LXXI International conference "NUCLEUS – 2021. Nuclear physics and elementary particle physics. Nuclear physics technologies" 20-25 September 2021, Saint Petersburg

Jet substructure measurements with ALICE

Róbert Vértesi for the **ALICE** collaboration

wigner

vertesi.robert@wigner.hu

This work has been supported by the Hungarian NKFIH OTKA FK131979 and K135515 as well as the NKFIH 2019-2.1.11-TÉT-2019-00078, 2019-2.1.11-TÉT-2019-00050, 2019-2.1.6-NEMZKI-2019-00011 grants

Outline

Substructure of inclusive jets (pp collisions)

- Groomed jet substructures
- Generalized jet angularities

Flavor dependent substructure (pp collisions)

- D⁰-meson and Λ_c -baryon fragmentation
- Dead cone, *R*-profile
- Charmed-jet groomed substructure
- \rightarrow Test of pQCD and hadronization models
- \rightarrow Flavor-dependent production and fragmentation
- \rightarrow Baseline for measurements in heavy-ion collisions

Heavy-ion collisions

- Groomed jet substructures
- *N*-subjettiness, subjet fragmentation
- \rightarrow Modification of jet fragmentation by the deconfined medium

Jet measurements with ALICE

Charged-particle jets

- Full azimuth coverage
- High spacial precision

Jet measurements with ALICE

Charged-particle jets

- Full azimuth coverage
- High spacial precision

Full jets

- Direct theory comparison
- Limited acceptance

Jet measurements with ALICE

NUCLEUS 2021

R. Vértesi - Jet measurements with ALICE

Jet substructure in pp collisions

Substructure of inclusive jets (pp collisions)

- Groomed jet substructures
- Generalized jet angularities

Flavor dependent substructure (pp collisions)

- D⁰-meson and Λ_c -baryon fragmentation
- Dead cone, *R*-profile
- Charmed-jet groomed substructure
- \rightarrow Test of pQCD and hadronization models
- \rightarrow Flavor-dependent production and fragmentation
- \rightarrow Baseline for measurements in heavy-ion collisions

Heavy-ion collisions

- Groomed jet substructures
- *N*-subjettiness, subjet fragmentation
- ightarrow Modification of jet fragmentation by the deconfined medium

Groomed jet substructure

- Access to the hard parton structure of a jet
 - Mitigate influence from the underlying event, hadronization
 - Direct interface with QCD calculations
- Soft-drop grooming: Remove large-angle soft radiation
 - Recluster the jet with Cambridge-Aachen algorithm (angular ordered) and unwind the jet clusterization
 - Iteratively remove soft branches not fulfilling $z>z_{
 m cut} heta^{eta}$

$$\overline{2}$$

Larkoski, Marzani, Soyez, Thaler, JHEP 1405 (2014) 146

R. Vértesi - Jet measurements with ALICE

Declustering

Groomed jet substructure

- Access to the hard parton structure of a jet
 - Mitigate influence from the underlying event, hadronization
 - Direct interface with QCD calculations
- Soft-drop grooming: Remove large-angle soft radiation
 - Recluster the jet with Cambridge-Aachen algorithm (angular ordered) and unwind the jet clusterization
 - Iteratively remove soft branches not fulfilling $z>z_{
 m cut} heta^{eta}$

Substructure variables

Groomed momentum fraction

$$z_g = \frac{p_{\mathrm{T,sublead}}}{p_{\mathrm{T,lead}} + p_{\mathrm{T,sublead}}}$$

Groomed radius

$$\theta_g \equiv \frac{R_g}{R}$$

 $n_{\rm SD}$

Number of soft drop splittings

Groomed-away constituents

pp: Soft Drop grooming - z_{g} and θ_{g}

- Larger radii: more influence from non-perturbative effects
- Smaller β grooms soft splittings away \rightarrow more collimated jets
- Trends reproduced relatively well by PYTHIA
- \rightarrow test for pQCD predictions and constraints for non-perturbative effects

Generalized jet angularities

- Characterizes jet structure with transverse-momentum fraction and angular deflection of components
 - Weights associated to both, in a continuous manner
- Infrared and collinear safe for $\kappa=1, \alpha>0$
 - calculable from pQCD
 - Special cases: λ_1^1 Jet girth
 - λ_2^1 Jet thrust
- systematic variation of α
- comparison of non-groomed λ_{α} and groomed-jet $\lambda_{\alpha,g}$
 - => Provides constraints on models
 - => Explores interplay between perturbative and nonperturbative QCD regime

