egyetemek térképen

Many of these courses and seminars are held yearly. However, it is always advisible to check the courses currently available at the university of your chosing. The majority of these courses are held in Hungarian.


Graduate and post-graduate courses

 Eötvös Loránd University (ELTE)

  • Advanced biostatistics (Z. Somogyvári)
  • Algebraic quantum field theory (P. Vecsernyés)
  • Cognitive neuroinformatics II, Budapest Semester in Cognitive Sciences (Z. Somogyári)
  • Cognitive neuroscience, Budapest Semester in Cognitive Sciences, (L.Négyessy)
  • Computational neuroscience (Z. Somogyvári)
  • Electrodeposition of metals (L. Péter)
  • Experimental methods of structure determinationI-II. (L. Temleitner)
  • Integrable methods in the gauge/gravity duality I (Z. Bajnok)
  • Introduction to cognitive science, Budapest Semester in Cognitive Sciences, (P. Érdi)
  • Introduction to gravitational theory and high-energy physics (G.G. Barnaföldi, M. Vasúth)
  • Introduction to general relativity (M. Vasúth)
  • Investigation of the inner structure of compact stars (G.G. Barnaföldi)
  • Macromolecules (S. Pekker)
  • Many-body problem I-II. (G. Szirmai)
  • Nanophase metals (I. Bakonyi)
  • Neurophysiological data analysis (Z. Somogyvári)
  • Neutron physics (M. Márton)
  • Nuclear solid-sate physics I-II (D.L. Nagy)
  • Optics and relativity theory (J. Cserti, Gy. Dávid, D. Varga)
  • Physics of jets (P. Lévai)
  • Physics of liquid crystals and polymers (Á. Buka and N. Éber)
  • Physics of the solar system (Z. Németh)
  • Plasma physics (Z. Donkó)
  • Raman spectroscopy in Earth sciences (T. Váczi)
  • Scientific programming for graphics processors I. (M.F. Nagy-Egri)
  • Scientific programming for graphics processors II. (D. Berényi)
  • Selected chapters from high-energy experimental physics (multiple lecturers, including
  • A. László, D. Varga)
  • Selected chapters on compact star interior (G.G. Barnaföldi)
  • Selected topics in experimental high-energy physics (F. Siklér, R. Vértesi)
  • Solid State Physics (I. Tüttő)
  • Statistical physics (G. Szirmai)
  • String Theory (Z. Bajnok)
  • Superconductivity (I. Tüttő)
  • The phase-structure of the strongly interacting matter (P. Lévai)
  • Trends in materials science (Á. Gali)

Budapest University if Technology and Economics (BME)

  • Coherent control of quantum systems (Z. Kis)
  • Engineering thermodynamics II. (R. Kovács)
  • Fusion devices (G. Veres)
  • Fusion devices (G. Pokol)
  • Group theory in solid state research (G. Kriza)
  • Industrial systems diagnostics (G. Pokol, guest lecturer)
  • Inertial confinement fusion (single lecture within the course “Introduction to the fusion
  • plasma physics” of G. Pokol) (I. Földes)
  • Infrared and Raman spectroscopy (K. Kamarás)
  • Interacting spins in materials (K. Penc)
  • Introduction to fusion plasma physics (G. Pokol, S. Zoletnik, D. Dunai)
  • Introduction to irreversible thermodynamics (P. Ván)
  • Introduction to superconductivity (G. Kriza)
  • Introduction to theoretical plasma physics (A. Bencze)
  • Investigation techniques for materials science (T. Keszthelyi)
  • Mechanics I-II. (A. Virosztek)
  • MHD in low dimensional systems (A. Bencze)
  • Modern nuclear energy (G. Pokol)
  • Modern solid state physics (A. Virosztek)
  • Neutron physics (M. Márton)
  • Nuclear fuel cycle (M. Fábián)
  • Nuclear physics (G. Pokol, guest lecturer)
  • Numerical simulations of caloric machines (R. Kovács)
  • Plasma physics (Z. Donkó)
  • Quantum entanglement (Sz. Szalay)
  • Quantum optics (P. Domokos) 
  • Quantum optics (J.K. Asbóth)
  • Spectroscopy and the structure of matter (K. Kamarás)
  • Theoretical solid state physics (A. Virosztek)
  • Theory of magnetism (A. Virosztek)
  • Variational methods in the basics laws of physics (T.S. Biró)

Semmelweis University (SOTE)

  • Learning and navigation, Systems Neuroscience Summer School, (Z. Somogyvári)
  • Neocortex: from structure to function, Systems Neuroscience Summer School (L.Négyessy)
  • Neuroinformatics (L. Négyessy, F. Bazsó, L. Zalányi, Z. Somogyvári)

University of Óbuda

  • Chemistry and Physics of Polymers (S. Pekker)

Szent István University, Gödöllő

  • Biophysics (I.F. Barna, in German)

University of Szeged

  • Analytical mechanics (L. Fehér)
  • Applications of statistical physics (F. Iglói)
  • Introduction to statistical physics (F. Iglói)
  • Introduction to the physics of laser plasmas (I. Földes)
  • Introduction to the theory of nonlinear laser-matter interactions (S. Varró)
  • Modeling heavy-ion collisions (Gy. Wolf)
  • Nuclear and particle physics (L. Fehér)
  • Statistical physics (F. Iglói)
  • Symmetries in physics (L. Fehér)
  • The properties of dense, strongly interacting matter (Gy. Wolf)

