS

Distance of Closest Approach (e)

Semiconducting technology

Lifetime of heavy flavor: $c\tau(D) \sim 100-300 \ \mu m$ $c\tau(B) \sim 400-500 \ \mu m$

Secondary vertex resolution: <100 μm

 Secondary vertices (jets) dispersion displacement

ALI-PUB-347958

 $d_0 \times \text{sgn}(\text{charge} \times \text{field}) \text{ (cm)}$

47

Heavy quarks in p+p collisions

Test of pQCD models

Heavy quarks: m_{c,b} >> Λ_{QCD}
 → Perturbative even at low momenta

48

Heavy quarks in p+p collisions

Test of pQCD models

Heavy quarks: m_{c,b} >> Λ_{QCD}
 → Perturbative even at low momenta

Reference for the evaluation of p-A and A-A collisions (eg. for computing R_{pA}, R_{AA})

Róbert Vértesi - QGP with Heavy Flavor

Total pp $\rightarrow q\overline{q}X$ cross-section

Cross-sections at different beam energies:

Primary test of models describing heavy-quark production

pQCD description of data works, but uncertainties are large

LHC 7 TeV charm pair production cross section from D⁰ measurements arXiv:1702.00766.pdf $\sigma_{c\bar{c}}(\sqrt{s} = 7 \text{ TeV}) = 8.08^{+2.55}_{-1.04} \text{ mb}$ LHC 7 TeV beauty pair production cross-section from semi-leptonic decay electrons

 $\sigma_{b\bar{b}}(\sqrt{s} = 7 \text{ TeV}) = 383 \pm 120 \ \mu\text{b}$

Leptons from heavy quarks

- Contributions of beauty and charm can be statistically separated
- Perturbative models give a good description for mid-rapidity electrons as well as muons at 2.5<y<4

Heavy flavor in p+A collisions

Cold nuclear matter effects

- nPDF modification (shadowing)
- Gluon-saturation
- Multiple scatterings (k_T-broadening)
- Attenuation in the CNM

Eskola et al., JHEP 0904, 065 (2009)

 $f_i^A(x,Q^2) \equiv R_i^A(x,Q^2) f_i^{\rm CTEQ6.1M}(x,Q^2)$

Heavy flavor in p+A collisions

Cold nuclear matter effects

- nPDF modification (shadowing)
- Gluon-saturation
- Multiple scatterings (k_T-broadening)
- Attenuation in the CNM

Nuclear modification (R_{pA})

 $f_i^A(x,Q^2) \equiv R_i^A(x,Q^2) f_i^{\rm CTEQ6.1M}(x,Q^2)$

 Reference for hot nuclear matter effects
 Note: Hot nuclear matter may also be created in highenergy p+A collisions

53

Eskola et al., JHEP 0904, 065 (2009)

Róbert Vértesi - QGP with Heavy Flavor

p-Pb charm (\rightarrow D) and beauty (\rightarrow e)

- Nuclear modification is weak in p-Pb collisions at 5 TeV
 - Both charm and beauty are consistent with unity
- Models with CNM effects describe the trends
 - More precise measurements are needed

Róbert Vértesi - QGP with Heavy Flavor

p-Pb charm (\rightarrow D) and beauty (\rightarrow e)

- Nuclear modification is weak in p-Pb collisions at 5 TeV
 - Both charm and beauty are consistent with unity
- Models with CNM effects describe the trends
 - More precise measurements are needed
- Production of QGP in pA collisions cannot be excluded but disfavored

Heavy flavor jets in p-Pb

- Heavy-flavor jets measured down to $p_T = 10 \text{ GeV}/c$
- No visible mid-rapidity modification of HFE-jets or b-jets
 - In accordance with model expectations
- Currently no proof for heavy-flavor jet modification in p-A
- More detailed measurements expected soon

Heavy flavor in A+A collisions

- Parton transport in the medium:
 - "Brownian motion"

Heavy flavor in A+A collisions

- Parton transport in the medium:
 - "Brownian motion"
- Energy loss $\rightarrow R_{AA}$
 - Radiational and collisional
 - Expectation: mass-ordering?

$$\Delta E_{g} > \Delta E_{q} > \Delta E_{c} > \Delta E_{b}$$

$$\rightarrow ?$$

$$R_{AA}^{h} < R_{AA}^{D} < R_{AA}^{B}$$

Heavy flavor in A+A collisions

- Parton transport in the medium:
 - "Brownian motion"
- Energy loss $\rightarrow R_{AA}$
 - Radiational and collisional
 - Expectation: mass-ordering?

$$\Delta E_{g} > \Delta E_{q} > \Delta E_{c} > \Delta E_{b}$$

$$\rightarrow ?$$

$$R_{AA}^{h} < R_{AA}^{D} < R_{AA}^{B}$$

- Collective dynamics $\rightarrow v_2$
 - Coalescence of heavy and light quarks?
 - Thermalization of heavy flavor?