 $\lambda_{\alpha}^{\kappa} \equiv \sum z_{i}^{\kappa} \theta_{i}^{\alpha}$

pp: Generalized jet angularities

 First comparison of jet angularities to NLL' calculations at different α values Full range of measurement: p_T^{chjet}/(GeV/c) ∈ [20, 100], R = 0.2, 0.4 Unfolded in p_T^{chjet} and λ_α => direct comparison to theory

Large deviations in the non-perturbative large-α range

Better agreement in the perturbative, small-α range

pp: Generalized jet angularities - groomed

arXiv:2107.11303

NLL': Almeida et al. JHEP 04 (2014) 174

First measurement of groomed-jet angularities

Full range of measurement: $p_{T}^{chjet}/(GeV/c) \in [20, 100]$, R = 0.2, 0.4

Unfolded in p_{T}^{chjet} and $\lambda_{\alpha} \Rightarrow$ direct comparison to theory

- Vastly extended perturbative regime with grooming
- Good agreement with NNL' calculations

NUCLEUS 2021

• $m_q > \Lambda_{QCD} \rightarrow perturbative production down to low jet p_T$

Fragmentation of heavy-flavor

- Heavy flavour conserved throughout the jet evolution
- Flavor-dependence of fragmentation:

1) Color-charge effect

- Light jets are mostly gluon-initiated, while heavy-flavor jets are quark-initiated
- Couplings are different: qqg $C_F \sim 4/3$ vs. ggg $C_A \sim 3$
- Results in different shapes, momentum distributions, multiplicities

2) Mass-related effects

- Heavy flavor fragments hard: A large fraction of momentum is taken by the heavy hadron
- Dead cone: Forward emissions from radiators with large mass are suppressed

pp: Charm fragmentation - D-jet z_{II}

- Parallel momentum fraction, pp $\sqrt{s} = 13 \text{ TeV}$
 - Characteristic to heavy-flavor fragmentation

- **D**⁰-meson fragmentation is softer at high p_T than at lower p_T
 - POWHEG+PYTHIA6 predicts a stronger change towards low p_T

pp: Charm fragmentation - Λ_c -jet and D-jet z_{II}

- Parallel momentum fraction, pp $\sqrt{s} = 13 \text{ TeV}$
 - Characteristic to heavy-flavor fragmentation

- $z_{\parallel}^{\rm ch} = \frac{\boldsymbol{p}^{\rm jet\,ch} \cdot \boldsymbol{p}^{\rm HF}}{\boldsymbol{p}^{\rm jet\,ch} \cdot \boldsymbol{p}^{\rm jet\,ch}}$
- **D**^o-meson fragmentation is softer at high p_T than at lower p_T
 - POWHEG+PYTHIA6 predicts a stronger change towards low p_T
- Λ_c fragmentation: similar trends (different p_T range!)
 - PYTHIA8 with SoftQCD settings performs well with Λ_c
 - Opportunity to compare baryon to meson fragmentation

pp: Charm fragmentation - Λ_c , D-jet r-shape

• Radial angular distance distribution of a hadron from the jet axis, pp $\sqrt{s=13 \text{ TeV}}$

- Sensitive to different hadronisation mechanisms
- Complementary to fragmentation function

Λ_c fragments closer to jet axis than D⁰

Better described by Monash than enhanced colour reconnection

pp: Dead cone effect in ALICE

- D-tagged to inclusive ratios vs. $ln(1/\theta)$ at $\sqrt{s}=13$ TeV
- Significant suppression of low-angle splittings in D-tagged jet

=> First direct measurement of the dead cone in hadronic collisions

• Effect decreases toward higher energy of the radiator ($\rightarrow \theta > m_q/E_q$)

pp: D-jet substructure - z_g , R_g , n_{SD}

- **D**⁰-tagged charged-jet groomed substructuce pp $\sqrt{s} = 13$ TeV, $z_{cut} = 0.1$, $\beta = 0$
- n_{SD} : charm jets typically have less hard splitting than light jets
- → Consistent with harder heavy-flavor fragmentation (mass and color charge effects)

Jet substructure in Pb-Pb collisions

Substructure of inclusive jets (pp collisions)

- Groomed jet substructures
- Generalized jet angularities
- Flavor dependent substructure (pp collisions)
- D⁰-meson and Λ_c -baryon fragmentation
- Dead cone, *R*-profile
- Charmed-jet groomed substructure
- \rightarrow Test of pQCD and hadronization models
- \rightarrow Flavor-dependent production and fragmentation
- \rightarrow Baseline for measurements in heavy-ion collisions

