Előadó: Biró Tamás Sándor
Előadás címe: "Gini index, gintropy, and Hirsch-index ", kutatóprofesszori pályázatához tartozó nyilvános előadás
Dátum: 2023. április 3-án, 14:00
Helyszín: I. épület 1. emeleti Tanácstermében
Az esemény online formában is követhető az alábbi linken:
https://wigner-hu.zoom.us/j/81740513723?pwd=QkhDdFdOS3VVd3FwS01NTnVCRjZIUT09
Meeting ID: 817 4051 3723
Passcode: 368468
Összefoglaló:
Entropy is a fundamental thermodynamical and statistical physics concept, at the same time also a mathematical construct. In this lecture I present a more elementary concept tagged "gintropy", which is based on inequality properties of probability distribution functions. The Gini index as well as the entropy, used in economy and econophysics since long can be expressed by a new quantity, gintropy, defined on the Lorenz map. Whether the Gini index and the enrtopy is always co-growing, is still an unanswered question. Yet, gintropy appears as a common point in computing both. On the top of this an analysis of scientometric factors, h-index, publication and citation numbers are analyzed and scaling properties are revealed based on google scholar data. Gintropy maximum offers a limit for the h-index when the citations are distributed according to the Tsallis-Pareto power-law tailed distribution.