D mesons in A+A collisions: R_{AA}

- High momenta: nuclear modification is similar to that of light hadrons (~5x suppression at p_T~5 GeV/c)
 - Expectation: $\Delta E(g) > \Delta E(u,d,s) > \Delta E(c) \rightarrow R_{AA}(\pi,K,p) < R_{AA}(D)$

 \rightarrow suggests strong interaction with the medium

D mesons in A+A collisions: R_{AA}

- High momenta: nuclear modification is similar to that of light hadrons (~5x suppression at p_T~5 GeV/c)
 - Expectation: $\Delta E(g) > \Delta E(u,d,s) > \Delta E(c) \rightarrow R_{AA}(\pi,K,p) < R_{AA}(D)$

\rightarrow suggests strong interaction with the medium

- Low momenta: significantly less suppression than light flavor from RHIC 200 GeV to LHC 5.02 TeV
 - → coalescence of charm and light flavor? ("stick-together")

D mesons in A+A collisions: R_{AA}

- Several models with different components describe results well
 - Production of heavy quark: FONLL or NLO pQCD calculations
 - Energy loss via radiation or collisions
 - Evolution of nuclear matter: hydrodynamical? Glauber?
 - Model of fragmentation

R_{AA} alone is not restrictive enough for strong conclusions

D mesons in A+A collisions: v₂

A sizeable azimuthal anizotropy

\rightarrow heavy flavor participates in collectivity

 Models that include the recombination of charm with the flowing light flavor perform better

D mesons in A+A collisions: v₂

A sizeable azimuthal anizotropy

\rightarrow heavy flavor participates in collectivity

 Models that include the recombination of charm with the flowing light flavor perform better

Simultaneous description of R_{AA} and v_2 : challenge for models

D mesons in A+A collisions: v₂

RHIC 200 GeV Au+Au

- Mass-ordering
- Quark number scaling
- \rightarrow local thermal equilibrium of heavy quarks!

Suppression of high-momentum D, B

Similar suppression of D mesons and pions at high p_T
 Model: different fragmentation compensates mass-ordered diffusion

Suppression of high-momentum D, B

- Similar suppression of D mesons and pions at high p_T
 Model: different fragmentation compensates mass-ordered diffusion
- Weaker "Non-prompt" $\mathbf{B} \rightarrow \mathbf{J}/\mathbf{\psi}$ suppression at high p_T

Suppression of high-momentum D, B

- Similar suppression of D mesons and pions at high p_T
 Model: different fragmentation compensates mass-ordered diffusion
- Weaker "Non-prompt" B→J/ψ suppression at high p_T Model: c and b are in similar kinematical range, mass-ordering visible

Jets with heavy quarks: D(c), b

- Expectation: $\Delta E(g) > \Delta E(uds) > \Delta E(c) > \Delta E(b) \rightarrow R_{AA}(h-jets) < R_{AA}(b-jet)$
- Effect of color charge? Contribution of gluon-splitting?

ELTE HEP speci, 2020/05/06

Jets with heavy quarks: D(c), b

- Expectation: $\Delta E(g) > \Delta E(uds) > \Delta E(c) > \Delta E(b) \rightarrow R_{AA}(h-jets) < R_{AA}(b-jet)$
- Effect of color charge? Contribution of gluon-splitting?

- **D-jets mid-***p*_T: hint of weaker suppression than inclusive jets
- b-jets, very high p_T: similar modification of light jets and b-jets

ELTE HEP speci, 2020/05/06

Jets with heavy quarks: D(c), b

- Expectation: $\Delta E(g) > \Delta E(uds) > \Delta E(c) > \Delta E(b) \rightarrow R_{AA}(h-jets) < R_{AA}(b-jet)$
- Effect of color charge? Contribution of gluon-splitting?