Heavy-ion collisions

- Groomed jet substructures
- N-subjettiness, subjet fragmentation

\rightarrow Modification of jet fragmentation by the deconfined medium

Pb-Pb: groomed jets - z_{g} and θ_{g}

Charged-particle jets, fully unfolded, Pb-Pb $\sqrt{s_{NN}}$ = 5 TeV z_{cut} = 0.2, R = 0.2 Combinatorial background suppressed using event-wise constituent subtraction

- z_{g} : no effect of interaction of the jet shower with medium
- θ_{g} : suppression of large angles, enhancement of small angles => medium filters out wider subjets
- Models with incoherent energy loss as well as gluon filtering qualitatively describe data

Subjets - access radiation patterns

N-subjettiness

$$\tau_N = \frac{1}{p_{\rm T}^{\rm chjet} R} \sum_k p_{{\rm T},k} \min(\Delta R_{1,k}, ..\Delta R_{N,k})$$

 $\tau_N \sim 1$ if number of subjet prongs > N,

 $\tau_N \sim 0$ otherwise

• τ_2/τ_1 distribution: occurrence of 2-pronged vs. 1-pronged jets

Subjet fragmentation

- Recluster jets using anti- k_{T} with a resolution parameter r < R
- Characterize leading subjets with momentum fraction

$$z_r = \frac{p_{\rm T}^{\rm ch, subjet}}{p_{\rm T}^{\rm ch, jet}}$$

Subjet properties are sensitive to radiation patterns within a jet

Pb-Pb: N-subjettiness

1st measurement of *N*-subjettiness in Pb–Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV

- Fully corrected τ_2/τ_1 distributions (from recoil jets, unbiased towards lower $p_{T,chjet}$)
- Subjet axes determined using C/A-reclustering: slight deviation from PYTHIA8
- When C/A reclustering with soft-drop grooming applied:

No modification within current precision compared to PYTHIA

Pb-Pb: Subjet fragmentation

Subjet fragmentation z_r in Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV

- $z_r \sim 1$ is quark-dominated
- Hints of modification for r = 0.1 subjets
- Consistent with no modification for r = 0.2 subjets
- Consistent with model predictions

Summary

- **pp collisions** test of pQCD evolution and hadronization
 - Grooming techniques separate hard pQCD processes from soft radiation
 - Generalized angularities directly test of pQCD calculations as well as nonperturbative shape functions
- Charmed jets a handle on fragmentation without reclustering
 - Direct access to fragmentation without grooming (z_{II}, *R*-shapes)
 - Means to explore flavor and mass-dependent fragmentation: First observation of the dead cone in hadronic collisions
- **Pb-Pb collisions** jet modification by the medium
 - Groomed substructure observables, N-subjettiness, subjet-fragmentation
 - Test different aspects of medium modification on jet evolution, separation of soft and hard components

Summary

- **pp collisions** test of pQCD evolution and hadronization
 - Grooming techniques separate hard pQCD processes from soft radiation
 - Generalized angularities directly test of pQCD calculations as well as nonperturbative shape functions
- Charmed jets a handle on fragmentation without reclustering
 - Direct access to fragmentation without grooming (z_{II}, *R*-shapes)
 - Means to explore flavor and mass-dependent fragmentation: First observation of the dead cone in hadronic collisions
- **Pb-Pb collisions** jet modification by the medium
 - Groomed substructure observables, N-subjettiness, subjet-fragmentation
 - Test different aspects of medium modification on jet evolution, separation of soft and hard components

Just a fraction of ALICE substructure measurements - much more out there

High-precision Run3 data: beauty-jets, nuclear modification in details...

LXXI International conference "NUCLEUS – 2021. Nuclear physics and elementary particle physics. Nuclear physics technologies" 20-25 September 2021, Saint Petersburg

Thank you!

This work has been supported by the Hungarian NKFIH OTKA FK131979 and K135515 as well as the NKFIH 2019-2.1.11-TÉT-2019-00078, 2019-2.1.11-TÉT-2019-00050, 2019-2.1.6-NEMZKI-2019-00011 grants

HORISON DOWNOUND

3

Jet suppression in Pb-Pb

- Measurement down to $p_T = 40 \text{ GeV}/c => \text{ redistribution of energy}$
- Only weak dependence seen in data on jet resolution R
- Challenge to some models: stronger R dependence predicted than in data

Soft Drop grooming: z_g vs. jet R

- Full-jet groomed momentum fraction in pp collisions at $\sqrt{s} = 13$ TeV $z_{cut} = 0.1, \beta = 0$, absolutely normalized, no background subtraction
- At low p_T: small radii jets tend to split more symmetrically larger radii: higher sensitivity to non-perturbative effects
- Slight p_T-dependence for small radii
- Trends reproduced well by PYTHIA