University of Pécs

  • Algebra and number theory II-III. (J. Laczkó)
  • Control and regulation technology (J. Laczkó)
  • Control systems (J. Füzi)
  • Digital control (J. Füzi)
  • Electronics (J. Füzi)
  • Geometry and visualisation (J. Laczkó)
  • Mechanics - dynamics (A Len)
  • Neurobioinformatic programming (J. Laczkó) 
  • Numerical methods (P. Ádám)
  • Open quantum systems (P. Ádám)
  • Probability theory (P. Ádám)
  • Quantum information processing by quantum optical means II. (T. Kiss)
  • Resonant light-matter interaction (P. Ádám)
  • Seismic design (A. Len)
  • Statistical physics (K. Szlachányi)
  • Theoretical mechanics (K. Szlachányi)
  • Theoretical physics III (P. Ádám)

University of Debrecen

  • Particle physics 1 and 2 (D. Horváth)
  • Particle physics exercises (D. Horváth)
  • Structure and experimental test of the standard model 1 and 2 (D. Horváth)

Oulu University, Oulu, Finland

  • Lecture course on nanophase metals with special view on spintronics (I. Bakonyi)

Pázmány Péter Catholic University, Budapest

  • Basic calculus (B. File)
  • Neuoromorph movement control. (J. Laczkó)
  • Research methods in sociology, (B. File)
  • Webmining (B. File)

Subotica Tech - College of Applied Sciences (Serbia)

  • Physics of enginiering, (F. Bazsó)

University of Veterinary Medicine, Budapest

  • Biophyics (Z. Szőkefalvi-Nagy, both in Hungarian and in English, two courses)  

University of Warsaw (Lengyelország)

  • On the use of evolutionary methods in metric theories of gravity (I. Rácz)


Laboratory practices and Seminars

Eötvös Loránd University, Budapest

  • Advanced physics laboratory (R. Vértesi)
  • Atomic and molecular physics (P. Udvarhelyi)
  • Differential equations in Physics II (T. Gombor)
  • Electrodynamics (M. Lajer)
  • Environmental radiations laboratory (G. Galgóczi)
  • Experiments on liquid crystals (Á. Buka, N. Éber, P. Salamon, T. Tóth-Katona)
  • IT tools for research (G. Biró, M.F. Nagy-Egri)
  • Laboratory practice on neutron scattering (L. Almásy, A. Len, M. Fábián, L. Rosta, T. Veres, Gy. Török)
  • Modern physics laboratory (P. Udvarhelyi)
  • Nuclear techniques and X-ray spectroscopy (Z. Németh)
  • Nuclear techniques for elemental analysis (RBS and ERDA), extended practice for physics students (E. Szilágyi) 
  • Particle, nuclear and astrophysics lab / MHD waves (A. Opitz)
  • Particle and nuclear physics detectors laboratory (G. Hamar, D. Varga)
  • Probability theory (M. Kornyik)
  • Probability theory and statistics (M. Kornyik)
  • Quantum mechanics (M. Lajer)
  • Raman spectroscopy, part of the course Laboratory practice in biophysics (M. Veres)
  • Statistical physics (G. Szirmai)

Budapest University if Technology and Economics (BME)

  • Applied thermodynamics (R. Kovács)
  • Engineering thermodynamics II (R. Kovács)
  • Heat and flow transfer in mechatronics elements (R. Kovács)
  • Independent task I-II. (L. Bencs)
  • Individual project (D. Beke)
  • Infrared and Raman spectroscopy (K. Kamarás)
  • Introductory physics for chemical engineers (A. Csóré)
  • Laboratory practice (M.A. Kedves, B. Ráczkevi)
  • Laboratory practice on neutron scattering (L. Almásy, A. Len, M. Fábián, L. Rosta, T. Veres, Gy. Török)
  • Nuclear- and neutron physics practical lesson (G. Nyitrai)
  • Physics II for electrical engineers (A. Csóré)
  • Physics II for informaticians (A. Csóré)
  • Physics II. for IT students (A. Buzás)
  • Quantum mechanics (Z. Kökényesi)
  • Raman spectroscopy, part of the course Experimental methods in materials science (M. Veres)
  • Remote measurement on the GOLEM tokamak (G. Pokol)
  • SUMTRAIC Summer School (A. Bencze)
  • Thermal physics, mechatronics I-II.(P. Ván)
  • Thermodynamics and heat transfer (R. Kovács)

University of Pécs

  • Biorobotics (J. Laczkó) 
  • Control systems I-II (J. Füzi)
  • Diagnostics – SEM laboratory practice (A. Len)
  • Geometry and visualisation (J. Laczkó)
  • Mathematical methods in physics IV. (D. Jakab)
  • Mathematical methods in physics IV. (P. Ádám)
  • Mechanics – dynamics - seminar (A. Len)
  • Professional commuication (J. Laczkó)
  • Probability theory (P. Ádám) 

University of Szeged

  • Summer practice in the HILL laboratory, high intensity laser-plasma interactions (I. Földes)
  • Physics practice for 1st year BSc students and for 1st year MSc students (I. Földes, Zs. Kovács)
  • Electronics laboratory (Zs. Kovács)
  • Physics and biophysics laboratory practice (Zs.Kovács)

Eszterházy Károly University, Eger

  • Statistics I. (G. Kasza)
  • Statistics II. (G. Kasza)
  • Mathematics for economy I. (G. Kasza)

Pázmány Péter Catholic University, Budapest

  • Neuoromorph movement control (L. Botzheim)

Technical University, Dresden, Germany

  • Quantum mechanics (G. Roósz)
  • Statistical physics (G. Roósz)