- D-jets mid-p_T: hint of weaker suppression than inclusive jets
- b-jets, very high p_T: similar modification of light jets and b-jets

Precise measurements required at low p_{T}

- Dissociation of quarkonia and the "J/Ψ puzzle"
- Temperature of the QGP
Quarkonia in the QGP

- Quarkonium: bound state of a quark-antiquark pair
 - Charmonium ($c\bar{c}$): J/ Ψ , Ψ ', χ_c
 - Bottomonium (bb): Υ(1S), Υ(2S), Υ(3S), χ_B

$$V = -\frac{\alpha_s(r)}{r}$$

Quarkonia in the QGP

- Quarkonium: bound state of a quark-antiquark pair
 - Charmonium ($c\bar{c}$): J/ Ψ , Ψ ', χ_c
 - Bottomonium (bb): Υ(1S), Υ(2S), Υ(3S), χ_B
- Debye-screening

Quarkonia in the QGP

- Quarkonium: bound state of a quark-antiquark pair
 - Charmonium ($c\bar{c}$): J/ Ψ , Ψ ', χ_c
 - Bottomonium (bb): Υ(1S), Υ(2S), Υ(3S), χ_B
- Debye-screening \rightarrow dissociation in the QGP

T. Matsui, H. Satz, Phys.Lett. B178, 416 (1986)

The quarkonium-thermometer

 Sequential dissociation: The "melting" temperature of individual quarkonium states depend on the bounding energy

→ Quarkonia can be used as a QGP thermometer Á. Mócsy, P. Petreczky, Phys. Rev. D77, 014501 (2008)

The quarkonium-thermometer

 Sequential dissociation: The "melting" temperature of individual quarkonium states depend on the bounding energy

→ Quarkonia can be used as a QGP thermometer Á. Mócsy, P. Petreczky, Phys. Rev. D77, 014501 (2008)

The quarkonium-thermometer

 Sequential dissociation: The "melting" temperature of individual quarkonium states depend on the bounding energy

→ Quarkonia can be used as a QGP thermometer Á. Mócsy, P. Petreczky, Phys. Rev. D77, 014501 (2008)

"The J/ψ-puzzle"

- Strong suppression already at SPS energies! ($\sqrt{s_{NN}}$ =17-22 GeV)
- Suppression at RHIC 200 GeV collisionss is ~identical to SPS

80

"The J/ψ-puzzle"

- Strong suppression already at SPS energies! (\sqrt{s_NN}=17-22 GeV)
- Suppression at RHIC 200 GeV collisionss is ~identical to SPS
- Weaker suppression in collisions at LHC 2.76 TeV

81

"The J/ψ-puzzle"

- Strong suppression already at SPS energies! (\sqrt{s_{NN}}=17-22 GeV)
- Suppression at RHIC 200 GeV collisionss is ~identical to SPS
- Weaker suppression in collisions at LHC 2.76 TeV

How is it possible ???

Life is not so simple...

Cold nuclear matter effects

- Nuclear shadowing (modification of the PDF in the nucleus)
- Initial state energy loss
- Co-mover absorption

Effects of the hot medium

- Quarkonium dissociation
- Coalescence of uncorrelated cc and bb pairs

Chain decays (feed-down)

- $c_c, \psi', B \rightarrow J/\psi$
- $c_b, \Upsilon(2S), \Upsilon(2S) \rightarrow \Upsilon(1S) \dots$

Life is not so simple...

Cold nuclear matter effects

- Nuclear shadowing (modification of the PDF in the nucleus)
- Initial state energy loss
- Co-mover absorption

Effects of the hot medium

- Quarkonium dissociation
- Coalescence of uncorrelated cc and bb pairs
- Chain decays (feed-down)
 - $c_c, \psi', B \rightarrow J/\psi$
 - $c_b, \Upsilon(2S), \Upsilon(2S) \rightarrow \Upsilon(1S) \dots$

Dissociation and regeneration compete

83

Róbert Vértesi - QGP with Heavy Flavor

R_{AA}J/Ψ versus beam energy

- RHIC 200, 62.4 és 39 GeV Au+Au collisions: similar modification Note: p+p reference from CEM calculations with large uncertainty
- LHC 2.76 TeV, 5 TeV central Pb+Pb: way weaker modification

Róbert Vértesi - QGP with Heavy Flavor

R_{AA}J/Ψ versus beam energy

- RHIC 200, 62.4 és 39 GeV Au+Au collisions: similar modification Note: p+p reference from CEM calculations with large uncertainty
 - Dissociation ~ Regeneration
- LHC 2.76 TeV, 5 TeV central Pb+Pb: way weaker modification
 - Dissociation < Regeneration

Regeneration compensates, then overcomes dissociation

$R_{AA}^{J/\Psi}$: low and high momenta

 p_T >0 central: stronger suppression at RHIC than at the LHC

Róbert Vértesi - QGP with Heavy Flavor

$R_{AA}^{J/\Psi}$: low and high momenta

- p_T>0 central: stronger suppression at RHIC than at the LHC
- High p_T, any centrality: stronger suppression at LHC

