

Jet measurements with ALICE: substructure, dead cone, charm jets

Róbert Vértesi

for the ALICE collaboration

Wigner Research Centre for Physics

Centre of Excellence of the Hungarian Academy of Sciences Budapest

vertesi.robert@wigner.mta.hu

This work has been supported by the Hungarian NKFIH/OTKA K 120660 and FK 131979 grants

ALICE jets in pp collisions

This talk: a selection of pp results

- Groomed jet substructure
- Measurement of the dead-cone
- D-mesons in jets: production
- D-meson and Λ_c -baryon: fragmentation
- \rightarrow Test of pQCD and hadronization models
- \rightarrow Flavor-dependent production and fragmentation
- \rightarrow Baseline for measurements in heavy-ions

Not covered: Jets in heavy ion collisions

- Modification of substructures by jet-medium interactions
- Flavor-dependent energy loss mechanisms

Data samples:		
$\sqrt{s_{NN}}$ (TeV)	Years	L _{int}
5.02 TeV	2016-2017	~1.3 pb ⁻¹
7 TeV	2009-2013	~1.5 pb ⁻¹
13 TeV	2016-2017	~59 pb-1

Jet measurements with ALICE

Charged-particle jets

- Full azimuth coverage
- Experimentally easier

Jet measurements with ALICE

LHCP 2020

Jet measurements with ALICE

LHCP 2020

R. Vértesi - Jet measurements with ALICE

Groomed jet substructure

- Access to the hard parton structure of a jet
 - Mitigate influence from underlying event, hadronization
 - Direct interface with QCD calculations
- Soft-drop grooming: Remove large-angle soft radiation
 - Recluster a jet with Cambridge-Aachen algorithm (angular ordered)
 - Iteratively remove soft branches not fulfilling

Groomed jet substructure

- Access to the hard parton structure of a jet
 - Mitigate influence from underlying event, hadronization
 - Direct interface with QCD calculations

 $z > z_{\rm cut} \theta^{\beta}$

- Soft-drop grooming: Remove large-angle soft radiation
 - Recluster a jet with Cambridge-Aachen algorithm (angular ordered)
 - Iteratively remove soft branches not fulfilling

- Substructure variables
 - Groomed momentum fraction

$$z_g = \frac{p_{\text{T,sublead}}}{p_{\text{T,lead}} + p_{\text{T,sublead}}}$$

Groomed radius

$$\theta_g \equiv \frac{R_g}{R}$$

Number of soft drop splittings

Soft Drop grooming: z_g vs. jet R

30-40 GeV/c 60-80 GeV/c 160-180 GeV/c $1/N_{jet} dN/dz_g$ I/N_{jet} dN/dz_g 1/N_{jet} dN/dz_g ALICE Preliminary, pp \sqrt{s} = 13 TeV, L_{int} = 11.5 nb⁻ ALICE Preliminary, pp \sqrt{s} = 13 TeV, L_{int} = 11.5 nb⁻ ALICE Preliminary, pp \sqrt{s} = 13 TeV, L_{int} = 4 pb⁻¹ Anti- k_{T} , 30 GeV/c < p_{T}^{jet} < 40 GeV/c Anti- k_{T} , 60 GeV/c < p_{T}^{jet} < 80 GeV/c Anti- k_{T} , 160 GeV/c < p_{T}^{jet} < 180 GeV/c $p^{\text{track}} > 0.15 \text{ GeV}/c, E^{\text{cluster}} > 0.3 \text{ GeV}$ $p^{\text{track}} > 0.15 \text{ GeV}/c, E^{\text{cluster}} > 0.3 \text{ GeV}$ $p_{\rm rack}^{\rm track} > 0.15 \, {\rm GeV}/c, E^{\rm cluster} > 0.3 \, {\rm GeV}$ $|\eta^{\text{track}}| < 0.7, |\eta^{\text{cluster}}| < 0.7, |\eta^{\text{jet}}| < 0.7 - R$ $|\eta^{\text{track}}| < 0.7, |\eta^{\text{cluster}}| < 0.7, |\eta^{\text{jet}}| < 0.7 - R$ $|\eta^{\text{track}}| < 0.7, |\eta^{\text{cluster}}| < 0.7, |\eta^{\text{jet}}| < 0.7 - R$ $\oint R = 0.2$ $\frac{1}{2}R = 0.2$ SoftDrop: $z_{cut} = 0.1$, $\beta = 0$ -R = 0.2SoftDrop: $z_{cut} = 0.1$, $\beta = 0$ SoftDrop: $z_{cut} = 0.1$, $\beta = 0$ -R = 0.3R = 0.3-R = 0.3 $\frac{1}{4}R = 0.4$ -R = 0.4 $\frac{1}{2}R = 0.4$ +R = 0.5+R = 0.5R = 0.5PYTHIA Perugia 201 PYTHIA Perugia 201 PYTHIA Perugia 2011 Data / MC Data / MC Data / MC 1.4 1.3 1.2 1.1 1.3 1.3 .2 1.2 0.9 0.9 0.8 0.7 0.6 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 0.5 ALI-PREL-310038