Soft Drop grooming: z_{g} vs. β

- Charged-particle jet groomed momentum fraction in pp collisions at √s = 13 TeV z_{cut} = 0.1, R = 0.4, absolutely normalized
- A weak p_T-dependence is present
- Trends reproduced relatively well by PYTHIA

Soft Drop grooming: θ_{g} vs. β

- Charged-particle jet groomed radius in pp collisions at $\sqrt{s} = 13$ TeV $z_{cut} = 0.1$, R = 0.4, absolutely normalized
- Smaller β grooms soft splittings away \rightarrow more collimated jets
- Trends reproduced relatively well by PYTHIA
- \rightarrow possibility to explore contributions from partonic and hadronic stages

Jet-medium interactions

- Low p_T: Azimuthal h-h correlations, per-trigger normalized
 - **Broadening** of **central** angular correlation peaks in the $\Delta \eta$ direction
 - Understanding: rescattering with radial flow (AMPT)
- **Higher** p_{T} : Azimuthal h-h correlations, $I_{AA} = Y_{AA}/Y_{pp}$
 - Narrowing of the peak in **central** events in the $\Delta \eta$ direction
 - Jet structure modifications? No proper understanding by models.

Jet Substructure in Pb-Pb

- First intra-jet splitting z_g
 - At small angles (ΔR < 0.1): consistent z_g distributions in Pb-Pb and vacuum
 - At large angles (ΔR > 0.2):
 z_g distributions are steeper in medium than in vacuum

Early jet development influenced by medium

Pb-Pb: groomed jets - z_{g}

- Charged-particle jet groomed momentum fraction Fully unfolded, Pb-Pb $\sqrt{s_{NN}} = 5 \text{ TeV} \ z_{cut} = 0.2, R = 0.2$
- Combinatorial background suppressed using event-wise constituent subtraction
- Consistent with no modification: interaction of the jet shower with medium does not affect z_g

Pb-Pb: groomed jets - θ_{g}

- Charged-particle jet groomed radius Fully unfolded, Pb-Pb $\sqrt{s_{NN}} = 5 \text{ TeV } z_{cut} = 0.2, R = 0.2$
- Suppression of large angles and enhancement of small angles
 => medium filters out wider subjets
- Models with incoherent energy loss as well as gluon filtering qualitatively describe data

Baryon-to-meson ratio: Λ_c^+/D^0 , Ξ_c^0/D^0

- Ξ_c^{0/D^0} as well as Λ_c^+/D^0 are underestimated by models based on ee collisions: Does charm hadronization depend on collision system?
 - PYTHIA8 with string formation beyond leading colour approximation? Christiansen, Skands, JHEP 1508 (2015) 003
 - Feed-down from augmented set of charm-baryon states?
 He, Rapp, 1902.08889
- Detailed measurements of charm baryons provide valuable input for theoretical understanding of HF fragmentation

NUCLEUS 2021

R. Vértesi - Jet measurements with ALICE

Charm production: D⁰-jet cross sections

iet axis

decay length

secondary vertex

primary vertex

impact parameter

Analysis technique

- Identify D⁰ mesons via hadronic decays
- Replace decay products with D⁰ in jet
- Comparison with models
 - NLO POWHEG+PYTHIA (hvq) calculations consistent with data (only marginally at low-p_T)
 - Neither LO PYTHIA 6 and 8, nor NLO HERWIG 7 describe the cross-section

Charm fragmentation: D-jet z_{II} vs. p_T

- parallel momentum fraction
 - Characteristic to heavy-flavor fragmentation

- D-meson fragmentation is softer at high p_T than at lower p_T
- POWHEG+PYTHIA6 predicts a stronger change towards low p_T

Dead cone: the Lund plane

- D⁰ as well as inclusive jets: Reclustering with C/A
 L. Cunqueiro, M. Ploskon, PRD 99, 074027
- Lund plane populated with all splittings of the radiator's prong
 - D⁰: depletion expected at low angles (~higher ln(1/0) values) Note: 10 to 15% feed-down contribution in D⁰ from b

*k*_T-cut to remove contamination from hadronization, decay and the underlying event

NUCLEUS 2021

- Up to 50 kHz Pb-Pb interaction rate
- Requested Pb-Pb luminosity: 13 nb⁻¹ (50-100x Run2 Pb-Pb)
- Improved tracking efficiency and resolution at low pT
- Detector upgrades: ITS, TPC, MFT, FIT
- Faster, continuous readout

Shutdown/Technical stop Protons physics Commissioning