Róbert Vértesi - QGP with Heavy Flavor

 $_{AA}^{J/\Psi}$: low and high momenta

- p_T>0 central: stronger suppression at RHIC than at the LHC
- High p_T, any centrality: stronger suppression at LHC
 - Models include: dissociation, CNM, regeneration, feed-down

High- p_T J/ Ψ suppression is the effect of the sQGP

88

Upsilon mesons

Bottomonium:

- Way less production than charm
- Negligible regeneration
- Weaker CNM effects

Reconstructed invariant mass

$$m^2 = E^2 - \mathbf{p}^2 = (E_1 + E_2)^2 - (\mathbf{p_1} + \mathbf{p_2})^2$$

Computing the yield (p+p and Pb+Pb)

- Determine background
- Calculate peak area
- Normalize with the number of collisions

R_{AA} and temperature (LHC)

Lower binding energy
 → stronger nuclear modification

- Central collisions
- \rightarrow stronger nuclear modification

R_{AA} and temperature (LHC)

Lower binding energy
 → stronger nuclear modification

- Central collisions

 → stronger nuclear modification
- Initial temperature of the QGP from model calculations:
 - RHIC √s_{NN}=200 GeV Au+Au: T_{ini} ~300 440 MeV
 - LHC √s_{NN}=2.76 TeV Pb+Pb: T_{ini}~500 610 MeV
 - LHC √s_{NN}=5.02 TeV Pb+Pb: T_{ini} ~600 700 MeV

NPA 879 (2012), 25 Eur.Phys.J A48 (2012) 72 PLB 697 (2011) 32 Universe 2 (2016), 16

Collective dynamics and J/ψ

Expectation based on model calculations:

- J/ψ produced in pQCD processes does not take part in collectivity
- J/ψ produced via thermalized regeneration will flow together with other hadrons
- $\rightarrow J/\psi \; v_2$ is expected to be much smaller at RHIC than at LHC energies

ELTE HEP speci, 2020/05/06

Collective dynamics and J/ψ

- RHIC 200 GeV: p_T>2 GeV/c J/ψ does not exhibit elliptic flow (v₂)
 - Contrary to open heavy-flavor!
- LHC 2.76 TeV and 5 TeV: sizeable elliptic flow

Collective dynamics and J/ψ

- RHIC 200 GeV: $p_T > 2$ GeV/c J/ ψ does not exhibit elliptic flow (v_2)
 - Contrary to open heavy-flavor!
- LHC 2.76 TeV and 5 TeV: sizeable elliptic flow
 - Note: only qualitative match with models

Thermalized $c\overline{c}$ coalescence becomes dominant at LHC

Anisotropy of bottomonium: Y(1S)

*v*₂ consistent with 0 : Only hadron at the LHC

- Early production, decouples from medium
- Later recombination is not strong (#b<<#c)

- Open heavy flavor production
- Quarkonia in the QGP
- The future of heavy-flavor physics

Summary - open heavy flavor

- **pp collisions:** serve as pQCD model tests. Production crosssections vs. p_T of c and b quarks are well described by models
- p(d)-A collisions: CNM effects are weak at mid-rapidity at LHC energies. No proof for modification of particle yields or jets.
- A-A collisions: Tomography of the QGP. Penetrating probe down to low p_T. Understanding energy loss and collective behavior.
 - Low p_T: relative enhancement in nuclear modification (R_{AA}) compared to light flavor, and a strong collectivity (v₂).
 - Coalescence of charm and the flowing medium
 - Local thermal equilibrium of D-mesons with the medium?
 - Mid-p_T: charm: D meson R_{AA} beauty: non-prompt J/Ψ
 - $R_{AA}^{\pi} \sim R_{AA}^{D}$ (consistent with the $\Delta E_{u,d,s} > \Delta E_{c}$ expectations)
 - $R_{AA}^{D} < R_{AA}^{B}$ (agrees the $\Delta E_{c} > \Delta E_{b}$ expectations)
 - Very high p_T jets containing b-quarks
 - $R_{AA}^{\text{inclusive jet}} \sim R_{AA}^{\text{b-jet}}$ (needs explanation!)