- Full-jet groomed momentum fraction in pp collisions at √s=13 TeV
 z_{cut}=0.1, β=0, absolute normalized, no background subtraction
- At low p_T: small radii jets tend to split more symmetrically larger radii: higher sensitivity to non-perturbative effects
- Slight p_T-dependence for small radii
- Trends reproduced well by PYTHIA

Soft Drop grooming: z_g vs. β

- Charged-particle jet groomed momentum fraction in pp collisions at √s=13 TeV z_{cut}=0.1, R=0.4, absolute normalized
- A weak p_T-dependence is present
- Trends reproduced relatively well by PYTHIA

Soft Drop grooming: θ_{g} vs. β

- Charged-particle jet groomed radius in pp collisions at $\sqrt{s=13 \text{ TeV}}$ $z_{\text{cut}}=0.1$, R=0.4, absolute normalized
- Smaller β grooms soft splittings away \rightarrow more collimated jets
- Trends reproduced relatively well by PYTHIA
- \rightarrow possibility to explore contributions from partonic and hadronic stages

Heavy-Flavor fragmentation: The dead cone

Dead cone:

Forward emissions from radiators with large mass are suppressed

- Measurements at LEP: Flavor-dependence of angles between jet fragments
 - Low-background e+e- environment
 - Indirect measurements w.r.t. jet axis

θ ~ k_τ/zp_t

Dead cone: the Lund plane

- D⁰ as well as inclusive jets: Reclustering with C/A
 L. Cunqueiro, M. Ploskon, PRD 99, 074027
- Lund plane populated with all splittings of the radiator's prong
 - D⁰: depletion expected at low angles (~higher ln(1/0) values) Note: 10 to 15% feed-down contribution in D⁰ from b

θ~k_T/zr

Dead cone: the Lund plane

- D⁰ as well as inclusive jets: Reclustering with C/A
 L. Cunqueiro, M. Ploskon, PRD 99, 074027
- Lund plane populated with all splittings of the radiator's prong
 - D⁰: depletion expected at low angles (~higher ln(1/0) values) Note: 10 to 15% feed-down contribution in D⁰ from b

*k*_T-cut to remove contamination from hadronization, decay and the underlying event

Dead cone effect in ALICE

- D-tagged to inclusive ratios vs. $ln(1/\theta)$ at $\sqrt{s}=13$ TeV
- Significant suppression of radiation in D-tagged jets towards low angles
 - effect decreases toward higher energy of the radiator ($\rightarrow \theta > m_q/E_q$)
 - effect decreases towards lower $k_{\rm T}$ cut (\rightarrow more contamination)

First direct measurement of the dead cone effect in pp collisions

Dead cone: model comparison

- **D-tagged to inclusive ratios vs.** $\ln(1/\theta)$ at $\sqrt{s=13 \text{ TeV}}$
- Simulations with PYTHIA6 describe ALICE data qualitatively

Charm production: D⁰-jet cross sections

Analysis technique

- Identify D⁰ mesons via hadronic decays
- Replace decay products with D⁰ in jet
- Comparison with models
 - NLO POWHEG+PYTHIA (hvq) calculations consistent with data (only marginally at low-p_T)
 - Neither LO PYTHIA 6 and 8, nor NLO HERWIG 7 describe the cross-section

R. Vértesi - Jet measurements with ALICE

decay length

secondary vertex

primary vertex

impact parameter

Charm fragmentation: D-jet z_{II}

- Parallel momentum fraction, pp $\sqrt{s}=13$ TeV
 - Characteristic to heavy-flavor fragmentation

- **D-meson fragmentation** is softer at high p_T than at lower p_T
 - POWHEG+PYTHIA6 predicts a stronger change towards low p_T

Charm fragmentation: Λ_c -jet and D-jet z_{II}

- Parallel momentum fraction, pp $\sqrt{s=13}$ TeV
 - Characteristic to heavy-flavor fragmentation

 - **D-meson fragmentation** is softer at high p_{T} than at lower p_{T}
 - POWHEG+PYTHIA6 predicts a stronger change towards low p_{T}
- Λ_c fragmentation: similar trends (different p_T range!)
 - PYTHIA8 with SoftQCD settings performs well with Λ_c
 - Opportunity to compare baryon to meson fragmentation

D-jet substructure: z_g , R_g , n_{SD}

ALICE-PUBLIC-2020-002

- **D**⁰-tagged charged-jet groomed substructuce pp $\sqrt{s=13}$ TeV, $z_{cut}=0.1$, $\beta=0$
- n_{SD} : charm jets typically have less hard splitting than light jets
- → Consistent with harder heavy-flavor fragmentation (mass and color charge effects)

New!

Summary and outlook

Jet substructures with soft-drop grooming in pp collisions

- Full jets vs. *R*, charged jets vs. β in a broad p_T range
- \rightarrow Opportunity to explore contributions of pQCD and hadronization
- \rightarrow Baseline for measurements in heavy-ions

Charm-jet measurements in pp collisions

- Clear indication of the dead cone effect in first direct measurement
- D-tagged jet cross sections, D and Λ_c parallel momentum fraction
- D⁰-jet substructure indicates harder fragmentation than light flavor
- \rightarrow Test of pQCD models and flavor-dependent fragmentation

Summary and outlook

Jet substructures with soft-drop grooming in pp collisions

- Full jets vs. *R*, charged jets vs. β in a broad p_T range
- \rightarrow Opportunity to explore contributions of pQCD and hadronization
- \rightarrow Baseline for measurements in heavy-ions

Charm-jet measurements in pp collisions

- Clear indication of the dead cone effect in first direct measurement
- D-tagged jet cross sections, D and Λ_c parallel momentum fraction
- D⁰-jet substructure indicates harder fragmentation than light flavor
- \rightarrow Test of pQCD models and flavor-dependent fragmentation

Stay tuned for new results soon

Thank You!

Jet suppression in Pb-Pb

- Measurement down to $p_T = 40 \text{ GeV}/c => \text{ redistribution of energy}$
- Only weak dependence seen in data on jet resolution R
- Challenge to some models: stronger R dependence predicted than in data

Jet-medium interactions

- Low p_T: Azimuthal h-h correlations, per-trigger normalized
 - **Broadening** of **central** angular correlation peaks in the $\Delta \eta$ direction
 - Understanding: rescattering with radial flow (AMPT)
- **Higher** p_{T} : Azimuthal h-h correlations, $I_{AA} = Y_{AA}/Y_{pp}$
 - Narrowing of the peak in **central** events in the $\Delta \eta$ direction
 - Jet structure modifications? No proper understanding by models.

Jet Substructure in Pb-Pb

- First intra-jet splitting z_g
 - At small angles (ΔR < 0.1): consistent z_g distributions in Pb-Pb and vacuum
 - At large angles (ΔR > 0.2):
 z_g distributions are steeper in medium than in vacuum

Early jet development influenced by medium

Charm fragmentation: D-jet z_{II} vs. p_T

- parallel momentum fraction
 - Characteristic to heavy-flavor fragmentation

$$z_{\parallel}^{\mathrm{ch}} = \frac{\boldsymbol{p}^{\mathrm{jet \, ch}} \cdot \boldsymbol{p}^{\mathrm{HF}}}{\boldsymbol{p}^{\mathrm{jet \, ch}} \cdot \boldsymbol{p}^{\mathrm{jet \, ch}}}$$

- D-meson fragmentation is softer at high p_T than at lower p_T
- POWHEG+PYTHIA6 predicts a stronger change towards low p_T

Baryon-to-meson ratio: Λ_c^+/D^0 , Ξ_c^0/D^0

- Ξ_c^{0/D^0} as well as Λ_c^+/D^0 are underestimated by models based on ee collisions: Does charm hadronization depend on collision system?
 - PYTHIA8 with string formation beyond leading colour approximation? Christiansen, Skands, JHEP 1508 (2015) 003
 - Feed-down from augmented set of charm-baryon states?
 He, Rapp, 1902.08889
- Detailed measurements of charm baryons provide valuable input for theoretical understanding of HF fragmentation

Heavy flavor jets in p-Pb

- Heavy-flavor jets measured down to $p_T = 10 \text{ GeV}/c$
- No mid-rapidity nuclear modification of HFE jets visible
 - Regardless of chosen jet resolution parameter
- Cross section of beauty jets tagged with displaced vertices also described by POWHEG HVQ x A (pp) within uncertainty

ALICE Upgrade for Run-3 and Run-4

- Up to 50 kHz Pb-Pb interaction rate
- Requested Pb-Pb luminosity: 13 nb⁻¹ (50-100x Run2 Pb-Pb)
- Improved tracking efficiency and resolution at low pT
- Detector upgrades: ITS, TPC, MFT, FIT
- Faster, continuous readout

Shutdown/Technical stop Protons physics Commissioning