Summary - quarkonia

- The J/Ψ puzzle Dissociation and regeneration
 - $R_{AA}(39 \text{ GeV}) \sim R_{AA}(200 \text{ GeV}) < R_{AA}(2.75 \text{ TeV})$
 - > At RHIC energies, regeneration compensates for dissociation
 - > At LHC energies, regeneration overcomes dissociation
 - v₂(200 GeV) is very low
 v₂(2.75 TeV) is similar to that of D mesons
 - \succ Early, direct pQCD J/ Ψ production dominates at RHIC energies
 - Regeneration in the flowing medium dominates at LHC energies

"Clean probes" - Bottomonium and high-momentum J/Ψ

- R_{AA}(200 GeV) > R_{AA}(2.75 TeV) according to original expectations
- No significant v₂ of Y(1S)
- Less regeneration, CNM effect than in the low-momentum J/Ψ case

Sequential dissociation, sQGP-thermometer

- Weakly bound quarkonium states experience stronger suppression: $R_{AA}^{Y(3S)} < R_{AA}^{Y(2S)} < R_{AA}^{J/\Psi} < R_{AA}^{Y(1S)}$
- T_{ini} @ LHC ~ 500-700 MeV; T_{ini} @ RHIC ~ 300-450 MeV,

Outlook

• <u>The RHIC Era</u> (2000-)

- Finding the QGP
- Understanding its basic properties
- Precision light quark measurements
- First heavy-flavor measurements
- The RHIC-II/early LHC era (2010-)
 - Higher energies
 - More luminosity, more precision
 - Precision charm & first beauty measurements
- <u>The LHC Run-3 era</u> (2022-)
 - Upgraded facilities, detectors
 - x100 luminosity at LHC
 - Detailed beauty & charm baryon sector
- Future detectors: ALICE3 (~2030)
 - Full/mostly silicon-based detector
 - A heavy-flavor factory for multi-differential measurements

Outlook

• <u>The RHIC Era</u> (2000-)

- Finding the QGP
- Understanding its basic properties
- Precision light quark measurements
- First heavy-flavor measurements
- The RHIC-II/early LHC era (2010-)
 - Higher energies
 - More luminosity, more precision
 - Precision charm & first beauty measurements
- <u>The LHC Run-3 era</u> (2022-)
 - Upgraded facilities, detectors
 - x100 luminosity at LHC
 - Detailed beauty & charm baryon sector
- Future detectors: ALICE3 (~2030)
 - Full/mostly silicon-based detector
 - A heavy-flavor factory for multi-differential measurements

Era of the heavy quarks

The ALICE-Budapest group

Analysis group

Wigner RCP Hadron Physics http://hadronphysics.wigner.hu

Experiment & phenomenology

- <u>Heavy-flavor</u>: jet substructure, correlations, meson and baryon fragmentation
- <u>Small systems</u>: semi-soft region of QCD, droplets of QGP, underlying event
- <u>High-p_T spectra</u> of light-flavor hadrons

People

- Róbert Vértesi
- Varga-Kőfaragó Mónika
- Aditya Nath Mishra
- Gyula Bencédi
- László Gyulai
- Zoltán Varga

- Zsófia Jólesz
- Endre Futó
- Anikó Horváth
- Szende Sándor

<u>contacts:</u> Gergely Gábor Barnaföldi Péter Lévai Róbert Vértesi

The ALICE-Budapest group

Analysis group

Wigner RCP Hadron Physics http://hadronphysics.wigner.hu

Experiment & phenomenology

- <u>Heavy-flavor</u>: jet substructure, correlations, meson and baryon fragmentation
- <u>Small systems</u>: semi-soft region of QCD, droplets of QGP, underlying event
- <u>High-p_T spectra</u> of light-flavor hadrons

People

- Róbert Vértesi
- Varga-Kőfaragó Mónika
- Aditya Nath Mishra
- Gyula Bencédi
- László Gyulai
- Zoltán Varga

- Zsófia Jólesz
- Endre Futó
- Anikó Horváth
- Szende Sándor

Detector R & D

Dezső Varga, László Boldizsár, Gergő Hamar, Ádám Gera, Róbert Vértesi

 Gasous detectors: TPC upgrade, ALICE3 MID

http://alice.kfki.hu

Theory & Computing

Gergely Gábor Barnaföldi, Péter Lévai, Gábor Bíró, A.N. Mishra, Zs. Jólesz, L. Gyulai • ALICE Grid Tier 2, 500 CPUs • Analysis facility • Phenomenology

IGNG

DAQ upgrade & service

- Tivadar Kiss, Ernő Dávid
- Gasous detector R&D, TPC upgrade

Válogatott fejezetek a nagyenergiás fizikából - ELTE speci, 2023 november 14.

Thank you!

Róbert Vértesi

vertesi.robert@wigner.hu Wigner Research Centre for Physics Hadron physics research group <u>http://hadronphysics.wigner.hu</u> ALICE-Budapest group <u>http://alice.wigner.hu</u>

Wigner

